
Hatch Mesa, UT

Robert Ressetar, Utah Geological Survey & Lauren Birgenheier, University of Utah
June 9, 2015; DOE project closeout presentation
Acknowledgments

Listed alphabetically:

Faculty
John Bartley (GG), Milind Deo (ChemE),
Cari Johnson (GG), Bill Keach (EGI)
John McLennan (EGI, ChemE), Lisa Stright (GG)

Students
Ziqiang Yuan, Peter Bond (GG), Tyler Connor (ChE, now Devon),
Ryan Hillier (GG), **Brendan Horton** (GG, now Chevron),
Charlie Kennedy (GG, now CoP), Laini Larsen (ChE),
Andrew McCauley (GG, now Apache),
Trevor Stoddard (ChE), James Taylor (EGI), Justin Wriedt (ChE)

Data contributions: Anadarko, Bill Barrett Corporation,
Gasco, Laramie Energy, Pioneer Natural Resources, QEP Resources,
Wind River Resources, XTO Energy

UGS-EGI-Halliburton Joint project
Robert Ressetar (PI)
Jeff Quick
Stephanie Carney

Rick Curtice
Pat Knudert
Kumar Ramurthy
Statement of Problem
Mancos shale, Uinta Basin key characteristics:
- High volume (4000 ft thick, areally extensive)
- Low TOC (avg. 1-2%, max 6.7%)
- Carbonate poor, clay rich (18% carbonate, 41% clay, 41% detrital silica)
- Known source rock
- Tight gas production from Mancos B
- Limited success as Uinta Basin shale play

Project Goals
- Where are the best horizontal targets for potential shale hydrocarbon production?
- Characterize geology, geomechanics and engineering properties of Mancos.
- Establish best drilling, completion, and production techniques for targeted intervals based on their rock properties.
Background - Paleogeography

Birgenheier et al. (in prep); Horton (2012); modified Blakey map (2008).
Background - Stratigraphy

Mancos Shale represents transition from shallow marine sandstones in the west to chalks and marls of the Niobrara in the east.

Birgenheier et al. (in prep.); McCauley (2013); modified from Kauffman (1977)
Uinta Basin Stratigraphy

Seminal sequence stratigraphic models of shallow marine sandstones – Book Cliffs.

How can high volume of downdip marine mudstones be genetically subdivided and stratigraphically correlated?

Birgenheier et al. (in prep.); McCauley (2013)
Data Compilation

Well database includes ~500 wells with

- operators and locations of wells of interest
- cores and cuttings, formation and zone, sample interval and repository, geophysical well logs, and wells with borehole imaging data
- completion data such as date of completion and current status, producing formation, targeted formation(s), and total depth (TD) and age of the formation at TD
- test-treatment data
- palynology analysis and geochemical analysis, from operators and acquired as part of this study
Regional Correlation
Regional Correlation
Regional Correlation
Mudstone Heterogeneity

- Spectrum of mudstone types
- Mancos “siliciclastic influenced”
- Current depositional models fall short
- Sequence stratigraphic models in infancy
Core Datasets

Birgenheier et al. (in prep); McCauley (2013)
Characterization methods

Photos: Utah Reservoirs website, www.reservoirs.earth.utah.edu
Lower Blue Gate Mbr. - facies variability

11 lithofacies identified and placed in depositional context based on:

- Grain size
- Lamination style
- Bioturbation index

Proximal, sand-rich

Distal, mud-rich

Kennedy (2011); Horton (2012); McCauley (2013)
Depositional Model:
1) prodelta, 2) mudbelt, 3) sediment-starved shelf

Prodelta: Sediments rapidly deposited immediately downstream of delta front, characterized by rapid sediment accumulation and hyperpycnal flows.

Mudbelt: Reworked sediments initially deposited at the delta front. Subject to both hyperpycnal and suspension settling deposition.

Sediment-Starved Shelf: Sediments deposited basinward of the influence of hyperpycnal deposition, typically below storm wave base with influence from shelfal currents.

Birgenheier et al. (in prep.); Horton (2012)
Well log correlation

How can we use depositional framework to examine stacking patterns and predict target intervals?

457 wells total available
153 wells included in regional correlation

McCauley (2013)
Targets share:
- relatively high TOC, distal deposition with low sediment dilution
- correspond with transgressive and lowermost highstand sequence sets
- mineralogy conducive to brittle fracture
Facies Association 1

Juana Lopez Outcrops

Heterolith of interbedded fine sandstone, siltstone and organic-rich mudstone

Sandstone includes hummocky cross-stratification and current ripples

2 meters
Facies Association 1 Depositional Setting
Stressed shallow ramp

Hydrocarbon target implications: higher TOC and detrital quartz

McCauley (2013)
Hydrocarbon target implications: higher TOC and carbonate content

<table>
<thead>
<tr>
<th></th>
<th>TOC %</th>
<th>Ca %</th>
<th>Al %</th>
<th>Si %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Mancos</td>
<td>1.25</td>
<td>19.8</td>
<td>43.3</td>
<td>36.9</td>
</tr>
<tr>
<td>Target Facies</td>
<td>1.82</td>
<td>29.0</td>
<td>42.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Horton (2012)
Organic content by Δ Log R

The ΔlogR method uses wireline logs, geochemical data, and thermal-maturity information to calculate an in-situ %TOC.

Apparent density (from curves NPHI, RHOB, or DT) decreases if there is kerogen present within the pore space of organic-rich source rocks.

Free hydrocarbons in the pore space will cause an increase in formation resistivity curve.

Modified from Stright & Hillier (2014); McCauley (2013)

Method must be adjusted for thermal maturity, which increases resistivity.

FA1 & FA2 contain > 3% TOC

Facies Association 2, Stressed shallow ramp

Facies Association 1, Sediment starved shelf
Organic Content by Δ Log R Method

Results show good correlation with sonic and neutron porosity logs.

Sonic

Comparison of measured TOC with calculated from three types of porosity logs.

Bulk Density

Neutron Porosity
Organic Maturation Modeled from Vitrinite Reflectance

Predicts vitrinite reflectance (% Ro) from elevation (MSL) and geographic coordinates.

\[
%\text{Ro} = 14.9X + 33.2Y - 80.1Z + 0.0847X^2 - 0.264Y^2 + 29.3Z^2 - 0.364XY - 2.48YZ - 642.3
\]

where:
- \(X = \text{UTM easting}/100,000 \)
- \(Y = \text{UTM northing}/100,000 \)
- \(Z = 1,000,000/(300,000 + \text{elevation [ft.]}) \)

\(R^2 \) of 0.87 and a standard error of 0.13% Ro.
1-D Burial Histories

Heat flow was set at 58 mW/m² (the average continental heatflow) through the Cretaceous, then adjusted linearly to the modern heatflow in the nearest available data points.

Surface temperatures from the Jurassic through the Cretaceous were determined from paleolatitudes as described by Barker (2000).

Present surface temperature is from the nearest weather station listed in U.S. National Oceanic and Atmospheric Administration, 2002, Climatography of the United States No. 81, 42 Utah.

Erosion rates were estimated from thicknesses of regional preserved sections and modern erosional rates of the Colorado River Basin.

Models used Zetaware Genesis software.
1-D Burial Histories

Burial history for Glen Bench 16M
Time (million years before present) when the base of the Mancos began oil generation.
3D Basin Modeling

Hobbs (in progress)
3D Basin Modeling

Hobbs (in progress)
Predicted Mancos oil volume yield

Hobbs (in progress)
Log Evaluation – Water Saturation

Schlumberger and Poupon-Leveaux equations calculated water saturation accurately compared to core values.

- Water saturations increase with depth.
- Calculations indicate that at great depth and in the northern basin, water saturations may be too high to economically produce.
- Locally certain zones have lower water saturation (and therefore higher hydrocarbon saturation).
Natural Fractures

Donated Formation Image Log Locations

Yuan et al. (2013)
For all six wells, the average strike of natural fractures is NW284.4° ±1.4° or SE104.4° ±1.4° (Opposite direction). This is similar to regional fracture trends documented in the overlying Mesaverde Group (e.g. Sonntag, 2011).

Yuan et al. (2013)
Because the primary natural fracture set strike is approximately parallel with the maximum horizontal stress direction, **hydraulic fractures will likely propagate along existing natural fractures rather than create new fractures.**
Discrete Fracture Network Modeling

Production was simulated in Peters Point 14-27D-12-16 well assuming H₂O saturation, initial reservoir pressure, matrix and fracture permeabilities, and gas formation volume factors.

The secondary fracture set, which improves the connection between natural and hydraulic fractures, and the lower angle dips are critical to increasing production.
Discrete Fracture Network Modeling

Production was simulated assuming H$_2$O saturation, initial reservoir pressure, matrix and fracture permeabilities, and gas formation volume factors.

The secondary fracture set, which improves the connection between natural and hydraulic fractures, and the lower angle dips are critical to increasing production.
Discrete Fracture Network Modeling

Production was simulated in Peters Point 14-27D-12-16 well assuming H₂O saturation, initial reservoir pressure, matrix and fracture permeabilities, and gas formation volume factors.

The secondary fracture set, which improves the connection between natural and hydraulic fractures, and the lower angle dips are critical to increasing production.
Geomechanics testing

Phase 1 → RGU-1 core
Kennedy (2011);

Phase 2
Q1, Q8, Q16, P1 & 2

• Indirect Tensile Strength
• Unconfined Compressive Strength
• Triaxial (realistic production confining pressure – 6110 psi)

Sample #

1 3 4 5
6 7 8

Massive Laminated Admixed Higher Bl Lower Bl
Mancos geomechanical behavior

Vertical plugs, lower Young’s Mod.

"ductile" and "brittle" fields based on Rickman et al. (2009)

Moisture content important!
Quantifying Failure Behavior

How do we quantify actual failure, not pre-failure behavior?

Energy Released (E_f)

$$E_f = \frac{1}{2E} \times \Delta \sigma_f^2 \times V_f$$

Tang & Kaiser (1998)

Where

- E_f = Energy released by failure
- E = Young’s modulus
- $\Delta \sigma_f$ = stress drop on failure (ΔY)
- V_f = volume affected → Proxy:
 - Δ axial strain upon failure (ΔX)

Birgenheier et al. (2011); Kennedy (2012)
Quantifying Sedimentary – Geomechanics Links

Multiple regression analysis – All core (n=23)

Energy released (E_r) versus 5 geologic variables:
1) grain size
2) bioturbation
3) degree of lamination
4) Poisson’s ratio
5) bulk density (g/cm3)

Multiple R = 0.73 (correlation coefficient)

$R^2 = 0.54$ (coefficient of determination or “goodness of fit”)

Suggests the total combined geologic variability accounts for approximately 55% of the variability in E_r.

TOC, Poro/Perm, and mineralogy data to be added in; as well as more lithologic variability
Best Completion Practices

Utah Division of Oil, Gas and Mining data from 1200 wells were screened, identifying 26 “Mancos-only” wells.

Based on the DOGM website production data, it appears what the industry has historically done on the Mancos is not working.

Review indicates little science was behind what part of the Mancos was treated, and what type of fluid and proppant was used.

The only horizontal well drilled in the deep Mancos proved to be the best overall producer, but it too fell short of being an economic success.

Recent 2nd horizontal well drilled by Rose Petroleum in 2015 is producing oil out of the shallow Mancos.
Estimated payout of 26 Mancos-only wells
Best Completion Practices

Most processes applied to drill and complete the Mancos are based on other successful shale plays with little or no data gathering to justify their use in the Mancos.

Vertical wellbores are the most common wells drilled to date, but industry has not developed the data necessary to determine whether horizontals or multilaterals would work better.

Until these fundamental questions are answered, Mancos production will continue to be questionable.

An operator or a consortium must commit to a science project.
Technology Transfer

Presentations:
• American Association of Petroleum Geologists, 2011-2014, 13 talks & posters
• Technical Advisory Board, 2011-2013, 3 meetings
• Uinta Basin Oil & Gas Collaborative Group, 2012, 3 talks
• Rocky Mountain Association of Geologists, 2012
• Utah Geological Association, 2012 and 2013
• RPSEA onshore production conference, 2014

Publications:
• 3 MS theses completed
• 1 PhD dissertation near completion
• Technical papers in review
• Peer-reviewed publications in preparation
Significant findings, lessons learned, & future research

- Detailed core & basin-wide log analysis identified 2 prospective stratigraphic zones in the lower Mancos. Success!
- Core-calibrated log based calculations of organic content ($\Delta \log R$) and water saturation, as well as indices of thermal maturation and migration pathways (Ro regression, 1D and 3D basin modeling) indicate oil sweet spots in the SE portion of the basin within the 2 target intervals. Success! Migration within the Mancos is significant to understanding this unconventional play. Additional 3D basin models of unconventional systems needed.
- Geomechanics testing of the Mancos Shale indicates generally brittle behavior conducive to hydraulic fracturing. Correlation of geologic facies variability to energy released show promise as a predictor of hydraulic fracture behavior. Further testing and facies variability is needed to develop the energy released concept further (separate project underway).
Significant findings, lessons learned, & future research

• Due to lack of strong heterogeneity at the seismic scale, 3D seismic attribute analysis didn’t provide a lot of information. Most attribute analysis in shales is being performed on pre-stack data, which was not available. Highlights the need for pre-stack seismic data.

• Limited natural fracture and in-situ stress direction data do not indicate favorable conditions for creation of new induced fracture networks. Fracture modeling indicates importance of a conductive secondary set of natural fractures for economic production.

• Drilling and completion practices clearly need more comprehensive geologic and engineering data for optimization—most pressing item for future research but weak present market will hinder this.
Thank you