STATION	J Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTT	TWTTS	
SLCAIR	2.0	4.0	909	114	7.974	0.492	0.004	0.035	
SLCAIR	4.0	6.0	1695	114	14.87	0.498	0.002	0.035	
SLCAIR	6.0	10.0	1695	154	11.01	0.496	0.005	0.052	
SLCAIR	10.0	26.0	1695	259	6.544	0.488	0.019	0.124	
SLCAIR	26.0	57.0	1695	317	5.347	0.482	0.037	0.196	
SLCAVH SLCAVH SLCAVH SLCAVH SLCAVH SLCAVH SLCAVH SLCAVH	$\begin{array}{c} 0.0 \\ 4.0 \\ 6.0 \\ 16.0 \\ 30.0 \\ 36.0 \\ 46.0 \\ 56.0 \\ 52.0 \end{array}$	4.0 6.0 16.0 30.0 36.0 46.0 52.0 58.0 56.0	339 339 596 596 757 757 757 1000 757	187 236 236 324 324 476 322 489 489	1.813 1.436 2.525 1.840 2.336 1.590 2.351 2.045 1.548	0.281 0.030 0.407 0.290 0.388 0.173 0.390 0.343 0.142	$\begin{array}{c} 0.024\\ 0.012\\ 0.034\\ 0.047\\ 0.016\\ 0.026\\ 0.016\\ 0.004\\ 0.011\\ \end{array}$	0.043 0.017 0.085 0.086 0.037 0.042 0.037 0.008 0.016	
SLCBAT	2.0	4.0	588	225	2.613	0.414	0.007	0.018	
SLCBAT	4.0	16.0	1300	225	5.778	0.485	0.018	0.107	
SLCBAT	16.0	19.0	1300	379	3.430	0.454	0.005	0.016	
SLCBAT	19.0	26.0	2092	379	5.520	0.483	0.007	0.037	
SLCBAT	32.0	58.0	1926	517	3.725	0.461	0.027	0.101	
SLCBAT	26.0	32.0	1200	379	3.166	0.445	0.010	0.032	
SLCBEN	2.0	14.0	2756	248	0.000	0.461	0.000	0.097 [.]	
SLCBEN	14.0	18.0	1858	454	4.093	0.468	0.004	0.018	
SLCBEN	18.0	58.0	1858	454	4.093	0.468	0.043	0.176	
SLCBON SLCBON SLCBON SLCBON SLCBON SLCBON SLCBON SLCBON SLCBON	2.0 10.0 14.0 18.0 22.0 32.0 36.0 46.0 48.0 55.0	$10.0 \\ 14.0 \\ 18.0 \\ 22.0 \\ 32.0 \\ 36.0 \\ 46.0 \\ 48.0 \\ 55.0 \\ 58.0 \\ 58.0 \\ 14.0 \\ 55.0 \\ 58.0 \\ 14.0 \\ 55.0 \\ 58.0 \\ 14.0 \\ 55.0 \\ 58.0 \\ $	683 683 2000 939 939 1687 1687 1687 1687 1055 2500	241 309 309 309 696 696 750 843 843 843	2.834 2.210 6.472 3.039 1.349 2.424 2.249 2.001 1.251 2.966	0.429 0.371 0.488 0.439 110 0.397 0.377 0.334 383 0.436	$\begin{array}{c} 0.023\\ 0.012\\ 0.004\\ 0.009\\ 0.021\\ 0.005\\ 0.012\\ 0.002\\ 0.013\\ 0.002\\ \end{array}$	0.066 0.026 0.026 0.029 0.011 0.027 0.005 0.017 0.007	
SLCCAM	3.0	5.0	447	149	3.000	0.438	0.009	0.027	
SLCCAM	5.0	12.0	1229	149	8.248	0.493	0.011	0.094	
SLCCAM	12.0	24.0	1229	175	7.023	0.490	0.020	0.137	
SLCCAM	24.0	36.0	2100	292	7.192	0.490	0.011	0.082	

453

235

	SLCLAI SLCLAI SLCLAI SLCLAI	42.0 46.0 54.0 56.0	46.0 54.0 56.0 59.0	1996 1996 3989 3989	1634 634 634 1750	1.222 3.148 6.292 2.279	516 0.444 0.487 0.381	0.004 0.008 0.001 0.002	0.005 0.025 0.006 0.003	
	SLCMAG SLCMAG SLCMAG SLCMAG SLCMAG	2.0 9.0 38.0 48.0 52.0	9.0 38.0 48.0 52.0 58.0	1688 1688 1688 2511 2511	124 306 480 480 1195	13.61 5.516 3.517 5.231 2.101	0.497 0.483 0.456 0.481 0.354	0.008 0.034 0.012 0.003 0.005	0.113 0.190 0.042 0.017 0.010	288
	SLCRIV SLCRIV	2.5 15.0	15.0 53.0	1793 1793	170 319	10.55 5.621	0.495 0.484	0.014 0.042	0.147 0.238	256
	SLCROO SLCROO SLCROO SLCROO SLCROO	2.5 5.0 10.0 15.0 27.5	5.0 10.0 15.0 27.5 44.0	656 656 1740 1740 1740	164 387 387 262 329	4.000 1.695 4.496 6.641 5.289	0.467 0.233 0.474 0.488 0.481	0.008 0.015 0.006 0.014 0.019	0.030 0.026 0.026 0.095 0.100	285
	SLCROS SLCROS SLCROS SLCROS SLCROS SLCROS SLCROS SLCROS	2.0 4.0 12.0 14.0 20.0 28.0 38.0 36.0	4.0 12.0 14.0 20.0 28.0 36.0 47.0 38.0	645 1020 1020 2174 1200 1827 1200	224 224 645 645 645 469 1510 313	2.879 4.554 1.581 1.581 3.371 2.559 1.210 3.834	0.431 0.475 0.167 0.167 0.452 0.410 578 0.463	0.006 0.016 0.004 0.012 0.007 0.013 0.010 0.003	0.018 0.071 0.006 0.019 0.025 0.034 0.012 0.013	436
	SLCSUN SLCSUN SLCSUN SLCSUN SLCSUN SLCSUN	2.0 4.0 8.0 24.0 26.0 34.0 37.5	4.0 8.0 24.0 26.0 34.0 37.5 50.0	455 455 888 888 1408 2663 2663	136 434 434 646 646 646 1250	3.346 1.048 2.046 1.375 2.180 4.122 2.130	0.451 -4.54 0.343 062 0.367 0.469 0.359	0.009 0.018 0.036 0.005 0.011 0.003 0.009	0.029 0.018 0.074 0.006 0.025 0.011 0.020	470
	SLCTMP SLCTMP SLCTMP SLCTMP SLCTMP SLCTMP SLCTMP SLCTMP SLCTMP	2.0 4.0 6.0 16.0 18.0 31.0 44.0 46.0 48.0	4.0 6.0 16.0 18.0 31.0 44.0 46.0 48.0 58.0	426 1157 1157 1157 1674 1674 1674 2167 2167	263 263 731 280 280 721 330 330 1024	1.620 4.399 1.583 4.132 5.979 2.322 5.073 6.567 2.116	0.192 0.473 0.168 0.469 0.486 0.386 0.480 0.488 0.356	0.009 0.003 0.017 0.003 0.016 0.016 0.002 0.002 0.002 0.009	0.015 0.015 0.027 0.014 0.093 0.036 0.012 0.012 0.020	446
1	SLCUGM SLCUGM SLCUGM SLCUGM SLCUGM	2.0 4.0 10.0 12.0 34.0 40.0	4.0 10.0 12.0 34.0 40.0 58.0	519 519 1035 1035 1035 2201	206 320 320 593 713 713	2.519 1.622 3.234 1.745 1.452 3.087	0.406 0.193 0.447 0.256 0.048 0.441	0.008 0.023 0.004 0.043 0.012 0.016	0.019 0.037 0.013 0.074 0.017 0.050	504

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCAVH	0.0	4.0	339	187	1.813	0.281	0.024	0.043
SLCAVH	4.0	6.0	339	236	1.436	0.030	0.012	0.017
SLCAVH	6.0	16.0	596	236	2.525	0.407	0.034	0.085
SLCAVH	16.0	30.0	596	324	1.840	0.290	0.047	0.086
SLCAVH	30.0	36.0	757	324	2.336	0.388	0.016	0.037
SLCAVH	36.0	46.0	757	476	1.590	0.173	0.026	0.042
SLCAVH	46.0	52.0	757	322	2.351	0.390	0.016	0.037
SLCAVH	56.0	58.0	1000	489	2.045	0.343	0.004	0.008
SLCAVH	52.0	56.0	757	489	1.548	0.142	0.011	0.016

Idealized Soil and Shear Wave Velocity Profiles

Salt Lake City East Airport #17

STATION	J Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCAIR	2.0	4.0	909	114	7.974	0.492	0.004	0.035
SLCAIR	4.0	6.0	1695	114	14.87	0.498	0.002	0.035
SLCAIR	6.0	10.0	1695	154	11.01	0.496	0.005	0.052
SLCAIR	10.0	26.0	1695	259	6.544	0.488	0.019	0.124
SLCAIR	26.0	57.0	1695	317	5.347	0.482	0.037	0.196

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCWAP	2.0	4.0	800	159	5.031	0.479	0.005	0.025
SLCWAP	4.0	14.0	1687	159	10.61	0.496	0.012	0.126
SLCWAP	14.0	18.0	1687	222	7.599	0.491	0.005	0.036
SLCWAP	18.0	38.0	1687	264	6.390	0.487	0.024	0.152
SLCWAP	38.0	50.0	1687	333	5.066	0.480	0.014	0.072
SLCWAP	50.0	59.0	1687	400	4.218	0.470	0.011	0.045

STATION	Z 1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCBAT	2.0	4.0	588	225	2.613	0.414	0.007	0.018
SLCBAT	4.0	16.0	1300	225	5.778	0.485	0.018	0.107
SLCBAT	16.0	19.0	1300	379	3.430	0.454	0.005	0.016
SLCBAT	19.0	26.0	2092	379	5.520	0.483	0.007	0.037
SLCBAT	32.0	58.0	1926	517	3.725	0.461	0.027	0.101
SLCBAT	26.0	32.0	1200	379	3.166	0.445	0.010	0.032

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCCAM	3.0	5.0	447	149	3.000	0.438	0.009	0.027
SLCCAM	5.0	12.0	1229	149	8.248	0.493	0.011	0.094
SLCCAM	12.0	24.0	1229	175	7.023	0.490	0.020	0.137
SLCCAM	24.0	36.0	2100	292	7.192	0.490	0.011	0.082
SLCCAM	36.0	46.0	2006	292	6. 87 0	0.489	0.010 0.019	0.068
SLCCAM	46.0	65.0	2006	351	5.715	0.484		0.108

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCRIV	2.5	15.0	1793	170	10.55	0.495	0.014	0.147
SLCRIV	15.0	53.0	1793	319	5.621	0.484	0.042	0.238

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCSUN	2.0	4.0	455	136	3.346	0.451	0.009	0.029
SLCSUN	4.0	8.0	455	434	1.048	-4.54	0.018	0.018
SLCSUN	8.0	24.0	888	434	2.046	0.343	0.036	0.074
SLCSUN	24.0	26.0	888	646	1.375	062	0.005	0.006
SLCSUN	26.0	34.0	1408	646	2.180	0.367	0.011	0.025
SLCSUN	34.0	37.5	2663	646	4.122	0.469	0.003	0.011
SLCSUN	37.5	50.0	2663	1250	2.130	0.359	0.009	0.020

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCBON	2.0	10.0	683	241	2.834	0.429	0.023	0.066
SLCBON	10.0	14.0	683	309	2.210	0.371	0.012	0.026
SLCBON	14.0	18.0	2000	309	6.472	0.488	0.004	0.026
SLCBON	18.0	22.0	939	309	3.039	0.439	0.009	0.026
SLCBON	22.0	32.0	939	696	1.349	110	0.021	0.029
SLCBON	32.0	36.0	1687	696	2.424	0.397	0.005	0.011
SLCBON	36.0	46.0	1687	750	2.249	0.377	0.012	0.027
SLCBON	46.0	48.0	1687	843	2.001	0.334	0.002	0.005
SLCBON	48.0	55.0	1055	843	1.251	383	0.013	0.017
SLCBON	55.0	58.0	2500	843	2.966	0.436	0.002	0.007

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCLAI	2.0	6.0	600	336	1.786	0 272	0.013	0.024
SLCLAI	6.0	8.0	973	336	2.896	0.432	0.013	0.024
SLCLAI	8.0	18.0	973	944	1.031	-7.51	0.021	0.012
SLCLAI	18.0	24.0	1872	536	3.493	0.455	0.006	0.022
SLCLAI	24.0	28.0	1872	992	1.887	0.305	0.004	0.022
SLCLAI	28.0	30.0	1872	1634	1.146	-1.10	0.002	0.000
SLCLAI	30.0	32.0	3003	1634	1.838	0.290	0.001	0.002
SLCLAI	32.0	38.0	3003	1634	1.838	0.290	0.004	0.002
SLCLAI	38.0	42.0	2500	1634	1.530	0.127	0.003	0.005
SLCLAI	42.0	46.0	1996	1634	1.222	- 516	0.004	0.005
SLCLAI	46.0	54.0	1996	634	3.148	0 444	0.004	0.005
SLCLAI	54.0	56.0	3989	634	6.292	0.487	0.001	0.025
SLCLAI	56.0	59.0	3989	1750	2.279	0.381	0.002	0.000
			0,0,	1.00		0.001	0.002	0.005

STATION	Z 1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCWES	2.0	4.0	833	171	4.871	0.478	0.005	0.023
SLCWES	4.0	6.0	1696	171	9.918	0.495	0.002	0.023
SLCWES	6.0	10.0	1696	270	6.281	0.487	0.005	0.030
SLCWES	43.0	57.0	2316	1334	1.736	0.252	0.012	0.021
SLCWES	10.0	43.0	1696	384	4.417	0.473	0.039	0.172

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCROO SLCROO SLCROO SLCROO SLCROO	2.5 5.0 10.0 15.0 27.5	5.0 10.0 15.0 27.5 44.0	656 656 1740 1740 1740	164 387 387 262 329	4.000 1.695 4.496 6.641 5.289	0.467 0.233 0.474 0.488 0.481	0.008 0.015 0.006 0.014	0.030 0.026 0.026 0.095
					0.207	0.101	0.019	0.100

STATION	Z 1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCROS	2.0	4.0	645	224	2.879	0 431	0.006	0.019
SLCROS	4.0	12.0	1020	224	4.554	0.475	0.000	0.018
SLCROS	12.0	14.0	1020	645	1.581	0.167	0.004	0.006
SLCROS	14.0	20.0	1020	645	1.581	0.167	0.012	0.019
SLCROS	20.0	28.0	2174	645	3.371	0.452	0.007	0.025
SLCROS	28.0	36.0	1200	469	2.559	0.410	0.013	0.034
SLCROS	38.0	47.0	1827	1510	1.210	578	0.010	0.012
SLCRUS	36.0	38.0	1200	313	3.834	0.463	0.003	0.013

STATION	Z 1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS	
SLCWAS	2.0	4.0	930	174	5.345	0.482	0.004	0.023	
SLCWAS	4.0	8.0	930	275	3.382	0.452	0.009	0.029	
SLCWAS	8.0	16.0	647	275	2.353	0.390	0.025	0.058	
SLCWAS	18.0	26.0	892	479	1.862	0.297	0.018	0.033	
SLCWAS	16.0	18.0	892	275	3.244	0.447	0.004	0.015	
SLCWAS	26.0	32.0	1183	479	2.470	0.402	0.010	0.025	
SLCWAS	32.0	50.0	1183	606	1.952	0.322	0.030	0.059	
SLCWAS	54.0	57.0	1818	778	2.337	0.388	0.003	0.008	

STATION	Z 1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCFOR	2.0	8.0	1538	234	6.573	0.488	0.008	0.051
SLCFOR	8.0	18.0	2036	373	5.458	0.483	0.010	0.054
SLCFOR	18.0	22.0	2036	252	8.079	0.492	0.004	0.032
SLCFOR	22.0	26.0	1750	252	6.944	0.489	0.005	0.032
SLCFOR	26.0	32.0	.1750	500	3.500	0.456	0.007	0.024
SLCFOR	32.0	34.0	1750	784	2.232	0.374	0.002	0.005
SLCFOR	34.0	36.0	2196	784	2.801	0.427	0.002	0.005
SLCFOR	36.0	42.0	2196	351	6.256	0.487	0.005	0.034
SLCFOR	42.0	48.0	2196	1000	2.196	0.369	0.005	0.012
SLCFOR	48.0	56.0	1538	350	4.394	0.473	0.010	0.046
SLCFOR	56.0	59.0	2642	350	7.549	0.491	0.002	0.017

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCMAG	2.0	9.0	1688	124	13.61	0.497	0.008	0.113
SLCMAG	9.0	38.0	1688	306	5.516	0.483	0.034	0.190
SLCMAG	38.0	48.0	1688	480	3.517	0.456	0.012	0.042
SLCMAG	48.0	52.0	2511	480	5.231	0.481	0.003	0.017
SLCMAG	52.0	58.0	2511	1195	2.101	0.354	0.005	0.010

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCTMP	2.0	4.0	426	263	1.620	0.192	0.009	0.015
SLCTMP	4.0	6.0	1157	263	4.399	0.473	0.003	0.015
SLCTMP	6.0	16.0	1157	731	1.583	0.168	0.017	0.027
SLCTMP	16.0	18.0	1157	280	4.132	0.469	0.003	0.014
SLCTMP	18.0	31.0	1674	280	5.979	0.486	0.016	0.093
SLCTMP	31.0	44.0	1674	721	2.322	0.386	0.016	0.036
SLCTMP	44.0	46.0	1674	330	5.073	0.480	0.002	0.012
SLCTMP	46.0	48.0	2167	330	6.567	0.488	0.002	0.012
SLCTMP	48.0	58.0	2167	1024	2.116	0.356	0.009	0.020

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCDUC	0.0	6.0	1081	106	10.20	0.495	0.011	0.113
SLCDUC	6.0	10.0	1757	160	10.98	0.496	0.005	0.050
SLCDUC	10.0	12.0	1757	160	10.98	0.496	0.002	0.025
SLCDUC	12.0	38.0	1757	262	6.706	0.489	0.030	0.198
SLCDUC	38.0	86.0	1757	394	4.459	0.474	0.055	0.244

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCKSL	1.0	4.0	840	90	9.333	0.494	0.007	0.067
SLCKSL	4.0	6.0	840	180	4.667	0.476	0.005	0.022
SLCKSL	6.0	12.0	1664	180	9.244	0.494	0.007	0.067
SLCKSL	12.0	30.0	1664	253	6.577	0.488	0.022	0.142
SLCKSL	30.0	36.0	1664	298	5.584	0.483	0.007	0.040
SLCKSL	36.0	42.0	2164	518	4.178	0.470	0.006	0.023
SLCKSŁ	42.0	46.0	1332	518	2.571	0.411	0.006	0.015
SLCKSL	51.0	64.0	1696	400	4.240	0.471	0.015	0.065
SLCKSL	46.0	51.0	1997	400	4.992	°0.479	0.005	0.025
SLCKSL	64.0	65.0	1696	400	4.240	0.471	0.001	0.005

STATION	Z1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCCCH	0.0	2.0	1940	242	8.016	0.211	0.010	0.017
SLCCCH	2.0	14.0	1465	242	6.054	0.486	0.016	0.099
SLCCCH	28.0	56.0	1729	384	4.503	0.474	0.032	0.146
SLCCCH	14.0	28.0	1729	242	7.145	0.490	0.016	0.116
SLCCCH	56.0	68.0	1780	384	4.635	0.476	0.013	0.062

STATION	Z 1	Z2	Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS
SLCEAP	2.0	8.0	1141	129	8.845	0.494	0.011	0.093
SLCEAP	8.0	14.0	1141	175	6.520	0.488	0.011	0.069
SLCEAP	14.0	22.0	930	223	4.170	0.469	0.017	0.072
SLCEAP	22.0	34.0	1721	223	7.717	0.491	0.014	0.108
SLCEAP	34.0	52.0	1721	304	5.661	0.484	0.021	0.118
SLCEAP	52.0	58.0	1721	571	3.014	0.438	0.007	0.021

STATION	Z1 Z2		Vp	Vs	Vp/Vs	SIGMA	TWTTP	TWTTS	
SLCBEN	2.0	14.0	2756	248	0.000	0.461	$0.000 \\ 0.004 \\ 0.043$	0.097 [.]	
SLCBEN	14.0	18.0	1858	454	4.093	0.468		0.018	
SLCBEN	18.0	58.0	1858	454	4.093	0.468		0.176	

Bering: PB-01 , Sheet 1 of 5 SAMDLE DESCRIPTION		nth	t og	Elev			s	AMPLE		• = SPT "N = <i>S</i> -Wave	"-Value Velocity		Test Res	uits *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft	rm)	Graphic	(m)	Type	No.	ec (mm)	Blows/0.15m	USCS (AASHTO)	"Vs" (m (Blows/0,	/sec) 3m) 8	Field To Vane Shear	ests /s (m/sec)	Lab Tests	DAMES & MOORE
Escountered concrete. SANDY GRAVEL (GM) silty, brown and grey, moist, medium density, (Fill). C.AY (CL), light grey, very moist, medium stiffness, with silt.	5	-			× 1 -55-		50	22-4-3		9 0 4 4 4 1		JU (AFB)	157		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-01 (600 North) Sheet 1 of 5
C_AY (CL), light grey, very moist, medium stiffness, with silt.	10 10 11 15				P P	2	324		CL				320		Logged by: Travis Nguyen Date Start: 4/15/96 Date Finish: 4/16/96 Weather: Station: 600 North
SLT (ML).	20				X ss	3	361	4-3-4	ML	●			324		Offset: Coordinates (m): N 25,200.0 E 250.0 Elevation (m): 392.3 Groundwater Cepth (m): Depth to Bedrock (m): N/A Total Depth Drilled (m): 91.7 Drill Contractor: CBC
SLT (ML).	30				P P	4	361		ML				287		Driller: J.Huise, Dave W., Milo A. Rig Type: 6164 Drilling Method: Mud Rotery Hole Diameter: 4.5"
SILTY SAND (SM), dark grey, wet, loose to medum density, fine.	40	-			<u>X 55</u>	5	316	8-3-6	SM	•			318		Elevations based upon North American Vertical Datum of 1938 (NAVD '88) Coordinates are NAD '83 ☑ = Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unified Soil Classification System
SILT (ML), light grey, wet, medium stiffness.	50 55	15			<u>Р</u> ғ	6	278		ML	•			194		 N-Value data greater than 100 blows/0.3m See Kay to Soil Logs for list of abbreviations and descriptions of tests SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler
SILT (ML), grey, wet, medium stiffness, clayey silt with interlayered silty sand.	60	- 20			X 55	7	407	2-3-3	ML	•	1000		179		DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD, pushed P = Dames & Moore Piston Sampler

Boring: PB-01 Sheet 2 of 5 SAMPLE DESCRIPTION	Depth	50 01 0 Elev	, .		s	AMPLE		•	≃ SP = S-1	T "N"-Va Vave Veloci	ilue ity	т	est Res	uits *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(fti-m)	(m	Туре	No.	Rec (mm)	Blows/0.15m	USCS (AASHTO		"V (Blov	" (m/sec) vs/0.3m)	00	Field Test	S m/sec)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
SILT CLAY (CL-ML), mottled brown and grey, wet, medium stiffness, silty clayey silt.	7520	•	0	8	407		CL-ML						290		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-01 (600 North) Sheet 2 of 5
, SILT SAND GRAVEL (GM), grey, saturated, very dense.	80 		X 55	9	457	8-19-50	GM			•		4	135		Logged by: Travis Nguyen Date Stant: 4/15/96 Date Finish: 4/16/96 Weather: Station: 600 North Offset: Coordinates (m.: N 25,200.0 E 250.0
CLAY (CL), mottled grey and brown, very moist, very stiff, silty day with fragments of seashells and layers of silty fine sard.	90		5 X 55	10	407	10-12-15	CL		••			. 3	148		Elevation (m): 392.3 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Driled (m): 91.7 Drill Contractor: CBC Driller: J.Huise, Dave W., Milo A. Rig Type: 6164 Drilling Method: Mud Rotary Hole Diameter: 4.5"
CLAY (CL).	100	-	P P	11	457	· · · · · · · ·	CL					2	26		LEGEND/NOTES Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83
CLAY (CL), mottled dark grey and olive grey, very moist, stiff, silty clay.		36(X ss	12	457	6-4-6	CL	•				2	22		 Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown JSCS = Unifiec Soil Classification System > = N-value data greater than 100 blows/0.3m See Key to Soil Logs for list of abbreviations and descriptions of tests
C:AY (CL), mottled grey and brown-dark brown, very moist, very stiff, silty clay and organic silt, with layer of wood fiber.	20		X ss	13	457	€-10-15	CL-OL					2	14 .		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD,
ne recovery,	30-40		ss	14		50/4*	GM .	0			1000	2:	39		ି pushed ମିମ୍ପ = Dames & Moore Piston Sampler

Boring: PB-01 , Sheet 3 of 5 SAMPLE DESCRIPTION	Denth	601	lev.			S	AMPLE		 SPT "N"-Value S-Wave Velocity 	Test R	esults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysi	
(ASTM D-2488)	(ft+m)	Graphic	(m)	Type	No.	Rec (mm)	Blows/0.15m	USCS (AASHTO	"Ys" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa)	Lab Tests	DAMES & MOORE Geosciences/Geotechnical Salt Lake City, U	
SAND GRAVEL (GM), grey, saturated, very dense, with silt.			350									FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-01 (600 North) Sheet 3 of 5	
SANDY SILT (ML), grey, wet, medium stiff to stiff, very fine sands.				X <u>5</u> 5	15	316	4-2-6	ML		179		Logged by: Travis Nguyen Date Start: 4/15/96 Date Finish: 4/16/96 Weather: Station: 600 North Offset:	
SILT (ML), becomes very stiff.			345	×-33-	-16	-50	6-8-12	ML		122		Coordinates (m): N 25,200.0 E 250.0 Elevation (m): 392.3 Groundwater Depth (m): Depth to Bedreck (m): N/A Total Depth Dilled (m): 91.7 Drill Contracto: CBC Driller: J.Huise, Dave W., Milo A. Rig Type: 6164	
SILT SAND GRAVEL (GM), grey, saturated, very dense, subangular gravel with sand and silt.				2 33	77	72	20-50/3*-	GM		259		LEGEND/NOTES ' Elevations based upon North American Vertical Dat of 1988 (NAVD '88)	
SILTY SAND (ML-SM), grey, saturated, stiff, medium density, sity fine sand to fine sandy silt.			340	X SS	_18	204	6-12-18	ML-SM		203		 ✓ = Groundwater depth Blows = number of blows required to drive split spots sampler 150mm or distance shown USCS = Unified Soil Classification System > = N-value data greater than 100 blows/0.3m * = See Key to Soil Logs for list of abbreviation 	
SILTY SAND (SM-ML), grey, saturated, very dense, very fine sand to very fine sand to very fine sandy silt.	180		335	°-ss	79	67	50/6*	SM-ML		305		and descriptions of tests SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler	
CLAYEY SILTY GRAVEL (GC), silty clay and wood fiber and gravel.	90 - - - - - - - - - - - - - - - - - -			× \$\$-	-20	137	5 0 /6*	GC	0 580 1000	339		US = Undis:urbed Shelby Tube, 76.2mm OD, pushed P P = Dames & Moore Piston Sampler	

Boring: PB-01 Sheet 4 of 5 SAMPLE DESCRIPTION	Depth	c Log	Elev.			s	AMPLE		• = SPT "N"-Value = S-Wave Velocity	Test R	esults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 1-15 Seismic Hazard Analysi
(ASTM D-2488)	(ft+m)	Graphic	(m)	Түре	No.	Rec (mm)	Blows/0.15m	USCS (AASHTO)	"Vs" (m/sec) (Blows/0.3m) 00	Field Tests Vane Shear Su (kPa)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
CLAYEY SILTY GRAVEL (GC), light grey to brown clayey subargular gravel (granitic), with sand, saturated, very dense.	200 - 200 - 205 -		 	- 55	21	101	50/4*	GC		469		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-01 (600 North) Sheet 4 of 5
ro recovery. CLAYEY SILTY GRAVEL (GC).	210			_ ss	22		19-50/4*	GC		484		Logged by: Travis Nguyen Date Start: 4/15/96 Date Finish: 4/15/96 Weather: Station: 600 North Offset: Coordinates (m): N 25,200.0 E 250.0
SILT (ML), mottled green to light grey, very moist, very stiff to hard, clayey silt with fine sand.	220 -			<u>x ss</u>	23	457	30-42-40	ML		210		Elevation (m): 392.3 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Dilled (m): 91.7 Drill Contractor: CBC Driller: J.Huise, Dave W., Milo A. Rig Type: 6154 Drilling Method: Mud Rotary Hole Diameter: 4.5"
SILT (ML), mottled green to light grey, very most, very stiff to hard, clayey sit with fine sand and scattered gravels.	230-70-	-	-	X 55	24	457	18-20-45	ML	•	265		LEGEND/NOTES ' Elevations based upon North American Vertical Datur of 1588 (NAVD '88)
SILTY SANDY GRAVEL (GM), dark grey to light grey, saturated, very dense, andy, subangular gravel with silt.	240 240 245			×1 -55	-25	124		GM		254		Coordinates are NAD '83
no recovery.	250		 	- ss	26		50/6*	GM?	•••	436		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD,
no recovery.	260		-	- ss	27		50/3.5	GM?	9000	449		때 pushed 한 P = Dames & Moore Piston Sampler

÷

Bcring: PB-01 Steet 5 of 5 SAMPLE DESCRIPTION	Depti	t fog	Elev.		·+	S			• = SF III = S-1	T "N"-V	alue :ity		Test Re	esults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft+m	(u)	(m)	Type	No.	Rec (mm)	Blows/0.15m	USCS (AASHTO)	-7 (Blow	(m/sec) (\$/0.3m))))	Field Te Vane Shear Su (kPa)	ests /s (m/sec)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
- reddish brown, fresh rock (boulder).	265	80	 	55	28	12	50/2"	GM		, , ,		·	436		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-01 (600 North) Sheet 5 of 5
	2758														Logged by: Travis Nguyen Date Start: 4/15/96 Date Finish: 4/16/96 Weather: Station: 600 North
CLAYEY GRAVEL (GM).	280- 		-305	SS	29	73	- 28-50/5.5	GM			X		469		Offset: Coordinates (m): N 25,200.0 E 250.0 Elevation (m): 392.3 Groundwater Cepth (m): Depth to Bedrcck (m): N/A Total Depth Drilled (m): 91.7 Drill Contracto: CBC Driller: J Mids Daya W Min A
CLAY (CL), mottled grey to brown, wet, very stilf to hard, clayey silt, with lenses of fine sand.	290 	-		X SS	30	405	40-42-50/4*	CL)		488		Rig Type: 6164 Drilling Method: Mud Rotary Hole Diameter: 4.5" LEGEND/NOTES ' Elevations based upon North American Vertical Datum
SILTY SAND (SM)M = SM	300- 	-	300	×1_5\$	-31	229	48-50/3"	SM					528		of 1938 (NAVD '88) Coordinates art NAD '83 ☑ = Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown
	\$10_ - 9	 95	-												USCS = Unified Soil Classification System >> = N-value data greater than 100 blows/0.3m • See Kay to Soil Logs for list of abbreviations and descriptions of tests
	815 	-													SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler
	320- 	-	_							8	000				US = Undisturbed Shefby Tube, 76.2mm OD, pushes P P = Dames & Moore Piston Sampler

-

.

15A SEI	SMIC DA	ГА	[
Depth	Vs	s (ft./sec.)	Vs (m./sec.)
	5	425	129.
	10	497	151.
	20	580	176.
	30	483	147.:
	40	408	124.4
	50	667	203.:
	60	702	214.0
	70	630	192.0
	80	656	199.9
	90	898	273.3
	100	808	246.3
_	110	747	227.7
	120	852	259.7
	130	942	287.1
	140	987	300.8
	150	842	256.6
	160	987	300.8
	170	816	248.7
	180	762	232.3
	190	980	298.7

I	Date Begun Date Completed	-94 UTAH DEPARTMENT OF TRANSPORTATION Hole M G-94 MATERIALS AND TESTS SECTION Sheer	Ho Form R-3 of
I	Hole Dlameter <u>4</u> Praject No. <u>SP-</u>	<u>-3</u> <u>5-7(111)296</u> <u>Total D</u>	lepth 200'
	oject Name U	<u>Corridor (r. D. K. 10800 So to 500 No.</u> 1 Ergineerin Study Equation Project Line Sta.	Salt Lake Ca
*	Type of Structure Sta. of Structure	Hole Sta. Agacent to DH 15 Rt F	t, LtFt., of t
7	Collar Elevation 4 Field Party <u>Fowel</u>	<u>Vorwood I Winters</u> RigRig	B-61 HDX
1 1		Ground Water Table	
	Metho Depth Numbe	E Bate 11-9-94 11-10-94	
	Orilling Casing Blows r Sample	1 1 <th>er foot on casing, depths circulation lost, used, etc.</th>	er foot on casing, depths circulation lost, used, etc.
•	RB II	of Grassy ground surface	
		Drove 4" cosine to 7'	
T		2 Dk brown send and gravel with	silt and some clay
1		3	
Ĩ			
	¬B −		
I		6	
_			
1		B CONTRACTOR	
ה		9	
1			
Πŀ		- Cray silty sand with some to a t	race organic material
<u>ا</u> . ال			
		Dk gray silty clay	
		Bluish gray silty clay	
┥┝			
-			
•		$\rightarrow 10^{-1}$	T 12 1/
٦Ľ		1993. New Snelby's sumples were att.	empted at 30 on
		11-8-94 and 60' on 11-9-94	

Date Ber Date Co Hole Dia Praject roject N By Y Type of Sta. of St Collar Ele Field Par	gun mpleted _ meter No Nome Name Name Structure structure ivation ty	- 8 - 12-6 - SP-19 E-15 Civil well.	94 94 5-7(Cari	[]// gin c (10)	UTAH DEPARTMENT OF TRANSPORTATION MATERIALS AND TESTS SECTION DRILLING LOG) 296 Cor G. D. P. 10800 So to 500 Cor G. D. C.	Form R-3 Hole No Form R-3 Sheet Of Total Depth Mo
		A Somple Runber A C B C C C C C C C C C C C C C C C C C			Grand Water Death in Ft. Time Date Date Description Soil type, color, texture, consistency, sampler driving notes, abserved fluctuations in water level, notes an drilling ec Blue silty clay Some lenses tran silty clay Bluish black silty clay Bluish black silty clay Gray to grayish dk tan silty clay Caray to grayish some speck of black material cilled 3" casing to 60' Clayey silt with sand Dk gray silty clay with sam	Table

Date Hole	Compie Diamet	eted	12-;	6-9	*4			DRILLING LOG	Sheet 3	_of <u>10</u> 2001
Projec	et No.	5	P-1	5-	7(11	$\overline{()}$	296		
ojec	t Nam	·•	<u>T-15</u>	<u> </u>	or	r	i d	or, (J.D.P. 10800 So to 500 S	50	
<u>'</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	YЦ	<u> </u>	101	<u> </u>	ਹਿੰਧ	n	<u>ec</u>	rino Study Equation Project Line Sta.		······
Туре	of Stru	cture								
Sto. of	f Struc	ture_						Hole Sta Haincent TO VII 5R.	Ft., Lt	Ft., of £
Field F	Party_		wei		No		υc	merence Merence		HDX
	1		1		1					
					1			Ground Water	Toble	
-		_	-	1		Z		Depth in Ft		
ethe	4 H	Fool	qu		1	COV	ا ہے	Date		
2	a	per	ž	a u c	ling	e Re	ir apl	DESCRIPTION	· ••••	
, inic	o ain	Iowi	d m o	• bt	a mo	l L L L	5	Soil type, color, texture, consistency, sampler driving notes,	blows per foot on t	casing, depths circulation k
			S			100	2	esserved intertainting in water level, notes on driving et	ose, birs used, erc	
DB				4 °	<u></u>		÷			
					El	Ŀ	È	Gray clayer sitt with fine so	and	
_		ļ					X			
+	+++			2	H	H				
-1	\dagger	i i			-		ž-	• • • • • • • • • • • • • • • • • • •		
		1		3	- 7	Ę	z			
_	44	i		4	-		Ęſ	Gray to black silty clay		
+		Ļ		ŀ	:		3-			
+	┽╂┼╴	<u> </u>		45			24	E		
.1		Ľ		ļ	:		Ž-	Gray daway silt with sound		
1	Ш	L		-19		÷	÷.	Singey Sin Bill Sand		
				+	┤┟	5		-		
	+++	\vdash		E		Ē	4	tray sitty day with some les	ees clante	y silt with se
1	╁╂┟╴	\neg		-18	╡┟	яЦ	2			
	Π			Ē	上	ALL N				
	<u> </u>	F		Ŧ	ļĻ	. F				
┼──	┼┼┼╌			50	┥┝	-5		tray silty clay with this ler	1355 3400	ly silt with s
+	+++	┢		Ē	-		<u>-</u>	- clay		<u> </u>
	Ш			F	1	K	z			•
	$\left \right \left \right $	_[2Ē		N	£_			
	++-	⊢		F		E	z_	•		
	╫┼─	+	{	3[-	┥┝	P	ष्ट्र ट			
				ļ						
	Щ	L		Ē	ļĹ	R				
 		_		۲s۲	ļĹ	Ë				•
<u> </u>	\mathbb{H}	-		┙ El						······································
		+		٩		1	+	-		
				ļţ				Gray silty sand	· · · · · · · · · · · · · · · · · · ·	<u></u>
	Ц			É	ſ		E			
┼	 			8	F	R		-		
<u>}</u>	++	\vdash	{	E	-	iii.	-			
;	+	+-		₽	┢		\$−	tray clayey silt with san	d	
	Ŷ			川	<u> </u> -	ÿ	1	Gray silty clay		
				00-						

Date Begun <u>11-3 -9</u> Date Campieted <u>12-6</u> Hole Diameter Project No. <u>SP-15</u> Diect Name <u>I-75</u> <u>B-Y. (1- Civi</u> Type of Structure Sta. of Structure Collar Elevation	14 UTAH DEPARTMENT OF TRANSPORTATION Hole No. 15 A -94 MATERIALS AND TESTS SECTION Sheet 4 of 10 -94 DRILLING LOG Total Depth 2001 5-7(11) 296 Total Depth 2001 Total Depth 2001 5-7(11) 296 Image: Contrider, Growth and the state of the s	R-353
Field Party Joure II Field Party Joure II Pool II IIIII Pool IIIIII Pool IIIIII Pool IIIIIII Pool IIIIIII Pool IIIIIII Pool IIIIIII Pool IIIIIIII Pool IIIIIIII Pool IIIIIIII Pool IIIIIIIII Pool IIIIIIIIIIII Pool IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Wartungel 1 Winters Rig D-GI HDX Ground Water Table Depth in Ft. Depth in Ft. Depth in Ft. Time Date DESCRIPTION DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation lost observed fluctuations in water tevel, notes on drilling ease, bits used, etc. Color	t,
	63 7 7 7 7 7 7 7 7 7 7 7 7 7	у
	2 Caray sitty send 3 Caray sitty send 4 2 2 2 2 2 2 2 2 2 2 2 2 2	

Date C	egun <u>/</u> Completed	12-	5-9	4		MATERIALS AND TESTS SECTION	Sheet
Hole D	lameter .					DRILLING LOG	Total Depth
Project	No	SP	-51	7	<u>(11</u>	296	
oject	Name	<u>T-15</u>	<u>.</u>	or	<u>ric</u>	<u>or, (z. 1. P.) 10800 So to t</u>	00 No
13.	Y. U.	\underline{Civ}	il.	<u>_n</u> e	<u>ain</u>	Project Line Sta. Other Line Sta.	
Type o	f Structu	r 8		-		How so Adiacent to DH 15	
Sta. of	Structure	·				Hole Sta Aujacent to pit to	Method lised
Field P	arty	Que	[].	No	sru	~ : Winters	Rig B-61 HDX
		1	ì		11		
						Ground	Noter Toble
-					2	Depth in Ft.	
the	100	- qu	1		0A0		
ž	Del	Z	In F.	2	Red Has	DESCRIP	TION
III	Duis	de	Ha I	du	월 5	Soil type, color, texture, consistency, sampler driving	notes, blows per foot on casing, depths circulation los
<u>ă</u>	S ā	So	<u> å</u>	s	S S	observed fluctuations in water level, notes on drill	ling case, bits used, etc.
	+++		80	╘┼╴	1 100		
<u>- q</u>	+++			El			
1	+++	1	1 1	Ħ		Gray, silty sand	
			1 _	EL.			
	111] 2				
	<u> </u>		3	니			
				-	- 14		
	╫┼──		4	HI			
+	\dagger			:			
1	111	1	85	.			
1	Π				11		
	<u> </u>			:	-Z		
			7	-	22	Gray silly clay with a few	to some this lenses some
+	┼╂┤		E			<u>STIT</u>	
+			8		بتهزز	(many all he had	
			Ē			and any sand	
	Ш		Ē]‡		Gray silty class with some	thin lenses sundy silt
	4		94	╡┟			
	+		·ŧ			(tray sand with silt and	some day
			۰Ę	十卞			·
			F			(rray sill class with	e the laces in the
			2	1 [- min renses sandy sill
$\lfloor - \rfloor$			зĘ	1 E	E		
╞──┤	╉┤┊╽		ļ	-			
+ - +	╂┼──┤		▲	╡┾	17.7		
<u>├</u>	╉┤╴╢		Ē		1		
	╝─┤		74	1			· .
			Ē	IC	K I		
	4 7		Ŀ		1	Gray silty sand	
┣──┤	$\parallel \parallel$		7	$ \downarrow$		/ /	
\vdash	╫┞		F		1.1	······································	
\vdash	╂┼──┼		6		影	·	
	t		Ē		1		
			커		12		· · · · · · · · · · · · · · · · · · ·
			I ONE				
•							

									. •	
-										Form 8-353
1					<u>cu</u>	1		UTAN DEPARTMENT OF TRANSPOSTATION	Hote No. 15A	
•	Date B	egun_		1-8	-77			MATERIALS AND TESTS SECTION	Shart 6 of 10	
_	Date C	ompie	eted _	12-6	<u>-7</u>	4		DRILLING LOG	Total Damp 200	
	Hole D	lamet	•					794		
•	Project	No	<u> </u>	<u></u>	15-	/ (ųμ	276 G D P 10800 S- + 50	No	
		Nome	•	-15	<u></u>	ori	ride	5 St. 1. 10000 38 18 10		
	<u> </u>	<u>. </u>	1- 1	Civi	I E	ng	ines	The Study Equation Other Line Sta.	<u> </u>	······································
	Туре о	f Stru	lcture					Alternation DH 150	Et 11 Et of	4
•	Sta. of	Struc	ture_					Hole Sta. <u>Merizizen i en </u>	and liked	•
-	Collar	Elevat	ion		7 1			Reference mu	Big B-61 HDX	
	Field P	arty_	-0	wei	<u> </u>					
•				ł				Ground Wate	Toble	
_								Depth in Et		
	Ψ		-	1	Í		Z	Time		
-	otho	Ę	Fool	a E	:		Š.	Rate		
	Ň	a	- Te	Ž	L L	2	S do	DESCRIPTION		
-	Bull	- Bu		ldu	1 f	E E	2 2	Soil type, color, texture, consistency, sampler driving not	s, blows per foot on casing, dept	the circulation last,
_	D'IL	3	Blo	Sar		s	Sol	observed fluctuations in water level, notes on drilling	rose, bits used, etc.	
- F		TI			Lo			-		
- [DB]/~	ΈT		Gray silty send with some	organic mater	rial
Ľ				<u> </u>	1	EI		1 (
		Ш				<u>}</u>],				
							X	Tray silty clay		
				ļ	4	<u>t </u>				
-		111			3	EI I	202			
L	_	44				F	- 20	<u>Gray to grayish dk tan sitty</u>	clay with some t	hin lenses
74		+++			•	FI				
					4	F1	- 11			
-	_				105	FI_	- 77	Drilled 3 casing to 105		
-1		H				ELI	- 1	Per Per de la	•11 ••••	1 04
		┼┼			6	EL 1	1.2	trayish dk tan tine sanc	Urm some still	and TIME
-		+++	ŀ		1	<u> </u>	- [//]	organic marcing		
_,		+++			7	H H		("I dhe tan candu si It	with a fam 1	- 2n lansar
┣		+++	ł		1	E	- 🕅	P: A real well save stri		
		+++	-+		8	Hł		The same with some su	<u></u>	
		+++	ł			<u> </u>	- 🏸			
_ <u>_</u> !		\dagger			9	片보		- Brune day anti- with pert.	nd some sand	
			F			F T	R	Graining Ile to brains	clances sitt with	sand
					110	F1 1		Drilled 3" casing to 110"		
- - -		\square	ſ			FII	12	J		
					ſ	ET [Grantish dk tan sandy sit	with a few this	lenses
Ē		\prod			,	ЫĽ	12	clayer sitt		• •
-!_		Ш				t [- [2]	1.5		:
1_		Ш.			3	비니		•		
-		111					- K			•
		+			4		-12			`
Ī-		44	Ļ			: 		- Brown clayey silt with som	e peet and sain	<u>d</u>
		11			115	┶┼┾	7	(tray sand with some sitt uno	trace fine go	vel
\vdash	Pen	+++	ŀ		A		ЯŻ	6/6 2N6 31/6 19/6	-7/2	ry lense
- i-	11	ΗĿ	521		Be	H)	#	Carayish dk ton fine sund with	some ailt	Le. la car al a
	-1/	╫	ŀ		ā	EKF	4:4	- Urainsh dk tan tine sand with	Sume SIT and T	an ienses alayey:
-	$\frac{\eta}{DC}$	┼╂┼		20.	17 7	\mathbb{H}		- Undersch die tan fine to med	Sand WITH Same	<u></u>
-	<u> </u>	+++	H			E +		Irrayish ak tan sand and sult	The panag of	
	L	+++	-+		8	Ηŀ		(0 / 1 1 10 1	I sand will -	me silt
1	<i>–</i>	+++	┝			EIł	- [:/:]	Grayish SK Ten Fine To me	Jane with 34	
_}		┼┼┼			9	НЪ				3
-	¥	┼╅┨	-			EIŦ		Control II to a 1 1 - "h	to send with	
-		11	1		120			Dolla 1 2" course to 120		
					L	L		unica s contag - contag		·
								· · · · · · · · · · · · · · · · · · ·		•

.....

Λ...
1															•				F
		ate B		11	-5.	- 94	Į –			υт	TAH DEPAR	TMENT O	FTRANSPO	ORTATIO	N L		150	١	Porm R-353
			egun.	<u></u>	17 -	64	745				MATERI	ALS AND	TESTS SEC	TION	··	one no	707	10	
٦				ereg .			7			_		DRILLIN	G LOG				7 01	10	
				<u>۳</u> ح	P_	15-	. 7	11	11	Thec					10	nai Depth			
	1 [rojeci	NO		-15	<u> </u>	1	<u>ц</u>	Ļ	K D	5	100-			- n/-				
			Nam Ji	•	<u> </u>		Cr	<u>, 1</u>	30			1080	0 20 T	0 300	////	·			
٦ 🖌	<u> </u>	<u>, دید</u>		(e			ng	in	<u>e</u>	ering	JINGY	— Equatio	on <u>Project L</u>	<u>ine Sta</u>		·			
	- T	ype of	Stru	cture						·				N. 1					
	S	ta, of S	Struc	ture_				-			Hole Sta	. <u>स्वीवर</u>	entto !	07 13	. Rt	Ft., L	t F t.,	, of 🖞	
-	C	ollar E	levat	0 0	1	1 1				1	Reference				Method U	ised			
	F	ield Pa	rty_	<u> </u>	Wei	ĻИ	20	rw	20	a 1	Winters				Ri	ig <u>1</u> 3-	6 1 HD	<u>×</u>	
											- 1			Ground V	Nater Tab	e	1		
]		Ţ		_	-			2		Depth in	1.Fl.								
_		ŧ.	E	Feo	e	13	İ	No.		0 etc	<u> </u>						1		
		Σ		per	Ž	L L	Ē	Re	4 de		ł			DESCRIPT	TION		1		
٦		Ē	5	X	hpla	Ĩ	1 a	물	ບັ	Sc	oil type, color	, texture, com	sistency, sampl	er driving	notes, blo	ws per fo	ot on casine	deaths circu	ulation last
		Ю	Ŝ	B	Sar	ā	Se	Sa	Sol	00	served fluct	luations in wo	oter level, not	tes on drill	ing eose,	bits use	d, etc.		
_						1.7.	Π	Π		1									
-	DI	3	Ш			7120	FT	++	<u>Z </u>	- 6	ra. 9.36	de tan	Po	34.00	<u></u>	-11			
			\square] [E		/					Jane	460				· · · · · · · · · · · · · · · · · · ·
-			Ш	L				Lŀ		G	raissh	dk ta	n fine	tom	ed so	nd w	:44 .		:1+ 4
						2	L		-	00	ccasio	nal 1/	5" lons	SE SI	the c	leiv			III. An
			Ш					L	1							7			
-			11			3	-	L	/	•				•					
			Щ	Ļ			: -	Ŀ			_								
	-+		11-			4	1	Ľ		Gr	avist.	dk ta	n Jano	1 wit	-h 30	mes	oft an	a tra	
_I · ⊦			4	F		ļ	:	16	, ,	£;	ise an	avel							
-			╀┝	\rightarrow		125	4	Ц	0	<u> </u>	<u> </u>								
-	-		+	┢		F	: -	÷۲	/	Drille	<u>d 3" c</u>	asing :	to 125						
			╫╴	-+-		6	Η.	H,	2		ayish_	dk ta	<u>n sán</u>	d wit	<u>h 60-</u>	<u>ne (</u>	i#		
			Ħ	F		E		- 5	Ś			11 1							
L 1	+		╫─	-+		7	┥┧		H	<u> </u>	ayish	dk tar	relaye	بجتلا	- well	<u>. 30</u>	<u>, a</u>		
			Ħ			Ę		- E	द्रां					H4					<u> </u>
┙┍	Ť		 	1		8-	11	Ē	F	6.0	• . /	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · ·	•11					
			Ħ			Ę		- 2	3		wish a	ik Tan	dk tan	SUTY	chy	with	SOME	thin	lenses
						9	11	-12	2	<u> </u>	aay_s		······						
╏┌			1			. F	‡	- R	Z	· · · · · · ·	/		•,	,					
ΙΓ	Pon					130-	174	Ż.	:/F	20/6	19/1 6	with se	pme sill	<u> </u>					
ΗĽ	11		47	7 -		A	DE	\sim	4			L +					- Dens	e to Ve	my Dense-
	.1		Re	A15	A-191.	Ĕ F	ÎλĒ	\mathbf{Z}	5	Dk	ayish o	n lan	OCK TO	<u>1 3009</u>	y sitt	<u>_w.76</u>	1/2 les	<u>se elen</u>	rece silt at
	9B					F	Ϊŀ	Ŧ	F	- ma	Gray 3	<u>ang lui</u> Saad	fly all	and T	Lace S	bek	organie		- Annote
L						- FT		7	1	rilled	COSIDA	+0 131	<u></u> ^	Cop.in	10 20	IZING 3	<u>o c de</u>	<u> 115 /15</u>	<u> </u>
						E		1	Ŧ	Gras	wish Jk	+00 -	<u></u>	d wit	(14		
	_	$-\!$	1			Ē]	10								<u></u>			
_			1_			E	f	Ę,	Ŧ	Grae	with dk	tan f	he Jar	nd wi	th =-	me =	It and	10- 1	
						E	L	1	1	ć las	ser si	1+				<u> </u>		<u></u>	E Cale
-			4		/	(35日	L	برغ		Gra	uish d	k tan	fine to	o med	360	1	th 300	A SH	11-211
			1			-11	F	F	II)rilled	13" 00	sing to	135'	Jer		c catt	Ed wa	ad at 1	25'
			<u> </u>	+-		<u>ال</u>	F	5	Ŧ	Gra	yesh de	tan si	the claw	with	some	+5:	lenser	sand	silt and
. -	+		-	-		4 	F		<u>_</u>	<u>a: 2</u>	" lense	3 3000	1 with 5	ioms :	silt an	d moth	ed sier	es al	wood
			–	+		친	F	1%	1	_Grow	ish de	tun für	is sand	with	Some				
	+		-	-		4	F		1		۱								
		-++	_	+-		sH	Ļ	\leq	1	<u></u>				· · ·					
			{	\vdash		FI	F		1	- tra	yish_dk	tan fi	e sand	with	pieces	5 -0++	ed un	ad an	d some sitt
1	<u> </u>					-Fe	+	F]										
	-		ł	\vdash		F	┢	Z		Gru	wish d	k tan	to gr	·any si	elf_cla	w w	th son	ne thin	
┝┝╴	-ti		I	1	/ /	4°L			4	len	SES SC	andy si	H	1	·	J	<u> </u>		
۱ `											<u> </u>								
		<u> </u>																	

				Form	- R-3
Date Begun_	11-8-	94		UTAH DEPARTMENT OF TRANSPORTATION Hole No	
Date Comple	red <u>/2 - (</u>	- 94		Sheet	
Hole Dlamete	Ir			Total Depth	
Project No	<u>SP-15</u>	-76	111)2	196	
	_I-15	<u>i</u> Co	rrie	dor, G. D. P., 10800 So to 500 No	
<u> </u>	L. Civ	NE	naine	ecring Study Fountion Project Line Sta.	
Type of Struc	cture		~	J Other Line Sta.	
Sta. of Struct	ure			Hole sta Adjacent to DH 15 Rt Et 11 Et al 6	
Collar Elevatio	20			Reference Nethod lised	
Field Party	Powe	11. 1	Wor	ward & Winters Big B-61 HDX	
	-	1 1	1 1		
				Ground Water Table	
				Denth in Et	
Po	-		12	Time	
te ta	e f		20	Date	
	Ž	<u> </u>	2 2 3	DESCRIPTION	
	and the			Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation le	wet.
2 3	Ser B	0	Sol Sol	observed fluctuations in water level, notes on drilling case, bits used, etc.	
DB	Ì.	140-1		- Gravith de ton to among either all with an alle	
		1 FI		Scathe silt	<u>ns es</u>
		1 17			
		I FI		l'encies and the during the second state	
			100	Some soul there and sound sitt	
				Di tas a l'illa atte	
		3	<u>الجنب</u>	DR Lan Jaod with same sill	
		F I		Dk on frank well 9 - 11 / 1	
			Z	Find the sand with pieces rotted wood and some	sitt
Y		Fl		Dellation at tan gray to dk gray silty clay with some	thin
elhall				LACTICE COSING TO TO	H-
		7-77	1227	G a l u J i l l l l l l l l l l l l l l l l l l	
		Ĩ		Grainsh dk tan, group to dk gray sitty cky with some this	n
······································				Grainsh dk tan, group to dk gray sitty cky with some this lenses sandy sitt	n
	V5A-14		N NN	Grainsh dk tan, gray to dk gray sitty cky with some this lenses sandy sitt	n
	15A-14		INNN'S	Graupsh dk tan, group to dk gray sitty day with some this lenses sandy sitt Graupsh tan clayer silt with song to sandy silt with a	م اهې
11 11 11 11 11 11 11 11 11	15A-14		NUN NIN	Gravish dk tan, grow to dk grav sitty day with some this lenses sandy sitt Gravish tan clayer silt with sond to sandy silt with a	م اهې ده-۶۴
	15A-14		NAN AND	Grayish dk tan five sond with some silt units one this	n 1=y 10-94
	[5A-14	7 7 7 8 8	NIN NIN	Grayish dk tan five sond with some silt with some silt with and silt "	n 1=34 10-94 12-94
	15A-14	7	NIN NIN	Grayish dk tan five sond with some silt with some this	n
	15A-14	7 	THE STATE OF THE S	Graufish dk tan graup to dk graup sitty ckey with some this lenses sandy sitt Graufish tan clayer silt with some to sandy silt with a Gravish dk tan fine sond with some silt "-3	n 1994 10-94 12-94
	15A-14	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Graufish dk tan clayer sitt with some silt with some this Graufish the clayer silt with some to sondy silt with a Graufish dk tan five sond with some silt "-3	n
	15A-14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Gravish dk tan chycy silt with some silt with some this Gravish dk tan chycy silt with some silt with a Gravish dk tan chycy silt with some silt in-s	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ISA-14	7 1 1 1 1 1 1 1 1 1 1		Graufish dk tan clayer silt with some silt with some this Graufish tan clayer silt with some silt with a Graufish dk tan five sond with some silt Graufish dk tan chycy silt with five sond	n 1 90 1 - 90 1 - 90
	ISA-14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Gravish dk tan clayer sitt with some sitt " Gravish dk tan clayer sitt with some sitt " Gravish dk tan five sond with some sitt " Gravish dk tan clayer sitt with five sond Drilled casing to 150'	n 1
	15A-14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Gravish dk tan clayer sitt with some sitt " Gravish dk tan five sond with some sitt " Gravish dk tan clayer sitt with some sitt " Gravish dk tan five sond with some sitt " Gravish dk tan clayer sitt with five sond . Drilled casing to 150'	n 1
	15A-14			Gravish dk tan clayer sitt with some sitt " Gravish dk tan five sond with some sitt " Gravish dk tan clayer sitt with some sitt " Gravish dk tan clayer sitt with some sitt " Gravish dk tan clayer sitt with five sond . Drilled casing to 150'	n 1
		7 <u>15</u> <u>15</u> <u>1</u>		Gravish dk tan clayer silt with some silt with and silt with a fine sond with some silt in the some silt is the some silt in the some silt in the some silt is so the source sold with some silt in the some silt is so the source sold with some silt in the some silt in the source sold with some silt in the source silt is the source sold with some silt in the source silt is the source silt in the source silt is the source sold with some silt in the source silt is the source silt in the source silt is the source sold with some silt in the source silt is the source	n
		7 5 5 5 5 5 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5		Gravish dk tan clayer silt with some silt with and silt with a clayer silt with some silt with a some silt with a fine sond with some silt "	n 1 ay 10-9 12-9
		7 5 5 5 5 5 5 5 5 5 5 5 5 5		Gravish dk tan grave to dk grave sitty chay with some this lenses sandy sitt Gravish tan clayer silt with some to sandy silt with a Gravish dk tan fine sand with some silt Gravish dk tan clayer silt with fine sand Deilled casing to 150' Gravish dk tan fine to med sand with some silt Gravish dk tan fine to med sand with some silt	n //0-90 12-90
		7 5 5 5 5 5 5 5 5 7 5 5 5 5 7 5 5 5 5 7 5 5 7 5		Gravish dk tan gray to dk grav sitty day with some this lenses sandy sitt Gravish tan clayey silt with some to sandy silt with a Gravish dk tan five sond with some silt Gravish dk tan clayey silt with five sond Drilled casing to 150' Gravish dk tan five to med sond with some silt Some coarse sond	n //0-90 12-90
				Gravish dk tan grav to dk grav city day with some this leasts sandy sitt Gravish tan clayer silt with some to sandy silt with a Gravish dk tan five sond with some silt Gravish dk tan clayer silt with fine sand Dailed casing to 150' Gravish dk tan five to med sand with some silt Some chance sand	n 1 my 10 - 91 70 - 91
		7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7		Gravish dk tan grav to dk grav citty clay with some this lenses sandy sitt Gravish tan clayer silt with some to sandy silt with c Gravish dk tan fine sand with some silt Gravish dk tan chycy silt with fine sand Drilled casing to 150' Gravish dk tan fine to med sand with some silt Some coarse sand	n /
				Gravish de tan, grave to de grave eitty day with some this leases sandy sitt Gravish tan clayer silt with some to sandy silt with a (scarish de tan fine sand with some silt Gravish de tan clayer silt with fine sand Drilled casing to 150' Gravish de tan fine to med sand with some silt Same coarse sand	n / 0 - 90 / 2 - 90 /
				Gravish dk tan grave to dk grave sitty chay with some this leasts sandy sitt Gravish tan clayer sitt with some to sandy sitt with e (sanish dk tan fine sand with some sitt Gravish dk tan clayer sitt with fine sand Drilled casing to 150' Gravish dk tan fine to med sand with some sitt Same coarse sand	n //0-94 //2-94 //2-94
				Gravish dk tan free to medium sord with some silt Gravish dk tan free to medium sord with some silt Gravish dk tan free to med sond with some silt Gravish dk tan free to med sond with some silt	
				Gravish dk tan, gray to dk gray sitty day with some this lendes sandy sitt Gravish the clayer sitt with some to sandy silt with a gravish dk tan five sond with some silt Gravish dk tan clayer sitt with five sand Drilled casing to 150' Gravish dk tan five to med sand with some silt Some coarse sand Gravish dk tan five to med sand with some silt Crayish dk tan five to med sand with some silt Gravish dk tan five to med sand with some silt Some coarse sand	
				Gravish dk tan, gray to dk gray sitty clay with some this lenses sandy sitt Gravish tan clayer sitt with some to sandy sitt with c Gravish dk tan fine sand with some sitt Gravish dk tan clayer sitt with fine sand Drilled casing to 150' Gravish dk tan fine to med sand with some sitt Some coarse sand Gravish dk tan very fine sand with some sitt Gravish dk tan fine fine sand with some sitt Gravish dk tan fine fine sand with some sitt Some coarse sand	
				Grayish dk tan yorny to dk gray sitty day with some this lenses sandy sitt Grayish tan clayey silt with some it with a sandy silt with a Grayish dk tan fine sand with some silt Grayish dk tan chayey silt with fine sand Deilled casing to 150' Grayish dk tan fine to med sand with some silt Some coarse sand It Grayish dk tan very fine sand with some silt Grayish dk tan fine to med sand with some silt Grayish dk tan fine to med sand with some silt	
				Gravish dk tan grave to dk grave sitty day with some this lenses sandy sitt Gravish de tan clayer sitt with some to sandy sitt with a Gravish dk tan fine sand with some sitt Gravish dk tan clayer sitt with fine sand Dailled casing to 150' Gravish dk tan fine to med sand with some sitt Some coarse sand Gravish dk tan very fine sand with some sitt Drilled casing to 150' Gravish dk tan very fine sand with some sitt Drilled casing to 155' Gravish dk tan fine to med sand with some sitt Drilled casing to 155'	n 1
				Gravish dk tan frae to medium sond with some silt and Gravish dk tan frae to medium sond with some silt and Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to med sond with some silt Gravish dk tan frae to medium sond with some silt Gravish dk tan frae to medium sond with some silt Gravish dk tan frae to medium sond with some silt	n 1
				Gravish dk tan frae to medium sand with some silt or Gravish dk tan frae to medium sand with some silt on Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to med sand with some silt Gravish dk tan frae to medium some with some silt Gravish dk tan frae to medium some with some silt Gravish dk tan frae to medium some with some silt on Slight trace coarse sond	
				Gravish dk tan grave to dk grave sitty day with some this lenses sondy sitt Gravish dk tan fine sond with some silt with a Gravish dk tan fine sond with some silt """ Gravish dk tan clayer sitt with fine sond Drilled casing to 150' Gravish dk tan fine to met sond with some silt Some coarse sond """ Gravish dk tan Very fine sond with some silt Drilled casing to 155! Gravish dk tan fine to med sond with some silt Some coarse sond """ Gravish dk tan fine to medium sond with some silt Drilled casing to 155! Gravish dk tan fine to medium sond with some silt Gravish dk tan fine to medium sond with some silt on slight trace coarse sond """	

.

¶.									
.	. Date I	Begun		-8 -	-94			UTAH DEPARTMENT OF TRANSPORTATION Hole No. 15 A	R•352
_	Date	Compi	eted _	12-	<u>6 - 9</u>	14		MATERIALS AND TESTS SECTION Of Of	
]	Hole	Dlame		0	15	7		Total Depth	
4	Projec	t No.			<u> </u>			$\frac{1}{2}$	
	J R	r Nom Y. (₩ <u></u>		• 1 F	SLL Pro	10	ening Study Print in Sta	
	Туре	of Str	ucture.			J	<u> </u>	Other Line Sta.	
1	Sta. of	Struc	ture_	-				Hole Sta Adjacent to DH#15R Ft. Lt Ft. at \$	- <u></u>
•	Collar	Eleva	tion					Reference Method Used	
	Field f	Party_	1-6	we	<u>[]</u>	We	יבי	wood & Winters Rig B-61 HDX	
-								Ground Water Table	
5								Depth in Et.	
	Poq	£	ē	ber	-		7 UN	Time	
	Mei	1	L L	Nun	E.		202	Date	_
1	Bulli	Ę	- M	nple	h	mplin	eld.	DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per fact on casing deather circulation back	
╝└	5	Ŝ	ā	Sar	ā	Sai	Sar	observed fluctuations in water level, notes on drilling case, bits used, etc.	•
	na	+			160				_
۶K	YD_	+++	F	·		=	- 💥	E Could not take comple - Sand Flowed up into casing to ap	ero x
┙╘								Franksh de teo fine to al a line	
		Ш	[2		رز	the some sitt	·
-		+++	⊢			:17	1		
┛┝╸		+++			3	4	- /	Grayish dk tan fine to coarse sand with some sitt	
ч (†		+++	-		E		÷,		
		Ш	Ľ		ŧ	\square	0	Graush dk tan time sand with some silt	
- -	¥	 Y -			125		12	Grayish dk ton fine sand with some silt	
		+++	-		Ē		1	Tried to drill casing to 165 but couldn't send flowed 11-	<u>77-7</u> 27-9
		┼┼┼		-+	۴	┨┝		up into casing to a depth of 150- Pulled casing up to 150' on	2
L	1	TT .			ŧ	-		deilled out sand in casing. Drilled casing to 170'	
1	ļ	LH -			É	1 [K		
╨┝──		\square		$ \rightarrow $	•	1	٤Ŧ		
H			-		E				
) 🗖			+		9	F	Ň	Groupish tan clayey sitt with time sound	
		I		\Box ,	-E	-	727	- Growish dk too suffy clay with the o lenses sandy sitt	
E	to			/'	31			-1/6 9/6 13/6 516 - Very Stiffer	
ŀ⊢'	<u>.</u>	╢╕	⊋		2H) [/		Corrayish dk ten clayer sitt with sand	
	<u>u</u>	1	_15/	4-17	241)⊭		Dkoon fin and will out	
$ \mathcal{P} $	B	μ_	L		Ē	L	<i>:</i> //	Five sund flowed up lots the case in the stall Bud	
!.┝∔		╂	+		과		//		
		╢			El	Ħ		Gravish dk tan fine to med sand with some sitt	
		<u>†</u>	1-	\neg	•H	H	(i)	trayish ok tun time to coarse sand with some silt and trace fins	e que
				\Box ,	, []		1	Gravish dk tan fine and will and it	•
$\left \right $		H		′	Ϋ́ΕΙ		\geq	Drilled casing to 175'	
·┝╼╊		╂┼──	+		Æ	H	\mathbf{X}		
·		Ħ			El		<u>[]</u>	Const 11 to Real 1	
.口		<u> </u>			竹	F		Gravish de tan time to med sand with some silt	
. -		<u> </u>			E		20	- any with some gravel and silt	
ы і		H			11	Ħ	汯	Graytsh dk tan claver silt with fine sand	
+		╂—	+		۶H	H	1	Grayish dk tan fine sand with some sitt	
÷ T		H	-		E	┝╞		Gragish dk tan clayey silt with fine sand	
		· · · · · · · · · · · · · · · · · · ·			50	<u> </u>		Filled casing to 180	

.

5	1			. .					Form R-353
1	Date Be	gun <u> </u>	<u>-8-</u>	14	J			MATERIALS AND TESTS SECTION	Hole NoA
-	Date Ca	mpleted	12-6	, _ 4				DRILLING LOG	Total Dearth 200
	Hole Di	ameter _ C	PIT	5-7	11		5	96	
3	Project	NO.	T - 15	Co			0	-, G. D. F. 10800 So to 50	O No
	B	Yū	. Ci	vil	E	21	n'r	ecrina Study Equation Project Line Sta.	
	Type of	Structur	re					Other Line Sta.	
T	Sta. of S	structure					_	Hole Sta. Adjacent to DH = 15 Rt.	Ft., LtFt., of 🌜
Ł	Collar E	levation	1	1 1	.7.			Reference Mat	nod Used
	Field Pa	rty_EC	swei	ل_را		771	1.0		
4								Ground Wate	er Table
5								Depth in Ft.	· · · · · · · · · · · · · · · · · · ·
	Po	<u>ج</u>	per	-		Ver		Time	
-	N.	Dept or Fo	Num	E		Lec o	đ	Date	
3	er.	2	ela	1 E	plin	9	59	Soil type, color, texture, consistency, sompler driving not	es, blows per foot on casing, depths circulation lost,
	Dri	E Coal	Sam	00	San	Son	Soll	observed fluctuations in water level, notes on drilling	eose, bits used, etc.
-				100		II			
4	DB	Щ		יסיך	F	1			
		<u> </u>			H		/	(trayish dk tan tine to m	ed sand with some silt
-		┼┼┤		-	Ēŀ	-H?			
13			-	2	H			·	· · ·
1		+++		1	F		ñ	Gravish dk tan fine to med	sand with some coarse
				3	F		<u>, </u>	sadd fine around and silt	
ġ.		Π_{-}			E		1	arayish dk ton fine sand with.	some sitt
1					<u>ا</u> ا	F		- Washed Sompler down to 185	a depth of 176
				185	₽	Ľ	1	Drilled casing to 185. Sand F	lumed up inside casing tot 11-73-
		H68	·	A	EI)	H	Å	1 althis can anted a contract with with	W trace contra cond
	$\frac{1}{u}$	Re	N.SA-		۲Ŋ	K.	1	Lightly compoted soud (some is	and ime very fine areve
	RB					L	2	and sitt	· · · · · · · · · · · · · · · · · · ·
		Щ					10		*
ij.				6	ŀ	Ħ	1	Tan sandy silt with some clay	
			<u> </u>	[FE	N	<u>Grayish dk tan clayey silt w</u>	with some fine sond
5		+		9	-	FE	Ħ	Construction of the set of 12 and the set	the same the large same with
4		T			:	-	2	Drilled come for 190'	M 2000 THIN 1213CO JOING SITT
	Shelby			190	1	ΠE			12-6-97
4	"				Y		⊴	Gravish dk tas silty day with	a few to some thin leases
	u u	4			:)	HE	9	_ sandy sitt / ~	
	DR		<u>15A -19</u>	F 2	<u>.</u>	Ħ			······
ł	HU -	++		l E	:	FE	4		
3				3		E	2		
_		Π_{-}					4		
1		4		Ē	:]	F	Ξ	•	
1				195	4				•
		┦			: ·	L,			
1		+-		•	Η	ΗŘ	겉	Dk + 1 Put °1 Po + 10	
		†					3	UK TON SUNDY SIT WITH a TEW THIN	Jenses Siny cigy
							\$		
1				ĿĿ]	[Ē	Z	DK tan silty clay with a few t	o some thin lesses sandy
5		41			:	LÉ	20	the	•
					-	H7	Å		·
7	 ₩	*			-	ŀΕ			
1	<u> </u> - ↓		1	200	1_		<u>ר</u> מ	hilled casing to 200	T.D. 200'
ŀ	Laura	red	21		~	ę :	יג	"Sch. 40 plastic oice into	12-6-94
Ī	drill	bal	e. (7	~	las in place with compaty 12	-8-94. Used 20 bass cement
L			<u> </u>		4 K.	×	12		

D ul		1	
Depth	Vs (1	tt./sec.)	Vs (m./sec.)
	5	502	153.0
	10	684	208.5
	20)	491	149.7
	30	546	166.4
	401	578	176.21
	50	513	156.4
	55	549	167.3
	65	562	171.3
	75	774	235.9
	85	855	260.6
	95	893	272.2
	105	870	265.2
	115	991	302.1
	125	869	264.9
	135	800	243.8
	140	769	234.4
	150	800	243.8
·······	155	752	229.2
	165	971	296.0
	175	869	264.9
	185	990	301.8
·	195	980	298.7
	205	893	272.2

ľ

Ì

 $\frac{1}{1}$

]

]

1

1

7A

		PB Keed !!	1/20/95 21 Ve	
Ī				Form R-353
3	Date Begun 15-24-	<u>-94</u> UTAH E	PEPARTMENT OF TRANSPORTATIO	N Hole No. 7 A
	Date Completed 10-28	<u></u> М/	ATERIALS AND TESTS SECTION	Sheet
	Hole Diameter	RUIDARI	Shitting tog	Total Depth2/2/
~ . L	Project No. DP-15	$\frac{-7(11)}{276}$	10800 50 +1 500	Var Solt Lake Ca
Ň	- roject Name _ 13	Encineering St	udv Saudia Project Line Sta.	
	Type of Structure		Other Line Sta.	
-	Ste. of Structure		le sta <u> a jacent</u> in Duter	Rt Ft., Lt Ft., of & <u>I-15</u>
	Collar Elevation 222	Re Macuna 5 H	ference	Method Used
~	Field Party <u>DUIE11</u>			
			DH 7 W DH-7A Ground	Woter Table DH-700
ī		Depth in Ft.	3.0' 1.5' WG	15.3 WC 11.4 WC 3.0
	attrad Poot mber		10-14-94 10-25-94	10-26-94 10-28-94 11-3-94
	Per Der		DESCRI	TION
]	illin na	Soil typ	e, color, texture, consistency, sompler driving	notes, blows per foot on casing,depths circulation lost,
2 1				
'n	RBII	Gravis	h ok brown sendy	silt with gravel and Trace cla
		E Piz Dove	4" cosing to 6"	
20		F - 2		
1		2	and a start with the	and the same class
			ay shay she wild the	
		F F		
Ĩ				
1				
· 6		st the Lt br	own to tan sundy si	It with trace clay
7		. A Drilled	3" casing to 40'	
2 J		FI E Tan to	adk tan clayey silt	with sand and some partially
24		F Seme	inted nodules of dk	Tan sundy silf (Coarse sond
		E DK to	in silty sand.	
L				9 :/ A/1 Br
٦		ه المراجع المراجع المراجع	h dk tan to gray clay	ey silt with fine sand and a
2		[- Ex-rew	thin lenses sandy 3	ILL From 8 101.
;		In Tanf	ine sand with silt	······································
]				
μ,			I and with the same	and some rust iron avide
			a py sin with sur	ONG DEFICIT CITY TOP DAGE
-				
า		A Trent	h ik ton to arow sit	ty clay with some this lenses
1		I Sand	v silt	· · · · ·
	·		7	•
1		€ ===================================		
		E Gravi	shak tan sandy si	It with trace clay
			1 9 / 1, L 1	
		[Z (Tray	ish dk tan to gray	why clay with some thin
1		»	Sandy SILL IT TH	
1				
1				
1				

0	/	12-71	G.	,			Form I
Dete Co		10-	28-5	74		MATERIALS AND TESTS SECTION	Hole No/ A
Hele Di		<u></u>	<u> </u>	¥		DRILLING LOG	Sheet of/0
Project		SP-	15-1	1/1	111		Total Depta Z / Z /
Project	No	=_/;		<u>, C</u>		- (-) P LASUAR 5 - TR	
R	√./ <u></u>	0.	.1 5	-		E C. C. F. 10800 So. To 500 A	Vo.
Tunn of	Charles .	<u></u>		50	, ,	Equation Project Line Sta	
Sta at C							
S10. 01 S	ITUCIUNE					Hole Sta2jacent to DH -1/ R	Ft., LtFt., of \notinFt
Coller El			1	.]		Meth	od Used
	·y					NATCE	_RigAX
		i					
						Ground Water	Table
8	-	1 2			2		
4	Fo Ph	ă E			Ň	Dere	
Σ		Ž	5	2	월 성		
Ŭ.		lde	5	la la	10	Soil type, color, texture, consistency someties driving page	N
ā	S B	San	8	Sar	Soli	observed fluctuations in water level notes on drilling a	Dows per foot on casing, depths circulation lost,
1		1	1 1	TT			use, birs usea, erc.
BI	T		፣ ኋዮ	$\uparrow\uparrow$	-	Gran Mala -1/2 - 011	
1	Π		1		· 🗖	with an ion sitty clay with	some thin lenses sandy
I	TI		"	1 E	F		/
İ	Π			IF	N		
1			2	1 -	12		
1	Π		ţ		×	Tran de care à 11 1 1	
			3		100	aray of Gray To black silfy a	lay with some very thin
			ا ع		E	to thin lenses sandy sill	1
			4 F		ৰ্দ্ধৰ		
			Ę I		F		
			25		Ø		
	7 7		FI		E	A ferral in the	
			6	Π	2	The inth Black Carbonaceo	us sandy silt lenses
	<u> </u> Г		FI	ΓĽ	77.		·
			ΈĪ				
			Ŀ		77.		
[]			Ĕ		Z		
			Ē		X-Z		
			-EI		A		
			2El		CŻĘ.		
	L		ЪГ				
			EI.	3	1	Gray sand with site and the	6
			E	LF	र्रेज	The sur and the	ce organic material
			,E	L	स्र	1/8"-1/2" Lense, de com ala	au .•• H . 1 1 .
	L		11	LE	E.	sandy silt	ey sur and rusty brown
			"Ы	<u> </u>	<u> </u>		
[_]			1	LE	Z		
			Æ	LĘ	-	Gravish de ton the clay with	
	L		El	LĔ	4	lenses scienting all a for ill	21 lease
<u> </u>			, E		z	Some silt	- JEnses sund with
			וזי		Ξ_		·
			E	[Ĕ	ž		
			E		4		
			511		z		
			Ϋ́ΓΙ	2	2	, *	
			FII	1	<u>(</u>)	1"-3" 1 801	1 -11 1 - 1
			• -		<u>5</u>	this leaves gray silty sand	and sulty clay with
				2	Æ	IEDSES SANdy silt	· · · · · · · · · · · · · · · · · · ·
			94	Ë	∃-	(mu » []] + et	11 11 6 1
			<u> </u>	- 😰		urupish ok Tan silty clay mi	th some thin lenses

T												•			
1	·		112 - 7		3.4.4										Form 8.707
	Dote Se	gun	. 10 -	78-9			_ UTAH DEPAR	RTMENT OF	TRANSPO	RTATIC)N	Hole No.	7 A		-383
T		mpiere		20-1				ALS AND IE	STS SECT	10N		Sheet .	?	. 10	
		imeter 	SD_	15-	7 (-	Briteing	-06			Total Dept	n <u>1</u> /	21	
	-roject	NO	T-1	$\frac{1}{2}$	<u>/(</u>		176								
		чатне <u>—</u>	~ . , 0		<u>م م</u> د			10800	So. to	500	o No	a			
	Tran of	<u>en a</u>	<u> </u>		<u> </u>		-ine Study	Equation	Project Lin	ne Sta.			-		
الہ	Sta of St							× · · · ·	Uner Line	510.					
_	Coller Fle	wation	•		- 0		Hole Sto.	. Safacan	<u>+ 10 04</u>	• 7	. Rt	Ft., (. of t	5-15
T	Field Par	, <u> </u>	ا ے بی و	11 4	Jor	ruie	Reference				Method	Used			
4 =			i	1				<u>~~</u>		_		Rigi	<u>3-61 h</u>	+Dx	
T	1	ļ					Depth in Ft				Nater la	Die			
1	Fou	£ 8	ber.	=		Ci av	Time								
į	Me	er F.	L N N	F		b) fe	Date								
7	Bull		e d	4	He	100	0		0	ESCRIPT	TION				
	D'II	Blov	Sam	Dep	Sam		observed fluctu	texture, consiste Intions in woter	ency, sompler	driving	notes, bi	ows per fo	ot on casing	,decths circu	lation lost,
		!	1		11	1			level, nores	on drill	ing ease	, bits use	d, etc.		
TF	 	Π		14%	ΤŤ	\Rightarrow	Georgial 1	1. 1.	611						
		Π		I.E		22	lenses	Sandy .	· · · ·	lay_	with	_sam	e this	a to re	cy thin
		Ľ		Ŀ	16	N	-								1
7	<u> </u>	<u> </u>	1	2		<u></u>	Gray to -	Ik aray	situ	class	. 0	11	7		
	helby	H		Ę	I(h	Z.	to very	thin len	ses	Sand	<u></u>	<u>e 1 h</u>	$\frac{1}{\Delta}$	<u>to sam</u>	e thin
	11 1		<u> </u>	3	$ /\Xi $	Z	thin Ten	se ca	- bon i.	fe rou				COSIO	
	4	1	Ma	El	7F	Ziz	Olive dk	<u>gray s</u>	ilty c	lav	wi +1	500	- + 6:	Jana	<u>20176 3117</u>
	BI			_ 4 [-]	÷	F	<u>silt</u>						·····		S Sandy
				,, FI	F	Z	Jeined ca	sing to	57-5			<u> </u>			
				7°F1	F	R	Scienty -	dk gra	1 <u>51 (+</u>	1 - 2 -	ay in	uith .	ame_	thin le	1505
				Ē	L	ZZ	_sangy_si								
				Ē		7									
╶┪──┽				,L	Ц				<i>*</i>						
╞╌┥		-		FI							,				
				8	H		Grayish d	ktan 1	Cone to	ver	y Po	ar 30	and i	S11	
		┝		El	+	-	and trass	s organ	ic ma	lerie	1	Ano			ne sin
		<u> </u>		9	H		lense clay	rey sitt							
		F		. []		-									
				5%	Ħ	ËÈ								•	
				E	[ß	Z -				·					
┦╌┼		L		Έ		GZ.	Gray silty	class uni	11 144	. 11. 4	1.	· · · · · · · · ·		A.1	
				2	L			<u></u>	<u></u>	/4 `	18n	<u>د تعد</u>	andy	silt	
. ┣-∔-				F	LE	-		·····							
₽				34	H										
		-		EII	-	-	Gray fine	to very	fine	sand	بن ا	h som	e 3711	- and -	
						;	organic n	uteria	L						Lace
					- /	<u> </u>									
			د 🖂		÷	Æ	Diagon	1 51							
1	!!			E		4	Grunto 16	ndy sill	17. 1						
1		L		11	Z	4	Gray etter	Jac in	in clay	<u>Lort</u>	<u>n 4hi</u>	n len	203 50	andy si	IK
				上[X	£			<u>. u se</u> t	<u></u>	un_l	enses	sendy	_sill_	l·
1-	Y	-			. <u>N</u>	2	Gray to	dk arn		4 -1		.1.1	L:- 1-		
<u></u> tr [™]	77 -			•+++	Ľ		silt		7 2013	7.01		ATTA -	nin_is	nies s	andy
		┣		FKF	E	1_									
5	- - +#-			•EI/E		2	Gray to a	lk gray	silty	day	wit	h som	e thin	(cnac)	5
- 1-			IR	EI) F			Jandy silk		<u> </u>	7					
				° ↓↓			tray'sang	<u>ly silt</u>							
						<u> </u>	nico casi	ng to S	7.5						
		_							•						

Date Complet	d 10-2	8-9	74	MATERIALS AND TESTS SECTION
Hole Dlamete				DRILLING LOG
Project No	5P-1	5-7	(111)	296 Total Depth 2/2
ject Name.	<u> </u>	5 0	orri	der (D.P. 10800 So L SUM M.
<u> </u>	L- Ciur	:(E	nein	CETING Study and Project line Ste
Type of Struc	ure		2	Other Line Sta.
Sta. of Structu	re			Hole Sta Adiacent to DUET
Collar Elevatio	<u> </u>			Reference
Field Party	owei	1 6	Voru	soci 1 Winters Method Used
	1		1 1	
				Ground Water Table
_			X	Depth in Ft.
हैं ह	per la	-	No.	Time
Me G	UUN N	5	• • = =	Date
Bull De		4	R Plan	DESCRIPTION
	E .	Id.	5 B =	Soil type, color, texture, consistency, sampler driving notes, blows per fact on casing, depths circulation lost
			<u>, , , , , , , , , , , , , , , , , , , </u>	unserved fluctuations in water level, notes on drilling ease, bits used, etc.
B 11		60-		
	├ ───┤	El	- 11	Gray sandy silt
	+	Έ		
	<u> </u>	El	+	
	; 	2	H:;;	true silty sand to fine sand with some silt of
—— ———————————————————————————————————	;	μ		This lease clayer sitte A trace precise mater
	<u> </u>	зH	ليزن ⊢	
	<u> </u>	El		
		4H	Hit	High context of organic material (partially rather w
		. El		Twigs, etc.
	<u>; </u>	4 5H		
		E	+ 1+	
		6H	Hit	
		11		tray sitty saga
111		7	日沙	
		FI	T Fit	
		FI		
li		F	T 1/2-	trace organic material (partially rotted vieces of we
		9 	H::/	
1.		FI	البينيا آ	
	/	°F1		
		EIT		Gravish list Po
		'F1-		- Gray concerne sand with some sitt
[:][EIT	R/s	(may is all to and with silt
<u>!</u> ! [ΈľŤ	1/4	(manish led and still
<u>l:[[</u>		E E		Tan clarge alt all
		ΈΠ Γ	R	Truinh du the and
		EF		Die stran sunder silt
L		ΈΓ		bray todk and filled in the
		ELF	Ë	Jean sittle clay with some this lenses early si
2!_ [ETTE		5/6 7/6 13/6 12/6
	#	E)È		Frequish dk ton with 1 - 11 0 11- Very Stiff-
<u>↓</u> `L		FKB		Gravish dr two clare with a few this lentes sandy si
, ! 7	<u>A-777</u>	ЫĘ		becaush dk tan employed with sand and this lenses sindy
<u> </u>	'	FL	12	Sandy silt
		EΓ	i.i.	
		ΈΓΓ	1.1.1	
<u> </u> [ΕIΓ	P.F	
	9	ΓΓΓ	7/1-	(Town of the for the second of the
			1	sumption are an time to very time sand with sitt to so

Date Begin $10 - 24 - 94$	UTAH DEPARTMENT OF TRANSPORTATION	Form R-353
Date Completed $10 - 28 - 94$	MATERIALS AND TESTS SECTION	Hole NoA
	DRILLING LOG	Sheet of
		Total Depth
Project No. <u></u>		
olect Name Arridar	G.D. D. 10800 30 to 500 No	
BY J. LIVIL ENGINEERIN	a Study Equation Project Line Sta.	
Type of Structure	J 1 Other Line Sta.	
Sta. of Structure	Hole Sta Adjocent to DHE7 R	Ft It Et of Å
Collar Elevation	Reference Met	hod Used
Field Party Fowell, Warwoo	d I Winters	Rig R-GI HDX
-		
	Ground Wate	r Table
	Depth in Ft	
	Time	
	Date	
	DESCRIPTION	
	Soil type, color, texture, consistency, sampler driving note	s. blows per foot on cosing derive circulation loss
	observed fluctuations in water level, notes on drilling	eose, bits used, etc.
	Gen il Ile I. C. 1	
Pen Volta	5/6 8/6 17/1 14/1	
		Niedium -
	(many small Pr 1 A	
74-82 Pt 16	- aray sand (time to mode in	its some silt
RBII	- trauish dik tan Elayey si	It with sand
	14" - 12" Lenses grayish dk	ton sandy soft and fine son
3	with sith A few ite" Icme	s clayey sitt
, ┝─┼──┼┼┤ ┝───┤ ╒│┝─╦╬╸	treey silty clay with some t	thin leases sandy silt
	- Credy =ilty fine sand	
╵┝─╈───┼┤╴┝───┤ ╒╽┝╘╩╩		•••
SS 55	rilled casing to 80'	•
	5/6 5/6 9/6 12/6	- Very Still-
6 / Z 7737_	1/2"- 1/3" Lenses arayish de	tan silty clay and conduct
	A few 1"-1.5" lenses fine	send with sitt to some sill
		, <u>, , , , , , , , , , , , , , , , , , </u>
	Growish dk two soudy with	1.9th 169 10 01
		WITH THIN TENSES CLAYEY SIT
9	-illad and go	
	The casing to ID	11
Peol	Sul 1111 11/1 261	with some silt
	8/6 1/6 14/6 23/6	- Hard to Very Dense-
	Trayish dk tan sandy silt with	h 1/2 - 1/4 lenses clayer sitt
·· + 10 9 01 100	Contraction tan-clauser silt w	ith sand
RB E2 E2	urrugish dk tan tine sand	10-24-
	Transbak tan line to m	ed sand with some silt 10:25
	14"-12" Lerres de ten sanda	1 silt clayer silt and sand wi
	some silt	· · · ·
	brougish dk tan tine sand u	it some sitt
	Thin lenses gray silty clay a	nd grayish dk tan sondy sitt
95	(Tonnich de ton sand with some	
	16 816 716 1016	
├ <u>────────────────────────────────────</u>	Groupish dk tan sandy silt with son	ne clay
	trunish de tan change sitt with see	ad
	Grayish de fan stille clau with	to some this losses grands alt
	illed casing to 100	
	Grayist Lk Fan same sitt with the	ace to some day
	The second secon	
	acquish dk ton fine cond will	h some silt
	(maintan de traine and ant	
	(-nelish dk to I conside	house sittle star
/00	the second secon	

	ngun	10-	78-5	4	MATERIALS AND TESTS SECTION	Hole No
		<u> </u>	<u>, o</u>	<u> </u>	DRILLING LOG	Sheet
		52-15	5-71	111) 70	4	Total Depth
ert	Nome	T- 1.5		rridor	(To Do E 10 Back So to SOD 4	
- <u>3</u> .	.u.	Cinil	Enc	incer	ng Structure Brainer Line Cha	
Type of	Struct	ure			Equation Project Line Sta.	
Sta. of S	Structu	·e			Hole Sta Adjacent to AHET a	
Collar E	levatior				Reference	FL, LTFL, of €
Field Pa	rty <u>F</u>	Swe	11. 11	Jorwac	d × Winiers	$Big = \frac{R-6}{40x}$
	1 1	1	1	1 1 1		
		1			Ground Water	r Table
-					Depth in Ft.	
Poor	(<u>=</u>]	n de	-	DVer	Time	
ž	0.0	N	n Fe	ph a	Date	
lling	n i		-	Ple Gro	DESCRIPTION Soil type, color, texture, consistency someler driving note	
D	S S	Sar	d e d	Soll Soll	observed fluctuations in water level, notes on drilling	ease, bits used, etc.
		1	1 1			
en				KIZ	3/6 2/6 3/6 4/6	
11] į		(travish dk to to previet 1-	- Itledium-
"	ЩЭ] [SE	to a few this to use this	leases and the
4		7A-1	12,	ISE		ICISES SANCY SIT
B		1] '[口台	•	
	11		l E			
	Ц		1 1			
╂───┤	<u> </u>	<u> </u>	╡╺╞			
<u> </u>	41					
Y	↓↓		105		Gray fine sand with some sitt	
<u>, 16 y</u>	4	<u> </u>				
	_		6	البن ا		
	H	70 .	- F			
12		IA -1 (₽7 ,⊨		brauch dk fan sandy silt wit	the law this lenses claves
 2 	Н		F		silf	
<u>├</u>		<u> </u>	8	- 220-	Concernish brown with clay with	some this leases sandy si
╞───┼	H		E	- 25-		1
			9		this lease grayish bown sitter	clay and samly sitt
	Ħ				Ottawish die tan sandy sitt	
			110-	-	Cilled Caring To 110	
	Π		[]			
			ΨH	THE REPORT	(manual has our i ar	1 - 11- 1
	1		11_		<0H Clay with	n some this lenses sandy
			2 -	1 de la		
			F			
			F			
	-		El.	11	Grayish dkton fine - i'	6 - .
			E		"4" 6" Lemes drawish the sil	class and for a distill
			. , <u>E</u>		silt to fine sond with with	Y HILL FIRE BOAR WITH SOM
	4 4		"F		illed casing to 115	
	┝		Ł			
	4		71			
	┼──┤		친			
	4		E			
	┞──┤		₽	-	Grayish alk tan silty clay w	the a few to some thin
┏			71	LEL	to Very this leases sandy s	itt
	┝──┤		He	L 22_	· · · · · · · · · · · · · · · · · · ·	
	┨╽		۲ļ	IE-		
- I F	1			1 124 1	shed casing to 120'	

.

Dere degun 10-74-94 UTAH DEPARTMENT OF TRANSPORTATION Hole No. 74	Form R+353
Dete Completed 10-24-94 MATERIALS AND TESTS SECTION Sheet 7 of 10	
Hole Clameter Total Depth Z / 2 /	
Proved Na SP-15-7(11)246	
jeer Name 13 Corrigor 12, 0, 10 x00 38 18 500 1Vo	<u> </u>
Charle Contracting Diagonal Equation Other Line Sta.	
Sta of Structure Hole Sta Adjacent to DHE 7 Rt Ft. Lt Ft. of t	
Collar Elevation Reference Nethod Used	
Field Porty Towell Worwood & Winters Rig B-61 MDX	
Ground Water Table	
Depth in Ft.	
Time	
DESCRIPTION	adian lant
Deserved fluctuations in water level, notes on drilling ease, bits used, etc.	
Shelove 1/2 (1) 72	
" " " (Cray silty day with some this lesses sandy silt.	A
" Il for possible 12" lease sandy silt at 120.7'	
Freenish It gray sitty clay with some this lenses	Sandy
This lenses tan to gray clayer silt and sar	dy silt
[[[[[[[[[[[[[[[[[[[2 sardy
2 Gravish brown to gravish dk tan sitte clay with	the same
thin lenses sandy sitt	
E lenses gravel with some sond and sitt	
12 Drilled casing to 135	
Shelby I - Shelby tube saucezed in to from and share But	bly Roth
Graysh de tran sandy sitt gravel from	133.7!
I Trace fine acquaic moterial	/
Be (French alle to a l "IL "IL "IL	
Silty clay. True fin this some this lense	2
FILE	
/40 // 14	

]	Date Begun <u>/0</u> Date Completed Hole Dlameter <u>_</u> Project No. <u>_</u> jiect Name <u>_</u> <u></u> <u></u> Type of Structure Sta. of Structure	P-15- T-15	74 8-91 7 (1) Ene	4 11) 29 pinee	UTAH DEPARTMENT OF TRANSPORTATION MATERIALS AND TESTS SECTION DRILLING LOG G G C. G. D. P. 10800 So. 500 No Trop Study Equation Project Line Sta. Mole Sta. Adjacent to DH 7 R. Ft., Lt. Ft., of t
	Collar Elevation	Sample Number	Depth in Feet	Sample Recovery	Reference
			4		This leves grayish dk tan sitty day er-dayay sitt and sandy silt
	Pen "	ZA-/52			Fine gravel from 149.5' to 150' Drilled casing to 150' 19/6 32/6 35/6 40/6 — Very Dense — Grayah dk tan fine to medium sand with some sitt. Two 1° lenses sandy silt with trace gravel from 150' to 150'4' 10-26-9 10-26-9 Crayish dk tan fine to coarse sand with some sitt A trace fine gravel. An occasional 1" lense sandy sit
			6 		It gray clayer silt with sand Grayish dk tan silty clay with to some thin lenses sandy silt Drilled casing to 160

Date Begun	10-2	4-9	4	UTAH DEPARTMENT OF TRANSPORTATION	Hole No. 7A Form R-
Date Compl	eted	-28-	-94	MATERIALS AND TESTS SECTION	Sheet 9 of 11
Hole Olame				. DRILLING LOG	Total Depth 2/2/
Project No.	<u> </u>	12-	<u>7(11)</u>	296	
oject Nam		3, 4	arcia	or. (7. U.P., 10800 50 to 501	O No.
	\bullet Civ	11 -	<u>ngi n</u>	erinci Study Equation Project Line Sta.	
Type of Stru				Other Line Sta.	
Sta. of Struc	ture			Hole Sta. Adjacent to DH =7 R.	Ft., LtFt. of \$
Collar Elevat		11 17	1	Reference Met	hod Used
Field Party_		<u>n w</u>	<u>lorwo</u>	<u>es Winters</u>	
				Ground Wate	r Table
72			2		
	Fog		LOV C	Octe	
2 0	N.	In F	5 8 9	DESCRIPTION	
비 비 비	mpt	4 d	불불법	Soil type, color, texture, consistency, sampler driving note	s blows per foot on casing domba singulation to the
ă S	So B	å	San Sol	observed fluctuations in water level, notes on drilling	ease, bits used, etc.
		140			
	L	100		Graush de tra silty de	with some the la
		-	비니루	sandy silt	This Pases
	- I	-1		J	
_ !!! -		2			
		4 1	-747		
		╡₃╞		This leases de tan clange	sitt and sandy att
		4 4		An occasional 1"- 2" lense	scool with some allt
		╡╺╞			ADDE
-₩		1 F		<u> </u>	
╺┽───┼┼┼╴		165	12	- Grayish dk tan fine sand u	with some silt
20		31		14/6 15/6 25/6 47/6	- Deute
/////////////////////////////////////		Ž¢L	1 and	Gravish dk tan sandy silt'	
		-		Gravish dk tan alayey sitt wit	the thin lenses so and eith
	<u>_//A -//</u>	67 F	P	Crayish dk tan sandy silt to	condu with with trace alo
		E	1-60		, (
╉╾╾┽╂┽╼		e [•
╉╼╼╼┼╂┥		E		tray to dk gray silly sand	
	+	9			
		E		trayish dk tan clayey att	with sand
╂───┼╂╎──	+	170-		Graytshak tan sitty clay with	some this lenses sandy silt
1		EI	E	Filled casing to 170 1	
+	+	4	FZ	trayish dk tan sand with some si	14
		E			
T	+	건	HI I	urayish dk tan to grayish brow	a silty day with some this
		- FI	- 20-	IGASES SANdy silt	
	1	ᅫ		•	
		¢1			
		* H			
		<u> </u>			
	†={ <i>1</i>	75日			•
		F	15%	General Materia	
		٩H		Trancis are ran time sand with sit	I to some silv .
	[]	11_		unyish ar tan clayer sitt with the	in lenses sandy sill
		· 7H	Til-	form int 11 to the second	
		Ļ١	TET	und with an time send with so	ome siH
		₿			
		٤l	TE-		
	+	۹⊢			
	╞──┤.	~ El	-2-		
		8°ET		legravish dk ton sitty clay wit	h some this lenses sandy

......

. •

ا ا

1					Form 8-353
Date Begun <u>10</u>	- 24 - 94	UTAH DEPARTMENT OF	TRANSPORTATION	Hole No	
Date Completed 20	0-18-79	MATERIALS AND I	ESTS SECTION	Sheet 10_of 11	
Hole Diameter		ORILLING	1 200	Total Depth	
Project No. SP	<u>-15-7(11)296</u>				
ject Name	-15 Corridor,	<u>(-0. P. /0800</u>	so to 500 N	0	
EY.4- Civ	il Engineering	Study Equation	Project Line Sta.		
Type of Structure_			Other Line Sta.		
Sta. of Structure		Hole Sta Adiaco	t to DH#7 RI	Ft. Lt. Ft. of	ć
Collar Elevation		Reference	Meth	od Used	-
Field Party	ell Worwood	5 Winters		_Rig _ 2-61 HD	X
			Ground Water	Table	
	0.	oth in Et			
		16			
		e			
			DESCRIPTION		
		Soil type, color, texture, cons	istency, sampler driving notes	, blows per foot on casing, depth	s circulation lost.
	Sol Sol	observed fluctuations in wa	ter level, notes on drilling e	ose, bits used, etc.	
Pen	80- (12. 9	16 11/6 15/6 15/	6	Malt	
" Thy F		(securich die tas	cand wetter and	- Intealum	To Very Stit
1 00	CI	a muist or tak	SANC WITH SOM	12	
" 1 74	7-18201)	6	/ •	017	
B		Changesh ak ten	<u>clayer sitt u</u>	uth very this les	ses sandy sitt
		Crainsh dk tan	sandy sitt w	ith trace clay	
		nd #com 180 - 1	81 washed up	inside caring to	175'
╾╾┽╫┤ ┠━╸		Thin lenses gr	aytsh dik tan'	silty clay and s	andy sitt
	•			1 1	
──┼╁┥╴┝──	─┥ ╒╎┝╔╦━━	Grayish dk tan	to dk tan s	ity clay with a	ame thin
		lenses sandy		1	
╺──┼┼┤ ┝╾╸		illed casing to	185'		
		Crawish dk ta	a sand with a	and with	
		This Yenses de	too churren si	it and sandy	-1H
		Granish de tan	sand with a	ing sitte	· · · · · · · · · · · · · · · · · · ·
		Dr ten to accus	ish dk too si	H	1/1
		sciedy silt 5	1"-7" 1-		PL
					SMS SUL
V V		11-1 - 1	190		
		nea.casing to		•	10-26-94
		carrish dut	C. L		10-21-74
		elt	TINE TO LIETY. FI	no sond with sitt	to some
+++1		211			
<u>+</u> ++ }					
·					
	┥ [┣थ━━	70 .	9 11.		
╺╼╁╂┼┈╌┨╼╾╸		hin lenses clay	ey sill and san	dy sitt	
╶─┼╅┤╴┝──╴		1		1	•
	-19 -1/ri	led casing to 1ª	10'	<u> </u>	
┕─┼╫┤ ┝━━	- A [(BE 59/6	10/6 11/6 12/6		Very S	St:66
		trayish dk ton a	andy sitt with	trace clay	
		Fraulsh dk tan c	laver silt with	here this kases	sandy silt
\square \Box \Box A I'		Travish dk tan sil	6. doe with some	Sand and year the	leases sandy a
		Truish dk ton ?	the class with an	me sand and a R.	2 Here LL?
		ences sand in		AND DELLE BAR O TEU	- TEAY TRIA
	┑╺ <u>┟</u> ╎┝╋═╪╾──	LUNDED SANDY SI			
	┥戦⋤⋧	N 2" 4" I	· · · · · · · · · · · · · · · · · · ·	L , •	
·₩	┥╻╽┝╘╞╌─	H J - T /sh	se gravish ak	Tan sandy sell	er sand with sit
		Lad a stify cla	4 with some th	hin isnassi sand	Y SUR
		ied casing to d			

Derr Report (A = 1/4 - 20/ MATERIALS AND TESTS SECTION MATERIALS AND TESTS SECTION TO TESTS SECTION MATERIALS AND TESTS AND TESTS AND TESTS SECTION MATERIALS AND TESTS AND TESTS AND TESTS AND TESTS MATERIALS AND TESTS AND T	J.		
His Dimmer Image: Section See: 11	Date Begun $10 - 74 - 04$ Date Completed $10 - 78 - 94$	UTAH DEPARTMENT OF TRANSPORTATION	Hole No. 74
J Preser No. S.P. 15.5 - 7111/1796. The Dent. 112' Preser No. S.P. 15.5 - 7111/1796. Examine Preser Units 200. Preser No. S.P. 2007. Control Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. No. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No. S.P. 2007. Status Preser No.	Hole Diameter	DRILLING LOG	Sheet
ber New Tells Craning find P. // PRIA Surte 5700 Mar. The of Structure Sta of Structure	Project No. 5P-15-7(11)29	6	Total Depth
The still control in an intering of the still interest water and the still interest interest water and the still interest interest water and the still interest interest water and the still interest interest water and the still interest interest water and the still interest interest interest water and the still interest interest interest water and the still interest i	sject Name I-15 Carridor	G.D.P. 10800 Sonta 500 No	
j 199 of Blocking Mark Sta Mark Sta Mark Sta Galar Structure Mark Sta Mark Sta Mark Sta Free Perty Could War Sta Mark Sta Mark Sta Free Perty Could War Sta Mark Sta Mark Sta Free Perty Could War Sta Mark Sta Mark Sta Free Perty Could War Sta State State Mark State Free Perty Could War State State State Mark State Free Perty Could War State State State State Free Perty Could War State State State State State Free Perty State <	D.Y.U. Cill Engineerin	e Study Equation Project Line Sta.	
Calle Elevings Main Print Harman Print Harman Print Harman Pain Perry Education Warren Content Organization Main Print Harman Paint Perry Education Paint Intr. Organization Organization Paint Perry Education Paint Intr. Organization Organization Paint Perry Education Paint Intr. Data Description Paint Perry Education Paint Intr. Description Description Paint Perry Education Paint Perry Education Description Description Paint Perry Education Paint Perry Education Description Description Paint Perry Education Paint Perry Education Paint Perry Education Description Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education Paint Perry Education	Type of Structure	Other Line Sto.	
Prise Perry Housed Warrender Marrender 1 1 1 1 1 2 1 1 1 1 3 1 1 1	Collar Elevation	Hole Sto Rt	Ft., LtFt., of \$
No Let I del Image: State of the state of	Field Party Towell. Worwood	Reference Meth	od Used
Image: State of the state			Rig <u>R-61 HDX</u>
Image: State in the image: State in		Ground Water	Table
and and and and and and and and and and	8 2 2	Depth in Ft.	
Image: State of the state			
Image: State of the state in the state of the state	A D D D D D D D D D D D D D D D D D D D	DESCRIPTION	
DR Do De De DR Do Interview further in were revelues on drilling ease, bits used, etc. DR Do Interview further in a stand with some still DR Do Interview further in a stand with some still DR Do Interview further interview further interview candy still DR Interview further interview further interview candy still DR Interview further interview further interview candy still Interview further interview further interview candy still Interview further interview further interview candy still Interview further interview further interview further interview candy still Interview further inter	Drill Blow	Soil type, color, texture, consistency, sampler driving notes	blows per foot on casing deaths significant and
DR DR DR DR DR DR DR DR DR DR DR DR DR D		observed fluctuations in water level, notes on drilling e	ose, bits used, etc.
Image: An apple, de une sand with some sitt Image: An apple, de une sand with some this lenses andy sitt Image: An apple, de une sand with some this lenses andy sitt Image: An apple, de une sand with some sitt Image: An apple, de une sand with some sitt Image: An apple, de une sand with some sitt Image: An apple, de une sand with some sitt Image: An apple, de une sand with some sitt Image: An apple, de une sand with some sitt Image: An apple, de une sand une some une une une une une une une une une un	DR 200-	Go. P. I. H. I.	
Comparison of the second with some the lenses and, sitt Comparison of the second with the some site Comparison of the second with some site Comparison of the second with some site Comparison of the second with some site Comparison of the source second with some site Comparison of the source second with some site Comparison of the source second with some site second Comparison of the source second with some site second sites Comparison of the source second with some site second sites Comparison of the source second with some site second sites Comparison of the source second with some site second sites Comparison to concrest second with some site some clay Comparison of the source second with some for some clay Comparison of the source second with some the some clay Comparison of the source second with some site some clay Comparison of the source second with some site some clay Comparison of the source second with some site some clay Comparison of the source second with some site some clay Comparison of the source source the some clay Comparison of the source source the some clay Comparison of the source source source the some clay Comparison of the source source source the source of the s		Stayish dk tan sand with some	-ilt
Image in the same the lease same with Image in the same in the same in the same in the same same in the same in the same same in the same same in the same same same same same same same sam		Grayish dhe ton sitter car ille	1/ • 1
Image: Second stills and stand with some site Image: Second still stand stand with some site Image: Second still stand stan			ac This lenses sandy sitt
Image: Second and the two second with same sitt Image: Second and the two second with same sitt Image: Second and the two second second a few the leaves second site Image: Second and the two second second a few the leaves second site Image: Second and the two second second a few the leaves second site Image: Second and the two second seco		Gray silty clay with this lenses	zandy zit
1 1	3-	C. P. K. I	1
Tan silty clay with the sand and a few thin leaves some a get a provide de ten sandt att with sand and a few thin leaves some a get a get a country for 205' - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - KB - Very Danse - - Very Dans		groupsh dr the sand with some	silt
201 201 201 27% 51% (201) 205' 21% 2010 2 10% 2 10% 27% 51% (201) 201 21% 51% (201) 21% 51% (201) 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010	°⊢★+₩	Tan silty clay with fine and	
8+ 8+ 100 21% 54% (Ref.) -Very Danse- 18+ 100 200-50 100 200-50 -Very Danse- 18- 100 200-50 100 200-50 100 200-50 18- 100 200-50 100 200-50 100 200-50 18- 100 200-50 100 200-50 100 200-50 18- 100 200-50 100 200-50 100 200-50 19- 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 200-50 100 2	200	illed casing to 205'	and a new thin leases sundy
1 01 M-200-50 Statusts of tan classes with with sand KB 1 1 1 1 1 1 1 1 KB <t< td=""><td>A EN</td><td>16 27/6 5476 (Ref)</td><td>- Very Deare-</td></t<>	A EN	16 27/6 5476 (Ref)	- Very Deare-
AB Crayish dk tan sandy silt Grayish dk tan sandy silt (reavish dk tan sandy silt (reavish dk tan sandy silt from 209' to 210' (normed casing to	7A-206-54	Growish die tan clayer alt with	send l
Graufish dk tan sandy sitt (reavish dk tan sandy sitt (reavish dk tan fine saint with some sitt prasing to fine to coarse send with some sitt. Trace fine group from 209' to 210' '' 0.202' Peo A Graufish It brown to 210' '' 0.22.94 (no 210' ''''''''''''''''''''''''''''''''''		Grayish de tan cluber sitt a	1 8-10
Image: All the series and with some site grading to Image: to coarse send with some site grading to Image: to coarse send with some site. Trace fine travel Image: to coarse send with some site. Trace fine travel Image: to coarse send with some site. Trace fine travel Image: to coarse send with some site. Trace fine travel Image: to coarse send with some site. Trace fine travel Image: to coarse send with some site. Trace fine travel Image: to coarse send with some sold. Image: to coarse send. Image: to coarse send. <t< td=""><td>∎ E - 607</td><td>Grayish dk tan sandy silt</td><td>FIRE Sund</td></t<>	∎ E - 607	Grayish dk tan sandy silt	FIRE Sund
Interview Interview			
V V Prom 209'ta 210' / 10-22-94 10 Dr://ed casing to 210' / 10-22-94 11 27 8 Grayish It brown clayey silt with sond 11 27 8 Grayish It brown solds silt with sone tige, sone clay 11 27 8 Grayish It brown solds silt with sone tige, sone clay 11 27 8 Grayish It brown solds silt with sone tige, sone clay 11 27 8 Grayish It brown solds silt with sone tige, sone clay 11 27 8 Grayish It brown solds silt with some tige, sone clay 11 27 10-28-94 10-28-94 11 27 10-28-94 10-28-94 11 27 10-28-94 10-28-94 11 21 10-28-94 10-28-94 11 21 10-28-94 10-28-94 11 10-28-94 10-28-94 10-28-94 11 10-28-94 10-28-94 10-28-94 11 10-28-94 10-28-94 10-28-94 11 10-28-94 10-28-94 10-28-94 11 10-28-94 10-28-94 10-28-94 11 10-28-94 10-28-94 10-28-94 11 10-28-94 10-28		Bing to alk too fine said with	th same sitt grading to
Here Drilled casing to 210' 10-22-94 11 18/6 18/6 15/6 16/6		from 209' to 2101	e silt. Trace fine grovel
A Bill 13/6 13/6 15/6 to/6 11 27 Bill 13/6 15/6 to/6 12 Grayish It brown saddy silt with sand 11 27 Grayish It brown saddy silt with same five same clay 12 Grayish It brown silty they with same five sadd. 13 T-D 21/2 10-D 24 10-D 24	Bo Plan Dr	illed casing to 210'	1: 10-27-94
1 d/ Graufish It brown sandy silt with sond 1 D Craufish It brown sandy silt with some fige sand. 2 Craufish It brown silty they with some fige sand. 7 D 212 7 D		16 12/6 15/6 16/6	- 1/2-22-94
De litter in the some cley 2 (craugh it brown silty thrug with some five same. T-D 2/2 T-D		Trayish It brown clayey silt wi	th sand
Inserted a 2" dia plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted plastic pipe in place with a mixture of Carouted Data and Nov 3, 19'74		traugh it brown saddy silt with	trace to some clay
Inserted a 2" dies plastic pipe to a depth of 212' 10-28-94 (arouted plastic fipe in place with a mixture of cament and water. 24 Bags of cement were Used. Oct 31 and Nov 3, 1954		with	some time sand.
Inserted a 2" dias plastic pipe to a depth of 212', 10-28-94 (arouted plastic fipe in place with a mixture of cement and water. 24 Bags of cement were used. Oct 31 and Nov 3, 1994	┇────┼┼──┼──┤╶┇⋛┥┝┥┝──		
Inserted a 2" dia plastic pipe to a depth of 212', 10-28-94 Carouted plastic fipe in place with a mixture of cement and water. 24 Bags of cement were Used. Oct 31 and Nov 3, 1994		· · · · · · · · · · · · · · · · · · ·	
Inserted a 2" dia plastic pipe to a depth of 212' 10-28-94 (arouted plastic pipe in place with a mixture of cement and water. 24 Bag of cement were used. Oct 31 and Nov 3, 1974		- The second sec	Cupy of Consol
212', 10-28-94 (2routed plastic fipe in place with a mixture of cement and water. 24 Bags of cement were Used. Oct 31 and Nov 3, 1994		Inserted a 2" the last	
e (<i>Irouted</i> plastic fipe in place with a mixture of cement and water. 24 Bags of cement were Used. Oct 31 and Nov 3, 1974		212', 10-28-94	pipe to a depth of
Cement and water. 24 Bogs of cement were used. Oct 31 and Nov 3, 1994	└─── <u></u> └───┤ •{┤ ├┤ ├──	(grouted plastic fipe in place	ce with a mixture of
Be		cement and water. 24 Bag	a of coment were
		were wer st and Nov 3, 19	54
	<u> </u>		
		······································	

Boing: PB-02 , Sheet 1 of 5 SAMPLE DESCRIPTION	Der	ath	c Log	Elev.			SAMP	LE		• = 1 =	SPT S-Way	"N"-Va re Veloci	ilue iry		Test Re	esults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft	-m)	Graphic	(m)	Type	No.	Blow:	s/0.15m	USCS (AASHTO)	(I	Blows	(m/sec) (0.3m)	100	Field Te Vane Shear Su (kPa)	S1S s im/sec)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
SILT (ML), brown clayey silt, with fine sand and scattered gravel (FII). SILTY SANDY GRAVEL (GM), light brown, moist, very dense (FII). SILT (ML) clayey, dark grey, moist, soft to medium stiffness, with organics.	5	° 		_	×-:;s-	-1-1	08 - 38	-50-25	GM			/					FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-02 (3300 South)
SILT (ML) clayey, light brown, very moist, medium stiff to stiff, with fine	10	-		.	P	2 2	37		ML		1	/			219		Sheet 1 of 5 Logged by: Travis Nguyen
sand. Tha s-tube deformed at bottom 9 inches. Drillirg stopped so CBC could install 8 inch PVC casing.	15	5		 						/	/						Date Start: 4/18/96 Date Finish: 4/22/96 Weather: Station: Station: 3300 South Offset: 2000 South
CLAY (CL), mottled light grey, with reddish brown and brown silty clay, with interlayered silty fine sand, very moist, medium stiffness. 8-9 hours filled with water. Light grey water return at 25 ft.	20				<u>X 55</u>	34	57 2	2-2-4	CL						207		Coordinates (m): N 17,400.0 E 900.0 Elevation (m): 394.7 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Drilled (m): 91.5
SILT (ML), dark grey-black, wet, medium stiff to stiff, fine sanc and silts,	25	-		-	р р	4 2	78		ML						224		Drill Contractor: CBC Driller: J, Hulse, Dave W., Milo A. Rig Type: 8164 Drilling Mathod: Mud Rotary w/ casing Hole Diameter: 4.5"
With organics.	35	10		385													LEGEND/NOTES' Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83
SILTY SAND (SM-ML), light grey, wet, very still and dense, interlayered fine sandy silt to silty fine sand,	40	_			X 55	54	07 18	-28-14	SM-ML		•				231		
	45	 15															 >> = N-vaue data greater than 100 blows/0.3m = See Key to Soil Logs for list of abbreviations and descriptions of tests
C_AY (CL), mottled light grey-dark grey, very wet, soft to medium stiffness, clayey sit, with fine sand layer. pp = .25	55	_	T.	_	P P	64	57		CL						238		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler
SILTY CLAY (CL-SM), light grey to dark grey, wet, stiff, medium density, interlayered silty clay and silty fine sand.	60 1	-	1111	-	X 55	74	•57 4-	10-20	CL-SM		•				191		UM = Uams & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD, pushed P = Dams & Moore Piston Sampler
													0001				

Boring: PB-02 ' Sheet 2 of 5 SAMPLE DESCRIPTION	Depth	c Log	Elev			SAMPLE		• = SPT "N"-Value = S-Wave Velocity	Test Res	uits *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft-m)	Graphic	(m)	Tyne	No.	E Blows/0.15m	USCS	"/s" (m/sec) (Blows/0.3m)	Field Tests	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
. SILT (ML), light grey, wet, stiff to very stiff, fine sandy silt with sand layers. $pp\!=\!3.0$	70 70 75			P P	84	07	ML	-	197		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-02 (3300 South) Sheet 2 of 5
SILT (ML), brown, wet, very stiff, clayey silt, wth trace sand.	80		370	<u> </u>	94	57 9-11-20	ML		210		Logged by: Travis Nguyen Date Start: 4/18/96 Date Finish: 4/22/96 Weather: Station: 3300 South Offset: Coordinates (m): N 17,400.0 E 900.0 Elevation (m): 394.7
SI_TY SAND (SP-SM), grey and white, wet, very dense, fine to coarse grained sand with silt.	90 90 95	-		<u>zz X</u>	10 2	20 14-50/5 5*	SP-SM		234		Groundwater Depth (m): Depth to Bediock (m): N/A Total Depth Drilled (m): 91.5 Drill Contractor: CBC Driller: J. Hulse, Dave W., Milo A. Rig Type: 6164 Drilling Method: Mud Rotary w/ casing Hole Dismete: 4.5"
SILTY SAND (SP-SM), very dense.			365 	X 55	11 3	16 28-30-18	SP-SM		508		LEGEND/NOTES Elevations based upon North American Vertical Datum of 1988 (NAVD '98) Coordinates are NAD '83 ☑ = Groundwater depth
C_AY (CH-OH), dark grey to black, wet, stiff, cay and organic clay.			-360	<u>X \$5</u>	12 4	57 5-6-9	сн.он		277		Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unified Soil Classification System >> = N-vaue data greater than 100 blows/0.3m • = See Key to Soil Logs for list of abbreviations and descriptions of tests
SILT (ML), light grey, very moist, stiff to very stiff, clayey silt.pp = 2.5	20			P P	13 4	57	ML		244		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Damss & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD,
SILT (ML), oney was very stiff to hard, very fine sand silf	30-10	-		Mae	144	57 5.1940	MI		290		pushed 한 P = Dames & Moore Piston Sampler

the set

Baring: PB-02 Sheet 3 of 5 SAMPLE DESCRIPTION	Depth	Flay	SAMPLE		 = SPT "N"-Value = S-Wave Velocity 	Test Results *	UDOT/PARSONS-BRINCKERHOFF Stage 1 1-15 Seismic Hazard Apalysis
(ASTM D-2488)	(ft+-m)	(m)	ed Vor South States (inni) Blows/0.	15m USCS	'Vs" (m/sec) (Bibws/0.3m)	Field Tests Vane Shear Su (kPa) Vs (m/sec) Lab T	ests Geosciences/Geotechnical Salt Lake City, UT
SILT (ML), grey-dark grey, wet, stiff, clayey silt interlayered with silty sand. SILT SAND (SM), grey, wet, dense to very dense, silty fine sand interlayerd with fine sandy silt. SILTY SAND (SM), grades into fine sandy silt layer.			X SS 15 457 17-40- X SS 16 258 38-50/	12 ML 6- SM.		321	FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-O2 (3300 South) Sheet 3 of 5 Logged by: Travis Nguyen Date Start: 4/18/96 Date Finish: 4/22/95 Weather: Station: 3300 South Offset: Coordinates (m): N 17.400.0 E 900.0 Elevation (m): 394.7 Groundwatel Depth (m): Depth to Bedrock (m): N/A Total Depth Drilled (m): 91.5 Drill Contractor: CBC
SILTY SAND (SM), becomes very dense with stattered gravels.	160- 		× 55 17 163 44-50/	4:SM		508	Driller: J. Hulse, Dave W., Milo A. Rig Type: 6164 Drilling Method: Mud Rotary w/ casing Hole Diameter: 4.5"
SILTY SAND (SM), with seashell fragments and silt layers.			X_SS_JR_21024:50/	6"SM		762	LEGEND/NOTES Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83 ☑ = Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unified Soil Classification System
SILTY SAND (SM), becomes reddish brown.	80 55	340	X 5S 19 258 30-50/	6"SM	•	677	 >> = N-value data greater than 100 blows/0.3m See Key to Soil Logs for list of abbreviations and descriptions of tests
SILT (ML), mottled green and grey, wet, very stiff to hard, grey clayey silt, with layers of fine sandy silt. Artesian water at 190 ft.	90- 	-336	X SS 20 457 22-28-	30 ML		234	SAIVIPLE IYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Darres & Moore type U sampler US = Undsturbed Shelby Tube, 76.2mm OD, pushed P = Darres & Moore Piston Sampler

Boring: PB-02 '	Dearth	Log				SAMPLE		 = SFT "N"-Value = S-Wave Velocity 	т	est Re	suits *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
SAMPLE DESCRIPTION (ASTM D-2488)	Depth (ft+-m)	Graphic	(m)	Type	No. Rec (mm)	Blows/0.15m	USCS (AASHTO	"Vs" (m/sec) (Blows/0.3m)	Field Test	5 m/sec)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
- SILT (ML), grades into fine silty lenses.	20 0		-	X 55	21 45	7 15-19-25	ML			203		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-02 (3300 South) Sheet 4 of 5
SFAVEL SAND SILT (GM), white-grey-brown, wet, very dense, sandy upangular gravel.	210 		-330		22 76	50/3*	GM			39		Logged by: Travis Nguyen Date Start: 4/18/96 Date Finish: 4/22/96 Weather: Station: 3300 South Offset: Coordinates (rr): N 17,400.0 E 900.0
ILT (ML), grey, wet, very stiff, fine sandy silt. ILT SAND (SM-ML), interayered reddish brown and grey, mcist, very ense, silty fine sand to fine sandy silt.	220 			X <u>55</u>	23 31	4 22-40-50/4*	ML-SM			69		Elevation (m): 394.7 Groundwater Cepth (m): Depth to Bedrock (m): N/A Total Depth Drilled (m): 91.5 Drill Contractor: CBC Driller: J. Hulss, Dave W., Milo A. Rig Type: 6164 Drilling Method: Mud Rotary w/ casing Hole Direvers: A 57
SILTY SAND (SM-ML).	230- 		-325	<u>× s</u>	24 30	5 34-50/6"	SM-ML			34		LEGEND/NOTES Elevations based upon North American Vertical Datum of 1938 (NAVD '88)
SILTY SAND (SM), white-grey, wet, very dense, gravelly sand with silt.	235 			× 	-25 10	2 24+50/3*	SM			210		Coordinates are NAD '83
SILT (ML), mottled brown and light grey, wet, hard, clayey silt, with fine sity sand lenses.	250 			<u>X 55</u>	26 45	7 21-30-40	ML			218		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler
CLAY (CL), mottled reddish brown and grey, wet, hard, gravelly clay with				* 35	27 10	50/4	CE			254		 Ⅲ US = Undisturbed Shelby Tube, 76.2mm OD, pushed P = Dames & Moore Piston Sampler

राहर - विकिंग कि - - - - - - - - - -

Boring: PB-02 , Shext 5 of 5 , SAMPLE DESCRIPTION			3				s	AMPLE		• •	= SP1 = S-W	["N" ave V	-Value elocity		Test R	esuits *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(1	t+m)	Grephic 1	m)	Type	No.	Rec (mm)	Bicws/0.15m	USCS (AASHTO)		"V: (Blow	" (m/: \$/0.3 G	iec) Im)	Field T Vane Shear Su (kPa)	'ests Vs (m/sec)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
CLAY (CL), mottled grey and greenish grey, wet, hard, silty clay, with scattered gravel.	265-	80		X	(SS	28 3	361	·9-23-24	CL			•			218		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-02 (3300 South) Sheet 5 of 5
- CLAY (CL), becomes dark grey to black.	275- - 280- - 285-			110	SS SS	29 4	457	5-30-23	CL						244		Logged by: Travis Nguyen Date Start: 4/18/96 Date Finish: 4/22/96 Weather: Station: 3300 South Offset: Coordinates (m): N 17,400.0 E 900.0 Elevation (m): 394.7 Groundwater Depth (m): Depth to Bedrock (m): N/A
No recovery. Recovered 2 pieces of gravel, probably cutting.	290			205	a. 55 -	-30	152	55 /6*				•			244		Drill Contractor: CBC Drilleon: CBC Drillen: J. Hulse, Dave W., Milo A. Rig Type: 6164 Drilling Method: Mud Rotary w/ casing Hole Diameter: 4.5"
SILTY SAND (SM), grey, wet, very dense, silty fne sand with seashell frag	295- 		-	3	55	31	101	5074	SM			•			339		LEGEND/NOTES Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83 ☑ = Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unified Soil Classification System 0.00 klowed data servers the 100 klowed 0.300
	819 815 829	95		300													 See Key to Soil Logs for list of abbreviations and cescriptions of tests SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD, pushed P = Dames & Moore Piston Sampler

 $\| \hat{A} - \hat{A} - \hat{B} \|$

Bering: PB-03 Sheet 1 of 4 SAMPLE DESCRIPTION	Depth	c Log	Flev			s	AMPLE		•	= SPT " = S.Wave	N"-Value Velocity	8	Test Re	sults *	UDOT/PARSONS-BRINCKERHOFF
(ASTM D-2488)	(fti-m)	- ita	(m)	•	1.1	Ē]	"Vs" (1	m/sec)	Field T	ests		
		5		TYP	Ŷ	5	Blows/0.15m	USCS	i N	(Blows/C).3m)	O Vane Shear		Lab Tests	DAMES & MOORE
						<u>në</u>			0	<u> </u>		Su (kPa)			Geosciences/Geotechnical Salt Lake City, UT
SILT (ML), dark brown, moist, stiff, with little day, silt, scattered gravel and	-	\otimes	100												FIELD TEST BORING LOG
organics. (Fill)	_/ = ·		-00	X ss	1 3	361	3-5-7	ML	1				170		Geotechnical Exploration Program
SILT (ML), dark brown, moist, stiff, with fine sandy silt.	5									()					Boring: PB-03 (5300 South)
										<u>tit</u>					Sheet 1 of 4
	10-	_ -	-							Δ					
SILT (ML), mottled brown-greenish grey, wet, stiff, with interlayered clayey sit and fine sandy sit.	l‴-		1	РР	21	42		ML					364		Logged by: Travis Nguyen
		-11111-	•												Date Start: 4/24/96
	15														Date Finish: 4/25/96 Weather:
	5-	-	-												Station: 5300 South
			-395			1			11						Offset: Coordinates (n): N 13.400.0 E 960.0
SILT (ML), mottled brown-greenish grey, wet, stiff, with interlayered clavey	20			x ss	3 4	57	4-7-7	ML					462		Elevation (m): 400.8
sit and fine sandy silt.	-		- 1	<u> </u>					1						Groundwater Depth (m): Depth to Bedrock (m): N/A
															Total Depth Crilled (m): 61.0
	7257 .	╧╋╋													Drill Contractor: CBC Driller: J Hulse Milo A Dave W
															Rig Type: 6164
	30		.	,											Drilling Method: Mud Rotary
density, silty sand with clayey silt lenses.			ľ	<u>с</u> р	<u> </u> -•- -€	50		SM-	11				391		
	- 10	111				ĺ									LEGEND/NOTES
		172-	-390							1/11					Elevations based upon North American Vertical Datum
										7					of 1988 (NAVD '88)
			.							/					Coordinates are NAD '83
CLAY SILT (CL-OL), dark grey-grey, wet, stiff, silty clay and organic clay.	40		ţ.	SS	5 4	57	3-4-7	CL-OL					154		✓ = Groundwater depth
	1	-	۰ſ						L.; \						Blows = number of blows required to drive split spoon sempler 150mm or distance shown
	45									A III					USCS = Unified Soil Classification System
	– –	-	.							$\Lambda \rightarrow -$					>> = N-value data greater than 100 blows/0.3m
	=														 = See Key to Soil Logs for list of abbreviations
CLAY SILT (CL-OL), dark grey-grey, wet, stiff, silty clay and greanic clay	50-15-					04		0.01		÷.					and descriptions of tests
		HA-	-385			<u>U</u> #							246		SAMPLE TYPE
															SS = Standard Penetration Test, 38mm ID and
	55 -	-	.												50.8mm OD split spoon sampler
		11													DM = Dames & Moore type U sampler
		┨╟┝									ļ				US = Undisturbed Shelby Tube 76 2mm OD
SILTY SAND (SM), grey-white, wet, very dense, silty fine sand.	60		Þ	(ss	73	61	13-42-40	SM					287		pushed
		-11.11													P = Dames & Moore Piston Sampler
			- 1							9					

· ··· -

Boring: PB-03 ' Sheet 2 of 4		Fog	-			S	AMPLE		 SPT "N"-Value S-Wave Velocity 	Test Re	sults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	Depth (ft+m)	Graphic	Elev. (m)	Type	No.	Rec (mm)	Blows/0.15m	USCS (AASHTO)	"Vs" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
SIL ⁻ SAND GRAVEL (GM), grey-brown, wet, very dense, fine to medium grained sandy gravel with slit.	70			≊ 33	-8	-78	40-50	GM	••	337		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-03 (5300 South) Sheet 2 of 4
No recovery.	75	······································		- ss	9		12-17-23	GM		339		Logged by: Travis Nguyen Date Start: 4/24/96 Date Finish: 4/25/96 Weather: Station: 5300 South Offset: Coordinates (m): N 13,400.0 E 960.0
No recovery.	85			- ss	10		50/3"	GM	•	339		Elevation (m): 400.8 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Drilled (m): 61.0 Driller: J. Huise, Milo A., Dave W. Rig Type: 6164 Drilling Method: Mud Rotary Hole Diameter: 4.5"
SILT (ML), grey, wet, hard, clayey silt with tracesand.	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 370	X SS	11	407	22-16-27	ML		321		LEGEND/NOTES ' Elevations based upon North American Vertical Datum of 1938 (NAVD '88) Coordinates are NAD '83
SILTY SAND (SM), grey, wet, very dense, silty fine sand. SILT (ML), grey, wet, hard, clayey silt.				X 55	12	361	33-25-18	SM-ML		339		 ☑ = Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unified Soil Classification System > = N-value data greater than 100 blows/0.3m See Key to Soil Logs for list of abbreviations and descriptions of tests
SILTY SAND GRAVEL (SM-SP), grey-white, wet, very dense, silty fine to medium grained sand with gravel.	120- 	_	-365	× 55	13	106	50/6*	SM-SP	•	393		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler
SAND (SM SD silve layer of reddish brown finesend	25 	-		8-99		157	50/8*		000	469		US = Undisturbed Shelby Tube, 76.2mm OD, pushed P P Dames & Moore Piston Sampler

- - -

Boring: PB-03 , Sheet 3 of 4 SAMPLE DESCRIPTION	Depth	e Log	Elev.			SAMPLE		 SPT "N"-Value S-Wave Velocity 	Test Re	sults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft+m)	Graphi	(m)	Type	No. Rec (mm)	Blows/0.15m	USCS (AASHTO	"Vs" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
	135 - 		360								FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-03 (5300 South) Sheet 3 of 4
SAND (SM-SP) silty, layer of reddish brown fine sand.	40			× 55	15 10	1 50/4****	SM-SP	* • / / / /	393		Logged by: Travis Nguyen Date Start: 4/24/96 Date Finish: 4/25/96 Weather: Station: 5300 South
CLAY (CL), brownish yellow, wet, hard, silty clay.			-355	X ss	16 45	7 13-18-42	CL-ML		321		Cordinates (m.: N 13,400.0 E 960.0 Elevation (m.): 400.8 Groundwater Depth (m.): Depth to Bedrock (m.): N/A Total Depth Drilled (m.): 61.0 Drill Contractor: CBC Driller: J, Halse, Milo A., Dave W.
SIL ⁻ (ML), mottled grey-brownish yellow, wet, hard, fine sandy silt.	160- - - - - 50-		-	×1 55	17 23	0 22-50/5"	ML		319		Rig Type: 6185 Drilling Method: Mud Rotary Hole Diameter: 4.5"
SILTY SAND (SM), white-yellow-grey, wet, very dense, silty fine sand, with silty layers.			-350	× 55	18 18	236-50/2*	SM		368		Elevations based upon North American Vertical Datum of 1958 (NAVD '88) Coordinates are NAD '83 Z = Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unifiec Soil Classification System >> = N-valus data greater than 100 blows/0.3m = See Key to Soil Logs for list of abbreviations
SILTY SANDY GRAVEL (GM), yellowish-brown-grey, wet, very danse, fine sandy gravel.			-345	- 55	19 10	1 50/4	GM		420		SAMPLE TYPE
No recovery.	85- 			- ss	20	10-50/5"	GМ		481		K SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler D DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD, pushec P = Dames & Moore Piston Sampler

Boring: PB-03 , Sheet 4 of 4 SAMP! E DESCRIPTION	Depth	: Log	Flev			5	SAMPLE			= SPT "N"-Value = S-Wave Velocity		Test R	esults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 1-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft+-m)	Graphic	(m)	Туре	No.	Rec (mm)	Bipws/0.15m	USCS (AASHTC	0)	"Ys" (m/sec) (Blows/0.3m)	Vane Sh	d Tests ear vs m/sec)	Lab Tests	Geosciences/Geotechnical Selt Lake City, UT
	60	1.1	1	1	1	-		† – –	Ĩ		<u></u>			FIELD TEST BOBING LOG
- "\ Na recovery.			340	L			50/4-							Geotechnical Exploration Program
				33	° ² '		50/4	GM				508		Boring: DP 02 (5200 South)
		-												Sheet 4 of 4
	205-		L											Sheet 4 of 4
		1												Logged by Travis Norven
	210	-	F											Date Start: 4/24/96
				ľ										Date Finish: 4/25/96 Weather:
·	65-	-	-											Station: 5300 South
	215		335											Coordinates (m): N 13,400.0 E 960.0
		1												Elevation (m): 400.8
			┝											Depth to Bedrock (m): N/A
			1											Total Depth Dilled (m): 61.0
		-	F											Driller: J. Hulse, Milo A., Dave W.
	225-		L											Rig Type: 6154 Drilling Method: Mud Botery
		1												Hole Diameter: 4.5"
			F											LECEND/NOTES '
	230-10													LEGENDINGTES
			-330											Elevations based upon North American Vertical Datum of 1988 (NAVD '88)
	235		-											Coordinates are NAD '83
														✓ = Groundwater depth
	240 -	-	-											Blows = number of blows required to drive split spoon sampler 150mm or distance shown
			L											USCS = Unified Soil Classification System
		1	Γ											>> = N-value data greater than 100 blows/0.3m
	245		-											 See Key to Soil Logs for list of abbreviations and descriptions of tests
			-325											SAMPLE TYPE
	250		L											SS = Stancard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler
		1									-			DM = Dames & Moore type U sampler
	255		-											
1														US = Undisturbed Shelby Tube, 76.2mm OD, pushed
	L_= -	4	ŀ											P P = Dames & Moore Piston Sampler
	260-			l						9	8			

a dina mandalahan na tanàn dia kaominina dia mandalaha

a the sufficient data and the state of the superior of the

Boring: PB-04 Sheet 1 of 4 SAMPLE DESCRIPTION		enth	c Log	Flev			s	AMPLE		 = SPT "N"-Value = S-Ware Velocity 	Tes	t Results *	UDOT/PARSONS-BRINCKERHOFF
(ASTM D-2488)	(1	(t+-m)	Graphic	(m)	Type	No.	Rec (mm)	Blows/0.15m	USCS (AASHTO)	" ^Y s" (m/sec) (Biows/0.3m) 0 0 0	Field Tests Vane Shear Su (kPa)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
• .	5 -			-400									FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PP. 04 (SECO South)
SILT GRAVEL (ML-GM), grey-brown, moist, very dense, clayey silt, with pieces of asphalt, concrete, wood, and organics. (Fill)		- 8	X		× 33	1	50	-23-22-30	ML-GM	/	285		Sheet 1 of 4
SILTY SAND (SM), brown-grey, moist, medium density, silty fine sand with gravel.	10				× 35	2	50	4-21-18	SM		273		Logged by: Travis Nguyen Date Start: 4/30/96 Date Finish: 5/2/96 Weather: Station: Offset: 6600 South Coordinates (m): N 11.200.0 E 600.0
CLAY (CL), reddish-brown, wet, medium stiffness, silty clay with scattered gravel.	20			_	X 55	3	101	10-17-5	CL		287		Elevation (m): 400.8 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Dilled (m): 61.0 Drill Contractor: CBC Driller: J. Hulse, Milo A., Dave W. Rig Type: 6164
SILTY SAND (SM-ML), grey, wet, medium density, silty fine sand to fine sandy silt. SILTY SAND (SM), grey-white to reddish brown, wet, dense, sity fine to medium created each	/30- 	- 10		-	X 55	4	316	11-26-30	SM		387		Drilling Method: Mud Rotary Hole Diameter: 4.5"
SILTY SAND (SM), grey-white to reddish brown, wet, very dense, silty fine to medium grained sand, with silty fine sand layer.	35			390 	<u>X 55</u>	5 4	107	6-20-40	SM		305		Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates ars NAD '83 ☑ = Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unitied Soil Classification System
SILT SAND GRAVEL (GM), brown-grey-white, wet, very dense, fine to medium sandy gravel with silt.	50	15			× ss	6	210	- 10-45/6"	GM		311		 See Key to Soil Logs for list of abbreviations and descriptions of tests SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler
SILT (ML), brown, wet, very stiff, fine sandy silt.	60	- 20		-	X 55	74	57	4-14-14	ML	900	282		US = Undisurbed Shelby Tube, 76.2mm OD, pushed P = Dames & Moore Piston Sampler

Sheet 2 of 4 SAMPLE DESCRIPTION	Depth					S	AMPLE		 = SPT "N"-Value = S-Wave Velocity 	Test Re	sults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 J-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft+m)		0 2.6V.	Type	No.	Rec (mm)	Biows/0.15m	USCS (AASHTO	"V:" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
SILTY SAND (SP-SM) gravelly, brown-white, wet, very dense, fine to medium grained sand with silt.	70 70 75	-	380	× . 33	8 1	52	50/8*	3P-SM	•	372		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-04 (6600 South) Sheet 2 of 4
SAND GRAVEL (GP-GM) silty, brown-grey-white, wet, very dense, fine to medium grained sandy gravel with silt.	80 		- - - - - - - - - - - -	81 55	91	28	50/6*	GP-GM	••	423		Logged by: Travis Nguyen Date Start: 4/30/96 Date Finish: 5/2/96 Weather: Station: Offset: 6600 South Coordinates (m: N 11,200.0 E 600.0 Elevation (m): 400.8
SAND GRAVEL (GP-GM) silty, brown-grey-white, wet, very dense, fine to medium grained sandy gravel with silt.	90 			- 55	<u>דס 5</u>	57	50/4*	GP-GM	• •	358		Croundwater Depth (m): Depth to Bedrox (m): N/A Total Depth Driled (m): 61.0. Drill Contractor: CBC Driller: J. Hulse, Milo A., Dave W. Rig Type: 6164 Drilling Method: Mud Rotary Hole Diameter: 4.5"
SAND GRAVEL (GP-GM) silty, brown-grey-white, wet, very dense, fine to medium grained sandy gravel with silt.				55	77 5	57	50/4*	GP-GM		358		LEGEND/NOTES Elevations based upon North American Vertical Datum of 1958 (NAVD '88) Coordinates are NAD '83 S = Groundwater depth
SAND GRAVEL (GP-GM) silty, brown-grey-white, wet, very dense, fine to medium grained sandy gravel with silt.	110-			× 55	12 11	06	\$0/6"	GP-GM-		381		Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unified Soil Classification System >> = N-valus data greater than 100 blows/0.3m * = See Key to Soil Logs for list of abbreviations and descriptions of tests
SILTY SAND (SM), mottled reddish brown-grey, wet, very dense, silty fine sand.	20		-365	× 33	-13 1:	31	40-20/1*			436		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD,
SAND GRAVEL (GP-GM) sitty, brown-grey-white, wet, very dense, fine to	30				14 5	3	50/2*	GP-GM	000			₩ pushec P = Dames & Moore Piston Sampler

other distances of

Boring: PB-04 Sheet 3 of 4	Denth	B) Flav		SAMPLE	• = SFT "N"-Value = S-Ware Velocity	Test Results *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft+-m)	(m)	Type :	S Blows/0.15m USCS	"Vr" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa) Vane (m/sec) Vane Lab Tests	DAMES & MOORE Geosciences/Geotechnical Salt Lake City, UT
medium grained sandy gravel.	40 	•					FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-04 (6600 South)
SAND GRAVEL (GP-GM) silty, brown-grey-white, wet, very dense, fine to medium grained sandy gravel with silt.			SS	15 76 5073* ср:GM		488	Sheet 3 cf 4 Logged by: Travis Nguyen Date Start: 4/30/96 Date Finish: 5/2/96 Weather:
SAND GRAVEL (GP-GM) silty, brown-grey-white, wet, very dense, fine to medium grained sandy gravel with silt.		355	× 33	18 128 5175 GP-GM		45 1	Station: Offset: 6600 South Coordinates (m): N 11,200.0 E 600.0 Elevation (m): 400.8 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Dilide (m): 61.0
SAND GRAVEL (GP-GM) silty, brown-grey-white, wet, very dense, fine sand with gravel and silt.			ss	17 101 50/4 GP-GM	• •	469	Drill Contractor: CBC Dritter: J. Huise, Milo A., Dave W. Rig Type: 8164 Drilling Method: Mud Rotary Hole Diameter: 4.5"
no samole.				18		488	Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83
no sarrove.	80	-345		19		451	 >> = N-value data greater than 100 blows/0.3m = See Key to Soil Logs for list of abbreviations and descriptions of tests SAMPLE TYPE
no recervery.	85		- ss	20 50/3 ⁻ GP-GM		468	SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD, pushed P = Dames & Moore Piston Sampler

LASTM D-24681 Ifternin Image: Second second	Sheet 4 of 4 SAMPLE DESCRIPTION	Depth	c Log	Elev.			SAMPLE		 = SPT "N"-Value = S-Wave Velocity 	Test Re	sults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
no recovery. 100 - 100	(ASTM D-2488)	(ft -m)	Graphi	(m)	Type	No.	Blows/0.1	5m USCS (AASHTO	"Vs" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
and descriptions of tests SAMPLE TYPE 250	ng recovery.	210 200 200 205 - 210 - 215 - - - - - - - - - - - - -			- 55	21	2 50/1*	GP-GM		Solution States (Ve invised)		Geosciences/Geotechnical Salt Lake City, UT FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-04 (6600 South) Sheet 4 of 4 Logged by: Travis Nguyen Date Start: 4/30/96 Date Finish: 5/2/96 Weather: Station: Offset: 6600 South Coordinates (m): N 11,200.0 E 600.0 Elevation (m): 400.8 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Dilled (m): 61.0 Drill Contractor: CBC Driller: J. Hulse, Milo A., Dave W. Rig Type: 6134 Drilling Method: Mud Rotary Hole Diameter: 4.5 [°] LEGEND/NOTES Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83 ♀ - Groundwater depth Blows = number of blows required to drive split spoon sampler 150mm or distance shown USCS = Unified Soil Classification System >> - N-value data greater than 100 blows/0.3m ° - See Key to Soil Logs for list of abbreviations and descriptions of tests SAMPLE TYPE ♀ SS = Stancard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler ♀ DM = Dames & Moore type U sampler

. .

Boring: PB-05 , Sheet 1 of 4 SAMPLE DESCRIPTION	D	epth	t tog	Flev			5	SAMPLE		• = SPT "N"-Value = S-Wave Velocity	Test Re	sults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft	t(-m)	Graphtic	(m)	Type	No.	Rec (mm)	Blows/0.15m	USCS	"Vi" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa) Vs (m/sec)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
SILT (ML-OL), dark brown, moist, soft, clayey sik with organics. (Topsoil). SILT (ML), brown, moist, medium stiffness, claysy silt. (Fill)	5				- 55	1	6	2-3-3	ML		124		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PB-05 (7200 South) Sheet 1 of 4
SILTY SAND (SM), mottled brown-grey, moist, medium dense to dense, silty (fine sand. SILT (SP-SM), grey-white, moist, medium density, fine sand with silt.	/ 10 				р р	2			SM-SP		159		Logged by: Travis Nguyen Date Start: 4/26/96 Date Finish: 4/30/96 Weather:
SILT (ML), brownish yellow, wet, very stiff, fine sandy silt, with silty fine sand layers.	20	5		_	X_55	3	316	13-13-12	ML		293		Station: Offset: Coordinates (m): N 9,600.0 E 600.0 Elevation (m): 403.9 Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Drilled (m): 61.0 Drill Contractor: CBC
no recovery with tube sampler. SILT (ML), brownish yellow, wet, very stiff, fine sandy silt, with silty fine sand layers.	30	10-		395 	, X <u>s</u>	4	258	22-50	ML		311		Drillier: J. Hulse, Milo A., Dave W. Rig Type: 6414 Drilling Method: Mud Rotary Hole Diameter: 4.5" LEGEND/NOTES '
SILTY SAND (SP-SM) gravely, grey-white-browr, wet, very dense, fine sand with silt. Reddish brown silt layer from 39 to 39.5 feet.	40 1 1				×	-5-	230	20-50/5"	SP-SM		350		Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83
SILTY SAND (SP-SM) gravelly, grey-white-browr, wet, very dense, fine send with silt, with gravel layers.	50	15			× 55	-6-	204		SP SM		544		 >> = N-value data greater than 100 blows/0.3m See Kay to Soil Logs for list of abbreviations and descriptions of tests SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler
SILT SAND GRAVEL (GP-GM), grey-white-brown, wet, very dense, fine sandy subangular gravel with silt.	60				** 55		101	50/4-	GP-GM		484		 DM = Dames & Moore type U sampler US = Undisturbed Shelby Tube, 76.2mm OD, pushed P = Dames & Moore Piston Sampler

· · · ·

SAMPLE DESCRIPTION	Depth	Boj	Flev			SAMPLE		 = SPT "N"-Value = S-Wave Velocity 	Test R	esults *	UDOT/PARSONS-BRINCKERHOFF Stage 1 1-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft ₁ -m)	Graphie	(m)	Type	No.	Blows/0.1	5m USCS	"Vs" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa)	Lab Tests	Geosciences/Geotechnical Salt Lake City, UT
- SILT SAND GRAVEL (GP-GM), grey-white-brown, wet, very dense, fine sandy subangular gravel with silt.	70		-	× ss	8 11	06 50/6"	GP-GN		476		FIELD TEST BORING LOG Geotechnical Exploration Program Boring: PE-05 (7200 South) Sheet 2 of 4
SILT SAND GRAVEL (GP-GM), grey-white-brown, wet, very danse, fine sandy subangular gravel with silt. Silty sand to sendy silt layer at 76 to 77 feet.	75 80 25 85		-380	- 55	9 1 1	5074-	GP-GM				Logged by: Travis Nguyen Date Start: 4/26/96 Date Finish: 4/30/96 Weather: Station: Offset: Coordinates (m): N 9,600.0 E 600.0 Elevation (m): 403.9
SILTY SAND (SM), brown, wet, dense, wilty fine sand.			-375	X) SS	10 4	57 15-16-2	D SM		420		Groundwater Depth (m): Depth to Bedrock (m): N/A Total Depth Drilled (m): 61.0 Drill Contractor: CBC Driller: J. Hulse, Milo A., Dave W. Rig Type: 6414 Drilling Method: Mud Rotary Hole Diameter: 4.5"
SIL ⁻ SAND (ML-SM), brown, wet, dense to very dense, sandy silt to silty fine sand.	- 30- - 30- 		-	X ss	11 4	57 21-19-2	9 ML-SM		436		LEGEND/NOTES ' Elevations based upon North American Vertical Datum of 1988 (NAVD '88) Coordinates are NAD '83
no lecovery.	110		- 3 70	- ss	12	50/3"	GM?		381		Biows = number of blows required to drive split spoon sampler 150mm or distance shown JSCS = Unified Soil Classification System >> = N-value data greater than 100 blows/0.3m • See Key to Soil Logs for list of abbreviations and descriptions of tests
SILT SAND GRAVEL (GM), white-brown, wet, very dense, fine to coarse sandy gravel with silt.				<mark>≈ ss</mark>	13 10	רע <u>50/4</u> *	GM		451		SAMPLE TYPE SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler DM = Dames & Moore type U sampler IIIS = Undiscubed Shalby Tube 76.2mm OD
SILTY SAND (SM) gray white way yany danse silty fine sand		-	-365	8-00		10/07		000	era		Pushed P Dames & Moore Piston Sampler

-

inter 3 of 4	Denth	Pog	, Flav			S	SAMPLE		 SPT "N"-Value S-Wave Velocity 		Test Re	suits *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488) (ft	(ft+m)	Graphic	(m)	Type	No.	Rec (mm)	Biows/0.15m	USCS (AASHTO	"V;" (m/sec) (Blows/0.3m)	Field Vane Shea Sy (kPa)	Tests Vs (m/sec)	Lab Tests	DAMES & MOORE Geosciences/Geotechnical Salt Lake City, UT
	4	•	1	1						-			FIELD TEST BORING LOG
· ·	35-		-										Geotechnical Exploration Program
													Boring: PB-05 (7200 South)
													Sheet 3 of 4
SILT (ML), brown, wet, hard, interlayered clayey silt and fine sandy silt.	140-			Xs	S 15	195	26-40-50/3*	ML			451		
· · · · · · · · · · · · · · · · · · ·	1 7								N N N				Logged by: Travis Nguyen
		_	-360										Date Start: 4/26/96
	45		11						//				Weather:
	45								l				Station:
	50-			-	_		En les				673		Coordinates (m): N 9,600.0 E 600.0
ourse sandy gravel with silt.				3	10	0/	50/6	GM			0//		Elevation (m): 403.9
			- 1 -										Depth to Bedrock (m): N/A
	55	7.											Total Depth Drilled (m): 61.0
	17												Dritler: J. Hulse, Milo A., Dave W.
			1										Rig Type: 6414
SILT SAND GRAVEL (GM), white-brown-grey, wet, very dense, line to	60-		-355	S	15 17	76	5073	GM	•••		677		Hole Diameter: 4.5"
carse sandy gravel with slit.			1										
	50	<u>-</u>											LEGEND/NOTES
		-											Elevations based upon North American Vertical Datum of 1988 (NAVD '88)
	70-						10 5041						Coordinates are NAD '83
SILT SAND GRAVEL (GM), white-brown-grey, wet, very dense, line to coarse sandy gravel with silt.		-		p-s	»++8						610		✓ = Groundwater depth
													Blows = number of blows required to drive split spoon sampler 150mm or distance shown
·	75		1										USCS = Unified Soil Classification System
			-350										>> = N-value data greater than 100 blows/0.3m
			-										 See Key to Soil Logs for list of abbreviations
SILT SAND GRAVEL (GM), white-brown-grey, wet, very dense, fine to	55	·	:[- S	5 19	76	50/3	GM	The state of the s		581		
			-										SAMPLE TYPE
	85												SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler
										-			DM = Dames & Moore type U sampler
SILT SAND GRAVEL (GM), white-brown-grey, wet, very dense, fine to carse sandy gravel with silt.	90			~	5 20	101	50/4	GM			469		US = Undisturbed Shelby Tube, 76.2mm OD, pushed
	1 7		345			1	1						P P = Dames & Moore Piston Sampler
	95	1	•							2			

and the second

here 4 of 4 SAMPLE DESCRIPTION	Depth	B Elev.	SAMPLE		 = S^pT "N"-Value = S-Ware Velocity 	Test Results *	UDOT/PARSONS-BRINCKERHOFF Stage 1 I-15 Seismic Hazard Analysis
(ASTM D-2488)	(ft;-m)	(m)	ed V V V V V V V V V V V V V V V V V V V	5m USCS	"√s" (m/sec) (Blows/0.3m)	Field Tests Vane Shear Su (kPa) Vs m/sect Lab Tests	Geosciences/Geotechnical Sait Lake City, UT
_	60	1					FIELD TEST BORING LOG
precovery.	¢00f		SS 21 50/2*	GM7		508	Geotechnical Exploration Program
							Boring: PB-05 (7200 South)
							Sheet 4 of 4
	205						
							Logged by: Travis Nguyen
	210 -	340					Date Start: 4/26/96
							Weather: 4/30/96
	5	Γ					Station:
	215-	L					Coordinates (m): N 9,600.0 E 600.0
							Elevation (m): 403.9
	220	-					Depth to Bedrock (m): N/A
							Total Depth Drilled (m): 61.0
		\vdash					Driller: J. Hulse, Milo A., Dave W.
	225-						Rig Type: 8414
		335					Hole Diameter: 4.5"
	230- 70-	[LEGEND/NOTES
		-					Elevations based upon North American Vertical Datum
							of 1988 (NAVD '88)
	²³⁵	-					Coordinates are NAD '83
							Groundwater depth
	240 -	-					sampler 150mm or distance shown
		220					USCS = Unified Soil Classification System
		-330					>> = N-value data greater than 100 blows/0.3m
	245	-					 See Key to Soil Logs for list of abbreviations and descriptions of tests
· · · · · · · · · · · · · · · · · · ·						······	SAMPLE TYPE
	250-	L					SS = Standard Penetration Test, 38mm ID and 50.8mm OD split spoon sampler
							DM = Dames & Moore type U sampler
	₽ ⁵⁵	┝					
							pushed
							P P = Dames & Moore Piston Sampler
	200-				90		

9000 SOUTH -- SUMMARY OF LABORATORY TESTING

16A SEIS	SMIC DATA	ł	1
Depth	Vs (ft./sec.)	Vs (m./sec.)
	5	682	207.9
	101	802	244.4
	20	741	225.9
	30	8331	253.9
	40)	869	264.9
	50	735	224.0
	60	851	259.4
	70	909	277.1
	80	1053	321.0
	90	1276	388.9
	100	1333	406.3
	110	1081	329.5
	120	1081	329.5
	130	1333	406.3
	140	1290	393.2
	150	1379	420.3
•	160	1600	487.7
	170	1379	420.3
	180	1429	435.6
	190	1481	451.4

]

and the second s

]

16A

.

Page 8

4-27-05				
Date Begun 5-3-95 UTAH DEPARTMENT OF TRANSPORTATION	Hole No. 16 A Form R-353			
Hole Digneter	Sheet of			
Project No. 5P-15-7(11) ? 7/2	Total Depth 200'			
oject Nome CORRIGAR - GDP IDRAD S				
SEismie Study PIN 351 TODOD So. To SC	DO North S.L. Courta			
Type of Structure Equation Project Line Sta.	23750601 3			
Sta. of Structure Hole Sta_ 9000 300 W				
Collar Elevation 4367 Reference P.E.P. Here				
Field Porty SIZEMORE DORWOOD Shasted	$\frac{Bin}{Bin} = \frac{B-4}{4D}$			
Ground Water	Table			
Beach in FL 20.0 WC 66-5 WC 6	2.2'WC 62.5 WC			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4:20 09:35			
	-2-95 3-3-95			
E E E E E E Soil type, color, texture, consistency, sampler driving notes	blows per foot on casing demos circulation incl			
observed fluctuations in water level, notes on drilling e	ase, bits used, etc.			
RB Asphalt				
H CAN SITTY SAND WITH SOME GRAVE	I - Eill			
A GREW Silt with fire cart				
E PAT WITH PARE SAND				
3 AREU SILTU COARSE SAND with	City and the second			
Some lenses of area claus	FINE ARAVEL AND			
	CAU/10 70 3			
E THE FIT APEN OF SUIT				
F JACY SLIF TO SILTY CI	<u>Ay</u>			
EL TAN SITU CLAU				
	CASING TO 101			
Shelbul 10 TRAL Silting Tak				
I I I I I I I I I I I I I I I I I I I	·			
13H A FEW thin lenses of t	AN CLAUEN SILF			
	<u> </u>			
	CASING to 15			
17 IAN silty clay with some I	ENSES OF TAN			
FIFZ CIAYEY Silt				
10 A THIN IENSE OF SILTY SA	nd at 18'			
	LASING TO CO			
Data Bas	. 4	-27	-95	ITTIL DEPENDENCE Form R-3
--------------------	-----------	-----------------	------------------	--
Date Com	nieter 5-	- 3-9	5	MATERIALS AND TESTS SECTION Hole No. 164
Hole Dlam	eter	3		DRILLING LOG Sheetof
Project No	SP	15-7	(11)291	Total Depth 200'
Troject No	1-1	5 0		
	Spric.	Stud	<u>18 8:02/2</u>	- Puise G. D 10700 So. to 500 N. S.L. County
Type of St		-	<u> </u>	Equation Project Line Sta. CID 750601
Sto of Stru				
Coller Flaw	tice		3/07	Hole Sta
Field Party	Size	MORE	in and	Reference <u>PEP</u> . Method Used
	1			Rig <u>B-6/H/DX</u>
				Ground Water Table
	-		Z	
	Fo		Ň	Data
4 0	a z	-	0 2 4 4	
	* NO	1	·	Soil type, color, texture, consistency, someler driving noter, blow and factors with the
ă lõ	B B	1	Sol Sa	observed fluctuations in water level, notes on drilling ease, bits used, ate
helbul		20	EC	TAN Sitty slave
11 -			ED 🛱	
<u> </u>		2	EN 🗺	
11	164-2	1.2		EAN SILTY SAND
RB III		22		. <u> </u>
		23	7 17/7	
		7 24		CASING TO 25
				tou silt alou it and
		7 25		CLOWEN SITT OF AN
		7.F		Silth SAND
		7 26		bring sand
		<u>⊣ ,</u> ⊧		
		_		CAsing to 30'
		7 .F	1 FH	
		7 ~ F		
		7.1	1164-	
		7 29		
Y		7 . F	1164	
neiby		30-		
		Ţ	2A	
	1	7 3'FI		
<u>''</u>	14A-32	7 _F	S in a	PEU with some tay class sill it to
BIT	L] ³²		- with time sand
		1_[1		
<u> </u>		37		
1 		1 _ []		A CELLE CONTRACTOR
		34		H FEW LENSES OF GREY SILTY CLAY
	·	1 El		CASTING to 35
╅╼╾┼╂┼╾╴		35 [
1		E		
┼╌┼┼┼-		36		
╪╼╼┼╆┥		F		
╪╼╼┼┼┼╌╸		37	HS:1-	
╪╾╾┼╂┨		F	- 23-	
┿╍╍╌┼┼┼┼╍╍	+	30		
		- 11		casivo to do
		L		
∽∰		394		
		39	Ad	K. AREY Silty clay
		39		k. grey silty clay
		39 40	- 21	k. grey silty clay

4-27-95 Form R-353 Date Begun UTAH DEPARTMENT OF TRANSPORTATION 16 A Hole No. Date Completed 5 -2-94 MATERIALS AND TESTS SECTION Hole Dlameter Sheet DRILLING LOG 200 Total Death (111)29Project No._ T-i5 oject Name ___ ORRIGO 10800 Sa 500 N 5.4. Court. SEISMIC Studie Cin 35 · •, 750601 Project Line Sta. Equation Type of Structure_ Other Line Sto. 300 W, Sta. of Structure_ 9000 5 Hole Sto. Rt. .Ft., Lt.____.Ft., of & 4367 Collar Elevation_ P. E P Reference Method Used Field Party SIFEMANE WORDER Cho et = e B-41HDX Rig . Ground Water Table ÷ Depth in Ft. Method ample Recovery Time Sample Number Blows per Foot Cosing Depth Depth in Feet Date Sampting Soll Graph Drlllng DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation lost, observed fluctuations in water level, notes on drilling case, bits used, etc. Shelby مە Dk. AREY silty CLAH with some Thin IENSES OF 11 CLAHEY SILF ŧ¢ 11 -11 11 164-42 42 RВ 11 CASING to 45 11 CASINA to 50 Shelbu arey sitty CLAY with this LENSES OF 11 ~ 1 Gy sitt -5 11 11 KA-52 S RB 53 CASing to 55 · . : Y CASing to 60

	- 73	UTAH DEPARTMENT OF TRANSPORTATION UNIT NO 10 H
Date Completed 5-3	- 95	MATERIALS AND TESTS SECTION
Hele Diameter	3	DRILLING LOG
		Total DepthOO
Project No.		2
roject Nome	L= X01 102	-17. D. M. 10400 So. To 200 No. S.L. County
		Die 25 Project Line Sta. CID 750601
Type of Structure	-	Other Line Sta.
Sto. of Structure		Participant Participant
	317	
	261	Reference T.G.T. Method Used
Field Party <u>SIZEM</u>	OF JARIOR	re service Rig B-ATHDX
		Ground Water Table
		Depth in Et
3		
V O S N		Jote
	4 5 5	DESCRIPTION
		Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation lost,
Ň B U A		observed fluctuations in water level, notes on drilling ease, bits used, etc.
helbull		dk area site alou it the second in and
		my sitty with this tenses of clayed sitt
	6H Z-	
	ú2 4	
KD III L	THLKA	
	FIFEA	
	63H HZZ-	
	64F1 -	CASING to b
	6°F1 FZ7-	
	11-P7-	
┛┼╾╌┤	66H H-17	
	FILHA	
	"HIZ	
╺╁──┼╂╁──┼───┤	60H	
·├··┤ ┦ ┝╼╾-┥	FI - K-A-	
<u></u>	69H LK-	(Asina to 70'
	FI THAT	
=lbu ll	70	
₩911 –––	the first	
	7 H/	
11 /64-72	72 K 2/2 a	REY SANdy silt with some clay 1.27-ar
ВПГ	FILM	
	t ⊢[%}—	7-68-75
	73	
╉━╾╫┥╞━━━┥	F	
+	74	CASINA to 75
	t FK2∕2/	
╂──┼╉┼──┼───┥	76-1-1/1/	
1 11 1 1	F -\/.	
┽╾╾┼╂┥╴┝━╾╾┥		
		· · · · · · · · · · · · · · · · · · ·
	70	REY SILTY SAND with ENSES OF AREY SILTY CLAY
	78	KEY SILTY SAND with IENSES OF GREY SILTY CLAY
	78	REY SILTY SAND with ENSES OF GREY Silty Clay Casing to BO
	78 78 78 78 78 78 78 78 78 78 78 78 78 7	REY SILTY SAND with LENSES OF AREY SILTY CLAY CASing to BO
	78	REY SILTY SAND with LENSES OF AREY SILTY CLAY CASING to BO

. •

Form R-353 <u>4-27-95</u> 11_ Date Begun UTAH DEPARTMENT OF TRANSPORTATION Date Completed 5-3-95 MATERIALS AND TESTS SECTION 27 DRILLING LOG Hole Dlameter 200 SP-15-7(111)271-Total Death Project No ._ roject Name I-15 CORRITER -10200 500 So. Ta -Va . 5.22 COUNT. Seismie Stodu Dial $\hat{\varphi} \in$ Project Line Sta. 7=1201 110 Equation Other Line Sto. Type of Structure_ 200 VI JAAA Sta. of Structure_ Hole Sta .Ft. Lt.____.Ft. of 🐔 21. 4367 Collar Elevation 4367 Field Party <u>Sizemake, Walking</u> Ŗ£ , Reference Method Used _ Shastad R-GIHDX Ria Ground Water Table Depth in Ft Melhod pmple Recovery Time Blows per Fool Sample Numbe Casing Depth Depth In Feet Date Soll Graph Sompling Drilling DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation lost, observed fluctuations in water level, notes on drilling ease, bits used, etc. 1016" 1316" 1316" 1616 - MEdlum ŝo PEN AREU SANdy silt with some clay A FEW thin lenses .. 26 Jof / silty <u>Člay</u> 8 11 vi 16A-82 82 RB ²³ 23 Silta aREU SAND AND FINE to MEd. GRAUE . 84 CASING <u>to 85</u> 4 85 ? A FEW thin ENSES silty clay OF 86 Ъс Q. 88 <u>}</u> CASING to 90 Xá F ġ, 50/4" REFUSA - NO RÉCOVER 4 90 REN RANK 9 12 t AN silty SAND AND GRAVE with A FEN 252203/ <u>0</u> F aREY CLAU CLAN <u>s1</u> TAN Silty 93 Asing to 95 94 heavy 01 CIRCULATION 91'- 98 1055 95 silF SANdy AREU 94 97 AREY Stity COARSE SAND 98 of sandy silt and silty clay areu LENSES 99 to 100 CASING 100

1 17	0 –		State State
Date Begun	- <u>75</u> UTA	H DEPARTMENT OF TRANSPORTATION	Hole No. 16A
Date Completed	2"	DBILLING LOG	Sheet of
Project No. 5P-15-	7(11)246		Total Depth 200*
roject Nome 1-15	CAREIJOR - G.D.	P 10900 S 500 M	81.0
Saismie Stu	a. PINX51		CID 750601
Type of Structure		Other Line Sta.	
Sto. of Structure		Hole Sta. 9000 3. 300 W. R.	Ft. It. Ft of \$
Collar Elevation	4367	Reference P.c. P Meth	od Used
Field Party <u>)/25m</u>	ORE WORLDOOD	Shosted	_RigB-GIHDX
	Depth is 5	Ground Water	Table
		13:00 09:25	
Mett Vept	Date	4-28-95 5-1-95	
Bull Bull	Grap Rie R	DESCRIPTION	
C aal		Type, color, texture, consistency, sampler driving notes aved fluctuations in water level notes an drillion e	blows per foot on casing, depths circulation lost,
	1 31.16"	4416" 3811" A711" -	116.01
PEN	ELAREU	silty SAND with a tRA	CF OF CLAU
4 182	101-1		
RB III	192		
			CASING + 105
	104		
		EW LENSES OF GREU	And tAN CLAYEY SITT
	F	Sirry CLAY	
			••
	107		
			i
	E - Bayer	- Ayey SITT WITH SAND	CASING TO 110
		· · · · · · · · · · · · · · · · · · ·	
	10 E E 31/6"	31/6° 31/6" 35/6" - Ve	ERU DENSE-
PEN	- GREY	silty sand with a FEW	thin lENSES of claven
11 62 1			
16A-112			
RB /			
	13		
╺──┼──┼╂┥╴┝━━━┥	F - 24		
	"H H2	· -	
			CASING TO 115
	16- 12:5-		
	EI - 83	· · · · · · · · · · · · · · · · · · ·	
	FI - BO GREY	Surg SANG AND GRA	
╶╴┍─┼╁┤ ┝──┤ ╵	F		CASING TO 120
		· · · · · · · · · · · · · · · · · · ·	4-28-95
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
			· · · · · · · · · · · · · · · · · · ·
	• •		

-								
4			1 2	70	سر د	~		// A Form R-353
Date	Begu		<u> </u>	/- 7	<u>15</u>		UTAH DEPARTMENT OF TRANSPORTATION	Hole No /6 A
Date	Comp	leted _	3-3	- 95	2		MATERIALS AND TESTS SECTION	Sheet 7 of 10
a Hole	Olam	iter		.ك			DRILLING LOG	Total Death 200'
Proj	ect No	<u>.)</u>	<u>2-15</u>	- 7	(]]	<u>/)2'</u>	6	
	ect Nat	ne <u> </u>		<u></u>	RR	ITOR	- G.D. P. 10800 So to 50	2 Nc 51 C +
	5E!	<u>smi</u>	<u>c</u> 5	tud			PIN 3.51 Project Line Sto	CID 750601
Tune	of St	ucture			1		Equation Other Line Sta.	
C to	at Stru	chire					9000 S 200 W	
	o. 51			131	7	,	$\frac{1}{D_{I} \mathcal{D}} = \frac{1}{D_{I} \mathcal{D}} \frac{1}{D_{I} \mathcal{D}} = \frac{1}{D_{I} \mathcal{D}} $	Ft. LtFt. of &
Cond			75 00	<u>ن ب</u>	1	100	Reference Met	The Used
- Field	Porty.	; ;					JACS TAR	Rig <u>D-GIAUX</u>
				!				
				1			Ground Wate	r Table
-						2	Depth in Ft	
t þe	Ę	t o	-qu			ð		
		2	N	L.		ê f	Date	
2	2		eid	4	튑	5	DESCRIPTION	۱
	10) No	E		E	E E	Soli Type, color, fexture, consistency, sampler driving note	as, blows per foot on casing, depths circulation lost,
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		100	S S	loser ved Huchdonons in worser level, notes on drilling	ease, birs used, etc.
D= J	$-\mathbf{h}$		_	120		1/1	15/6 $29/6$ $33/6$ $31/6$ -	UERY DENSE-
PEN		└			FΝ	1.1	arey sandy sift with some a	LAY LAND LENSES
		<u>r 2</u>		121	₽/I		JOF CLAYEY SILT with Fine	SAND
		0~			EN			
"		<u>167</u>	-122	122	-10			
- RB		L				. 1.1		
1				123	-1 [	$_{//}$		
	_Ш	L		103	- 1 [	1/1		
					-  [	1.2		
					7 Г	7/2		
-	<b>V</b>	Γ		in a f	-			CASING to 125
		Ī		123	7 Г			CH31Ng 10 163
· • •				þ	:			
				126	.†  -	11/2		
1 +				E	:   -			
				/2가		1//		
				F		1//		
	-+++			120	┥┝	-///-		
	+++	-  -		E				
				129-	┥┝	¥%-		CASING to 130
		-  -		F		K-F	STILL CITY B	
1954	- ¥ -			130		1	346 416 5015 - NEFL	ISA
PEN		-+		1	6	×_	arey silty sand with A TRA	DEE of CLAY AND
- !!		ef.		131	ŁΕ	[X]-	FINE GRAVE	
- 00-	<b></b>	16A-1	3/,4	E	PL.	X	J	
KD	+++			132	1 6			
	<del>    </del>			Ē	L			
	444			133L	! L		REY SANdy silt with lense	es ofsitty sand
F	Ш				I L			
<b> </b>	<u>       -</u>			13 4 H				÷
	Ш	L		E		5%3		
	11			, . E				CASING to 135
	Ш		]	"F		//		
	$\Pi$			, <u>, F</u> l	Γ			
				~°FI	Γ	///		
	$\Pi$			ا تل ہ		1		
	Ш			'-'H	Η		· · · · · · · · · · · · · · · · · · ·	
•				t l				
	+++-			130	Η	<i>://</i> -	· · · · · · · · · · · · · · · · · · ·	
ī V	tΗ			El		<i>%</i> /-		
<b></b>	┼╂┼╌			139-	Н	<u> </u>		· · · · · · · · · · · · · · · · · · ·
<u> </u>	┼╁┤	$\vdash$		- El		~/}-		CACINE Z 1/21
		L		୲₄₀ᠮ᠋		<u></u>		CASING TO 140
				l		<u> </u>		
n							······································	

4-27-95 Date Begun. Form R-353 UTAH DEPARTMENT OF TRANSPORTATION -3-95 Date Completed 5 Hole No. MATERIALS AND TESTS SECTION Sheet Hole Dlameter DRILLING LOG SP-15-7(111)296 200 Total Depth. Project No._ -15 CORRIGOR ^oroject Name_ 10800 500 Nc. 50 -Seismic S.L. Countu Studu PiN २,९ CID 750601 Project Line Sta. Equation Type of Structure. Other Line Sta. Ste. of Structure_ 9000 FOUW. Hole Sta. < 4367 Rt. .Ft. Lt.____Ft. of 🐧 Collar Elevation_ **ج**ج Reference Field Party SIZEMORE Method Used WARNORD Shastea R-61HDX Rig . Ground Water Table 62.2 Depth in Ft Spmple Recovery Soll Graph Method Caeing Depth Blows per Foat Time Ì. 09:20 Sample Numbe Depth in Feel 7-95 5-Date Sampling Drilling 1 DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation last, observed fluctuations in water level, notes an drilling case, bits used, etc. + 3116 41/6" 3976 ..... 15.5" 5Z 140 -UERY dense -PEN siltu REY with SAND A TRACE U. CLAY 86 14 11 11 16A-142 142 RB SOME aRAUET b ng D FEW 15NSE3 11 F ~ SANdy SIF 143L 11 σ 144 1 T Ý 145 Π CASING to 145 11 46 Π 147 tAN SANdy silt with CLAY CLAYEY tan 140sil+ with SANC 149 CASING to 150 2016" 306 31/6" 50 150 UERY PEN H dense -N ERY Π 11 61 15 4 SAND with ENSES 4 0 NR TA~ clayey sit FEW IENSES 152 OF TAN ŔВ SAM sih -93 -95 153 154 CASing +0 155 15= 15 157 150 159 16 CASING ち 160

Date Besun 4-27-95	
Date Completed 5-3-95	MATERIALS AND TESTS SECTION Hole No
Hole Diameter	DRILLING LOG
Project No. <u>57-15-7 (11</u>	1)296 Iotal Depth 200
Siect Name L-12 CORR	1002 - G.D.D. 10800 50. +2 500 No SU CU-
- JEISMIE STURY	- Project Line Sto. CID 750601
Sto of Structure	Other Line Sta.
Collar Elevation 4367	Hole Sta StaRtFt., LtFt., of &
Field Party SizEmore 4	Jorugan Shaster
	Ground Water Table
8	Depth in Ft.
Foo hith	
A De V A	DESCRIPTION
amp amp amp	Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, deaths circulation last
	observed fluctuations in water level, notes on drilling case, bits used, etc.
PEN IPZ 160	4016 3014" - KEtusal-
W_ INR . FZ-	KECOVERY
RB II - 16'F	SA AREY SILTY SAND AND (" = =
	A FEW this LEWSES to MEdium GRAVEL
	-hard drilling - must be used drives
	o De tery Aense -
──┼─┼┤ ┝──┤ ╞╎┝╴	
165	CASING to 165
	//
── <del>↓──┤</del> ┝───┤ EI ┝ ₿	· · · · · · · · · · · · · · · · · · ·
. 168-	
	CASing to 170
/722	
	Some leases a C to the state
	A CLAYEY SIT
╶┼╴╫┼╾┼╴╴┤╷ァѧЀ┤匚┡	5
╶┼──╁┤┝───┤┊╎┝┡╦	5
175	CASHA to 175'
	g
176-1 176-1	
	taw claying silt with some this leaves of the
	AND SITTY CLAY
	J
-+++ EI -++-	· · · ·
I8°	CAsing to 180'

Date Beaun <u>4-27-95</u> Date Beaun <u>5-3-95</u> Hole Diameter <u>3''</u> Project No. <u>SP-15-7(11)296</u> UTAH DEPARTMENT OF TRANSPORTATION Hole No. <u>16 A</u> MATERIALS AND TESTS SECTION <u>Sheet 10 of 10</u> DRILLING LOG <u>Total Depth 200</u>
Project Name I-15 CORRIGER - G. D. P. 10800 Son to 500 No.
C Seismic Studie DIN 851 Francisco Project Line Sta. CID 750401
Type of StructureOther Line Sta.
Sta. of Structure
Field Party Sizemare Waswand Shatter
Rig <u>B-6/HDX</u>
Ground Water Table
Depth in Ft 62.5 WC
$\begin{array}{c c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $
Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling         Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling       Image: Section 100 milling
PEN 180 37/6" 50/2" REFUSAL
I WALLON FREN SITU SAND with A FEW this LENCES of cart it
RB 18 18 18 18 18 18 18 18 18 18 18 18 18
5-3-95
182 - grey Silty sAND with FINE GRAVEL AND A FEW
I TENSES OF SANdy silt And clayey silt
183- 183-
186 186
187
190 02
Jome médium QRAUE
192
195- 195-
197
Some Fuses of the start of
I I I I I I I I I I I I I I I I I I I
200
WSE of -1 -1
A LA DIRSTIC PIPE TO 200 FT 5-4-95
provited plastic pipe 5-1-45

	G	RAPHIC			THICKNESS	SATURATED	SHEAR WAVE	
DEPTH (	ft) Pl	ROFILE		DRILL LOG DESCRIPTION	OF LAYER (M)	WEIGHT (pcf)	VELOCITY (NS)	Pł
3		/2/2/	1	SILTY SAND	2.0	105	715	0
<u> </u>	/	$\Box \Delta$	² 🔻	SANDY SILT	3.5	102	715	0
•	$\equiv 2$	111						
3			3	SILTY CLAY WITH LENSES OF CLAYEY SILT	9.0	t <b>00</b>	725	17
-2				· · · · · · · · · · · · · · · · · · ·				
15	=2	E, E, E, A	4	SILTY SAND	7.5	105	800	0
		£,=,=,1						
20	¢,:							
28								
32		_	5	SILTY CLAY	31.0	105	800	21
								-
36								
40								
44								
52								
56								
50								
84								
			5	SILTY CLAY	27.0	112	755	13
68								
72								
/8		_						
80		111	7	SILT WITH SAND	2.5	114	1110	0
94		5						
88	Ē							
			8	SAND AND GRAVEL	28.5	130	1490	•
••		555						
96	Ē	ia === 1						
100								
		555						
104	Ē	<u> </u>						
108				······································				
112			9	SILTY CLAY	8.5	112	1330	19
118			10	SILTY SAND	1.0	125	1145	~
								-
120			11	SILTY CLAY	3.5	112	1530	<u>17</u>
124			12	SAND WITH GRAVEL	6.5	130	1705	0
		ie ⊒o⊒ i∤						$\neg$
128		ZZ	13	SILT WITH SAND	25	114	1685	न्
132		à.	15	CLAYEY SILT	1.5	110	1670	Š
	⊨E-							]
136	E		16	SAND WITH GRAVEL	14.0	130	1715	
140		55						
	<b>⊨</b> =€∃	===						
144			17	SILTY CLAY	0.5	110	1755	17
148		5		p				
	<u>=</u> ===							
152		E E						
156								
	<u>=</u> ===	<u>.</u>						ł
160								
164		•=•=	18	SAND WITH GRAVEL	51.5	130	1485	0
168	E I							
172	E S							
178	Ē							1
180	E							
194								
169	Ē	•=•=						
107								
, 24								1
196	E -	5						
200	<u> </u>	997	19	END OF DRILL HOLE	200.0			
200	•							

Figure 4.11:

Idealized soil profile for 9000 South



			SAMPLE								Su, UNDRAINED					
		GRAPHIC	(Shelby	CLASSIF	ICATION		_	GRA	DING (	%)	SHEAR	DRY UNIT	MOISTURE			
DEPTH (ft)	HOLE	PROFILE	or Blows)	AASHTO	USCS	DRILL LOG DESCRIPTION	Gr	cS	<u>ís</u>	SICI	STRENGTH(tsf)	WEIGHT (pcf)	CONTENT(%)	<u> </u>	- <u>PL</u>	
0		[]_]_],														
1																
•		[]-]-]-]													Ì	
2					(SM)	SILTY SAND										
		- - - - - - - - - - - - - - - - - - -														
3																
		ELE.														
4	<b> </b>															
5		1-1-1-1-														
Ũ		444														
6		11/1/1														
		1111														
7		////	ł													
		2722														
0		444	4													
9		11211	1			SILTY CLAY			1							
		1111	1			WITH A FEW LENSES										
10	16A	1222	3			OF CLAYEY SILT			1							
	16A	1111	l s													
11	16A	7777	8							400.0	0.400	077		05		45
	16A	1111					0.0	0.0	0.0	100.0	0.460	07.7	340	30	20	15
12		444	4								00-510					
13		444	3													
		1111	1													
14		1444	1								1					
		1111	1				ŀ									
15		1111	1													
16		1111														
10		7777	4								1					
17		444	3		1		1				1					
		1111	1										-			1
18		1,2,2,2,7	1							1						
•	_	1111	1		1											
19		1111	3								0.758					
	164	222									0.450				1	
20	16A	4777	1 š		CL	SILTY CLAY	0.0	0.0	1.0	99.0	TORVANE	865	312	38	19	19
21	16A	[]	1					[	1	1	1				1	<u>-</u>
	16A	¥ <i></i>	1 8									1		1		
22		\$ <i></i>	1						1	1	ł	1			1	1
		[]]/]			(SM)	SILTY SAND	1				1	1	1	1		
23		11/1	4				1				1	1	1	i i	1	
24		144	·						ł	1						
£-7		444	3						ł							
			-			•		•					•			•

## 

			SAMPLE							8	Su, UNDRAINED					
		GRAPHIC	(Shelby	CLASSIF			<u> </u>	GRA	DING (	%) SiCl	SHEAR	DRY UNIT	MOISTURE		ы	PI
DEPTH (ft) 25	HOLE	PROFILE	or Blows)	AASHTO		DRILL EOG DESCRIPTION			13	30	STRENGTALISI	WEIGHT (pci)	CONTENTIAL	<u>1-</u>	T	- <u></u>
23		1111														
26																
27																
28																
29		<i>444</i>														
30	16A		8													
31	16A		8		CL MI		0.0	0.0	10.0	90.0	0.450 TORVANE	79.1	35.8	-27	21	6
32		1111			CLINIC		0.0	0.0	10.0	00.0	TORUNAL					-
33																
34			1													
35																
36	-															
37		444				SILTY CLAY		Ì								
		1111		ļ		WITH SOME LENSES										
38		444	3			AND SILTY SAND										
39																
40	16A 16A	444	8 5								0.865 UU - BYU					
41	16A	44	S S		CL		0.0	0.0	1.0	99.0	0.570 TORVANE	77.7	35.9	32	22	10
42		444														
43																
- 44																
45		444							1							
46		144			1											
47	1	200														
48																
49	-		1													
	L	_ <del></del>	-	1	I I	1	1	1	1	1	I I	1	I I	1	4	•



			SAMPLE							:	Su, UNDRAINED					
		GRAPHIC	(Shelby	CLASSIF	ICATION			GRAI	DING (	%)	SHEAR	DRY UNIT	MOISTURE			
DEPTH (ft)	HOLE	PROFILE	or Blows)	AASHTO	USCS	DRILL LOG DESCRIPTION	Gr	<u></u>	fS	SICI	STRENGTH(tsf)	WEIGHT (pcf)	CONTENT(%)	<u></u>	PL	<u></u>
50	16A	7777	\$								0.875					
	16A	7777	S								00-840				1	
51	16A	1111	Ş						4.2	00.0		02.2	40.4	43	22	20
	<u>16A</u>	11/1	5		CL	WITH SOME LENSES	0.0	U.U	1.0	99.0	TORVANE	03.2	40.4	43	23	20
52	ļ	11/1				OF CLAYEY SILT										
		/////				AND SILTI SAND										
53		1111														
<u> </u>		1111												1		
24		1111														
55	·	4444												1		
		1111														
56		7777					1 1									
		144									1					
57		4444	1							1						
		12222	1													
58		1444	]	1					1	1						
		1777	1				1		]							
59	I	1777	1	1											1	
		1111		ł			1				0.000					
60	16A	1111	s													
	16A	2222	2	1							0.500					
61	164	2777	2	ł			0.0	0.0		100.0	TORVANE	882	35.5	53	22	31
60	100	1444	<b>1</b> 0000 <b>9</b> 000				0.0	0.0		100.0	TORVARE		55,5	55		
02		22,2,2	2													1
63		7777	4			SILTYCLAY	ł									1
		444	1			WITH SOME LENSES										1
64		4444	4			OF CLAYEY SILT										1
- •			4			AND SILTY SAND										1
65		444	1													l
		4444	1							1						1
66		17777	1	1												1
		1777	7													1
67		7777	3													i i
		1111				54 C			1							1
68		777	3						1							1
		1111								1						l l
69		ZZZ	4						1	1	1					1
70	164	12,27	1						1							
10	164	7777	1 š				1	1					Į			1
71	16A	1777	1 - <u>š</u>		1		1	1	1	1	2.253		1			
••	16A	1111	1 5		ML		0.0	0.0	30.0	70.0	UU - BYU	86.1	25.9	N/A		NP
72	1	1111	1										1		1	1
		XXX	1		1									1		
73			1				1	1		1			1			
			1		i i								1			
74					1								1			1
	1	- T <i>KKK</i> X	1	1	1			1	1	1	1	1	1	1	1	1



			SAMPLE							:	Su, UNDRAINED					
		GRAPHIC	(Shelby	CLASSIF	ICATION	DRULLOO DESCRIPTION	<b>C</b> -	GRA	DING (	%)	SHEAR	DRY UNIT	MOISTURE		ы	DI
DEPTH (ft) 75	HOLE	PROFILE	or Blows)	AASHTO		DRILL LOG DESCRIPTION	Gr	<u>cs</u>	15		SIRENGINUSI	VVEIGHT (pci)		<u></u>	<u> </u>	- <u></u> ]
76																
77																
78																
79																
80	16A		10									-		1		
81	16A		13		CLM	SANDY SILT	0.0	0.0	27 0	73.0				26	21	5
82					CLIVIL	WITH SOME CEXT	0.0	0.0	27.0	10.0						
83								1								1
84					(SM)	SILTY SAND AND GRAVEL										
85	-	79/0/0/-														
			1								1					
80											l			Į !		
87		[]\$\$F]							1							
88	-	////														
89		/ 0/0/														
90	16A	7997	50/4*													
	16A		R													
	16A		R													
92						HEAVY LOSS OF CIRCULATION (91' - 98')										
93		/ <b>3</b> 6 / .														
94														1		
		1.1.1	1					<u> </u>	<u> </u>							
95		1555	}													
96			1													
97	-		1		(ML)	· SANDY SILT										
98	-															
90	_		8		1			1								
23		1000	ł									1				



			SAMPLE							:	Su, UNDRAINED					
		GRAPHIC	(Shelby	CLASSI	FICATION			GRAI	DING (9	%)	SHEAR	DRY UNIT	MOISTURE			-
DEPTH (ft)	HOLE	PROFILE	or Blows)	AASHTO	USCS	DRILL LOG DESCRIPTION	Gr	cS	íS .	SICI	STRENGTH(tsf)	WEIGHT (pcf)	CONTENT(%)	<u></u>		<u>-PI</u>
100	16A	/////	36													
101	16A	/_/_/_/	44													
101	16A		47		SM		2.0	34.0	50.0	14.0						
102		[]]]]														
			1													
103		VIII.														
104		<i>\</i>				SILTY SAND										
104			1		1 1	WITH THIN LENSES										
105		¥	1			OF CLAYEY SILT										
		VI-1-1-														
106		\;			1											
107	1	11/1														
		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-														
108		¥	]													
		VIII.		a a												
109		<i>\</i>														
110	16A	¥-[-]-[-]	31													
•••	16A	(////	31													
111	16A		1 31					40.0	700	400						
	16A	VIII,	35		SM		0.0	12.0	/2.0	16.0						
112		\	4											i		
113		47-7-7-												ļ		
••••		[]-[-]-]	1													
114		X	1					1								
		LI-FL														
115		\;														
116		105	1													
		10/0/0/	1											1		
117	ļ	] / 9- 9 - /	1		(0)4											
			3	1	(SM)	SILTY SAND AND GRAVEL										
118									1							
119							ļ									
		10/05/	1												·	
120	16A	XXXI	15							1						1
401	16A	-V/V	29				1				1	ł				i i
121	16A	V/V/	<b>H</b> 31		ML	1	0.0	0.0	5.0	95.0		1		N/A		NP
122			1.0000000000000000000000000000000000000			<b>.</b>							1	1		
			1			SANDY SILT										
123		-XXXI	9							1		1		1		1
124		-V/V/	h l			1				1		1				
124		-1001	X			1										1
	L	<b>──</b> ▎▛▏▛▏ <b>▛</b> ▏ <b>▛</b>	••	•	•	•	-	•	-	•	•	•	•	*		

)

COMPOSITE BOIL 3000 SOUTH



## COMPOSITE BON. 3 9000 SOUTH

			SAMPLE								Su, UNDRAINED					
		GRAPHIC	(Shelby	CLASSI	ICATION			GRA	DING (	%)	SHEAR	DRY UNIT	MOISTURE		~	-
DEPTH (ft)	HOLE	PROFILE	or Blows)	AASHTO	USCS	DRILL LOG DESCRIPTION	Gr	cS	fS	SICI	STRENGTH(lsf)	WEIGHT (pcf)	CONTENT(%)		<u>- PL</u>	
150	16A	FI-FI-	20													
151	16A	/_/_/_/	3U 31													
101	16A		50 - NR													
152																
		<i>[</i>			(010)											
153		<i>F</i>			(SM)	SILLY SAND WITH										
154		×														
101		<i>[]]]</i>														
155		~	1													
450		VIII.			<b>[</b>		ļ				1			ļ /		
120		¥-/-/-/-/-	1													
157					1					1						
			1													
158		////	]				ł									
150			Į											1		
139		¥-/-/-/-/-	4													
160	16A		42													
	16A	Y <u>////</u>	50/4"				ļ							<b> </b>		
161	16A	1111	R							1						
162	16A													1		
102	}	1/1/1/			1										I	1
163	1	144	1												1	
		1/0/0/0/	1					}						1		1
164	<b></b>	1111	1		(SM)	SILTY SAND AND GRAVEL		1				•			1	
165		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1									1		1		
105		1.66	1		1											
166		1991	1													
	_	1.79/076/	1													
167	<b> </b>	11/									1					
168	-		4											i i		
		1.66		Į												
169		~~~~~~/~~/	1													
		<u>/////////////////////////////////////</u>	2										1			
170	<u> </u>	1-1-1-1-1	1		1				1	1		1		1	1	1
171			2			1		1	1				1	1		
		1/0/0/0/	1											1		
172		- <b>/ / /</b> /	5		1		1	1				1				
173		- 1.9.9%	1													
115	<u> </u>	1/1/	2					1		1						
174		1/2/2/	1							1						
		J. / 4/5 / /	[]					I		I	I	I	I	1	I	I

)

## COMPOSITE BOLL 3 9000 SOUTH

			SAMPLE							:	Su, UNDRAINED					
		GRAPHIC	(Shelby	CLASSIF	ICATION			GRA	DING (	%)	SHEAR	DRY UNIT	MOISTURE		DI	PI
DEPTH (ft)	HOLE	PROFILE	or Blows)	AASHTO	USCS	DRILL LOG DESCRIPTION	Gr	cS	15	SICI	SIRENGIH(ISI)	WEIGHT (pci)	CONTENT(%)		- <u></u> T	- <del>' '</del> ק
175	L															
176						· · · · · · · · · · · · · · · · · · ·										
177		AHI			(ML)	CLAYEY SILT										
178																
179											1					
180	16A 16A		37 50 / 2*	i i	SM		5.0	41.0	35.0	19.0						
181	16A 16A	17977 1997	R R													
182		 														
183						WITH FINE AND						i.				
184		/9/9/ /9/9/				SOME MEDIUM GRAVEL										
185	<u> </u>	7907 7907														
186		1996									1					ļ
187																
188		1997 1997														
189		196/							ļ							
190	<u> </u>	196 K														
191																
192						<b>k</b> ***										
194																
195	_															
196			1													1
197		79.50														
198		79/9/07	2		1											
199																
200		1.20/0/2/	<u> </u>	()-assumed	   classification	END OF DRILL HOLE	1	_1		_1	_1	-1		_1		

)

Depth	Vs (ft/sec.)		Vs (m./sec.)	
Deptii	5	716	21	8.2
	15.	735	22	4.0
	25	971	29	6.0
	35	736	22	4.3
	451	699	21	3.1
	55	752	22	9.2
	65	714	21	7.6
	75	800	24	3.8
	85	1111	33	8.6
	95	1667	50	8.1
	105	1587	. 48	3.7
	115	1299	39.	5.9
	125	1704	51	9.4
	135	1667	50	8.1
	145	1754	534	4.6
	155	1379	420	0.3
	165	1667	508	8.1
	175	1492	454	4.8
	185	1428	. 43	5.3

I

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

·----

J

J

I

J

l

I

F

I

]

J

L

ア

17A

.

T				,	_			
	Date Be	igun	14-0	<u>c</u> T.	-9	5		UTAH DEPARTMENT OF TRANSPORTATION Hole No. 17 A
	Date C	ompietec	- 26 -	<u>027</u>	-4	n		MATERIALS AND TESTS SECTION
Ţ	Hole DI	ameter .	T	<u></u>	ਪ੍ਰ	л <u>л</u>	57	al. Total Death <u>610 m (2007+)</u>
1	Project	No			1	(//)	<u>_</u>	10 
<b>b</b> .	ject	Name		) < +	<u></u>	RRI	10	<u>e-G.D.P. 10500 58. 10 300 No. 5.2. Count</u>
1		<u>s mi</u>	<u> </u>	2 1 - 4	aj	<u>.</u>		Equation Project Line Sta.
	sta of t	Structu						Have see 10600 5. and I-15 a Et 11. Et at \$
-	Collar E	levation	<u>ج، جی</u>	35	m			Reference PEP Method Lised
T	Field Pa	rty_ <u>5</u>	izemo	RÉ.	H	EPO	ie	K. WORWood GRAHAM Rig B-61HDX
	·····	115		1	T	11		
		ε						Ground Water Table
7	-	300		б К К	+	х		Depth in F: 9.9 4 WC 51.0 H HC 41.8 4 WC 53.0 4 WC 53.0 4 WC
	Ithou	E	- qu	Le Le	EE	0 V B		Time 9.01 am 12:55 an 9:25 am 9:30 am 9:35 am
	¥	0.0	N	-		2 2	aph	Description
7	Illing	aing w	jqr	4		12 원	5	Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation lost,
	5	S a	Sai	1		So So	Sol	observed fluctuations in water level, notes on drilling ease, bits used, etc.
Ļ	<u> </u>	<u> </u>	_	4	0	łЦ	1.	1K bR. Silty SAND W/ A TRACE FINE ARAUEL
1	<u>_Kħ</u>	<u>+</u> +		4	þ		6	CASing to 5
				-	f	;		
ŀ				-	E		Ľ,	
1		111-	<u> </u>	4	2		1	
		itt -		7	Ē			
	_			]/m	Ľ		//	dK. br. SANdy silt with clay And A tRACE of Fine
1					₽₽		/	GRAVEL AND & FEW this lenses of silty clay
_ L				_	F		//	
-		Y		4	5		$\wedge$	1/150mm 2/150 3/150 7/150 - medium-
	EN	H ~		-	E			
1.		115	+		6	$\langle \mathbf{z} \rangle$	Ź	grey Sitty Clay
Ĭ	u	1	17A-7	-12m	<u> </u>	$\langle \Gamma \rangle$	4	
٦L	RB			]	ΈŤ	-LE	2	
					E		A	SOME LENSES OF SANdy silt with clay And Fine ARAVE
		4		4		LE	Ą	AND SOME LENSES OF AREY CLAYEN SITE
					яЦ	H	긲	
_  -		ـ			El	- 7	7	
-		¥!	+	30 "	H	HZ	A	CASING TO IO
- r		+		1	ţ.		Þ	
		$\mathbf{H}$		- '	Ħ	H.	<b>\$</b>	
		Π		] _	E		7	
		Ц			E	LE	Z	
-		<u> </u>	ļ	4-5	Ľ.	Ц	4	
		H		3	F1	FR	7	
-	-+-+	+	<u> </u>	H H	H	НФ	Z∱	CASING TO 15
		t			El	Ha	4	5/150 - 9/150 9/150 9/150 - mis d'un -
-	PEN	<u>† </u>		15	H		計	arey wis bri silty fing to med, wis convert sand
	11	$\Pi$			EĽ	)	纡	
	NE .	$\Pi^{n}$		5m	Eľ		6[	
- _	<u> </u>	<u>     </u>	DA-17	17	比	Ц×	<u> </u>	· · · · · · · · · · · · · · · · · · ·
	<u>KB</u>	H I			<b>F</b>	-	4	
				/8	H	H	4	
	<b>└</b> ┼─┼	H			El	10	*	
ŀ	+-+			19	H	Hi	扑	
				6m	<b>F</b>	十段	붉	CASING to 20'
-				ZO	Ĺ			)
!								
•								

:		19 -	a.+	G	;			171	Form R-353
· Date i	Begun	$\frac{1}{26}$	n.+	-0	<u>-</u>	MATERIALS AND TESTS SECTION	Hole No	2 + 10	
Date	Completed	194 10	750	<u></u> 7	2	DRILLING LOG	Totol Death	61.0 m (;	200Ft)
Hale i Basia	Clameter <	5P-1	5-7	$\overline{T}$	11)7	96			
Frojec		I-15	COA	RRI	dor	- G.D.P. 10800 So. to 500	No.	. S.L	. County
	Seisn	nic	Stuc	i u		Equation Project Line Sto.		CID 07501	6010 -
Туре	of Struct	<i></i>		-		Other Line Sta.		PIN 8:	57/
Sta. o	f Structur	•				Hole Sta. 10600 S. Aud I-15 Rt.	Ft, L	tFt., of €	
Collar	Elevation	<u></u>	<u>235 n</u>	n		ReferenceReference	nod Used	8 1110	<u> </u>
Field I	Party <u>)</u>	izer	TORE	<u>, /</u>	17Ep1	VER, WORWOOd, GRAHAM	Rig	D-61AD	<u> </u>
		5				Crowd Weter	Table		
		2	J			Depth is Et			
ad	22		151	X	λie	Time			
i e e	t d	Ę	E C		202	Date			
· 2	0	Z	-	ling l	e R	DESCRIPTION			
1111	asin bu		114.	d Lo		Soil type, color, texture, consistency, sompler driving note	s, blows per fo	ot on casing, depths o	irculation lost,
		i s		l S	5 0				
FR			- zo	H	Hi	OPEN & brown city and	<u></u>		
HNP-				<u>F</u>	-	young tokown Billy SHOO			
		Ì	2	F	$ T\rangle$				
			] ,,	E		- AREY & BROWN SILTY SAND AND ARA	auel		
				<u> </u>		- aREY with SOME BROWN SILTY CLOY		····	
			-7-23	Ľ١.	L <del>Z</del>				; 
			-	FI	$F \not \models \not \models$				
			5	H	HZ			<u> </u>	ING TO CO
			-	El	FF	7/150 3/150 6/150 6/150			
- N			- 2	-7		- AREN Silt. SAUD			
	Ha	, <del> </del>		$\left  \right\rangle$		GREY Silty Clay			
			8	ΕY	Z.4	LAREY & GR. Silty FINE to med. S	AND		
- 11		ITA-Z	7 17	<u>-                                     </u>					
RB		<b></b>							
			- 28		+Z	grey & be Sitty clay with this	IENSE	5 0 - 5/(1)	4 FINE
<u> </u>			-  [	=	- Z	ISAND AND CRAYEY SITE WITH .	Sand.		
·			- 9		-2				
			-9m		- 12	<u> </u>		CASU	p to 30'
	┼╀┼──		- 30	-				<u> </u>	9 1000
				-					
			] "[	:					
			- 72	41	<u>_</u> [;,4				
┝───-┞──			┥╸╸┡		- [**	grey SIITY SAND	····		
<u>├</u>		+	-l'0"=	4	-77	- 1 -			
	+++		-  E	:	- <b>F</b> A				
	+++	1	-  <b>5</b> +	1	-FA				
	TV I		1 _F	:	- Ħ			CASING	to 35'
Shelby	Ш		] 전	K	A	dKigREY silty clay			
17			الحد ال	Ľ	Å				
<u> </u>				:))	A		· ·	<u> </u>	
11	<u> </u>	74-37	╢╥	44	¥7				
<u> </u>	+++		-  E		- 177				
<u> </u>			38	<u>+</u>	A	· · · · · · · · · · · · · · · · · · ·			
	+++		╡_╞	:	$-\mathcal{P}$				
— , —		1	12m	11	Z				
	Y		ا <u>س</u> [						
								CASING T	0 40

,

Ĩ									- Form R-353
L	Date Re		19	'-0	ct		9	5	UTAH DEPARTMENT OF TRANSPORTATION Hole No. 17A
	Date Co	mole	ted 2	16-1	2ct	-9	35		MATERIALS AND TESTS SECTION Sheet 3 of 10
T	Hole Di	amet	er	7	<u>5</u> 7	n	L		Total Depth (1.0 m (200 (4))
L	Project	No	<u>.SP</u>	<u>-15</u>	5-7	(]	<u>11)</u>	29	6
	oject	Name	<u></u>	<u>. 15</u>	Cor	RR	id	OR	-G, D. P. 10800 So. to 500 No. S.L. County
1		SE!	Sm	10	57	цC	ty.		Equation Project Line Sta.
L	Type of	Stru	cture_						10/00 5 - 1 7-15 - 51 - 10
	Sta. of S	truc	ure	725		·····			Hole Sta. $\frac{106007}{DFP}$ Mathematical FL, Cl. FL, of C
Л	Collar E	evati	on <u>on</u> Han	<u>ددد</u> مغام	2 4	Jac	e	200	Reference France Mernod Used Bin B-6/ HDX
	Field Fo							-	
_			W W						Ground Water Table
π			00		K I				Death in Ft.
	poc		<b>°</b>	т.	+	ונו א			Time
	W	I.		E N	È			2	Date
T	Du	2	d	al d	4			Gra	DESCRIPTION Soil type color texture consistency sompler driving notes, blows per fact on casing depths circulation lost.
	IIIro	10	Blow	am	I de	E S S		le le	observed fluctuations in water level, notes on drilling ease, bits used, etc.
-				03			100		
	RB	$\mathbf{H}$			+ 4	H	$\vdash$	Þ	dk. area silta clau
		H1	F		1.	F1	۲	Z	<u> </u>
					1 1	F		Ł	
_		Ш			<u>ـ</u> [	E	Ľ	H	
		Ш	L			E		K	
╶┛╿		Ш			13m 43	L		X	
		Ш	L			<b>F</b>	L	Ź	
1					-44	Ħ		Ł	
⊣⊦			-  -			FI	-	H	CASING TO 45
ŀ		-			45	EĻ,		ZA	the second set of a
		++	- H			ED		$\mathcal{L}$	OR ARCY WITH SOME AREY SITTY CITY
_		+			14 46	H		X	
F	<u>u</u>	+	174	- 47		<u> </u>		Z	
T	RB	$\dagger$			47	F#		ZA	
		TI.			4-	F		$\mathbf{Z}$	
		П			48	E		A	
								H	
		Ц			15m			A	CASING TO SO
		¥ .			50			$\square$	
		H					+1	A	SOME THIN LENSES OF GREY CLAYEY SILF ANd TRACES
┠		╨			51	4	Н	$\mathcal{A}$	of sand
		H					+	4	
		$\mathbf{H}$			62	-	H	$\mathcal{A}$	
ŀ		#			lem	:	١Ļ	Z	
-		$\square$			5	-1'	H	A	
		Π				-		A	
		Ш				:		Ź	CASING TO 55
4		¥!				·		$\mathbf{\mathcal{A}}$	
L	Shelby	Ц				:K	Ĭ	A	dk arey to arey silty clay with a trace to some Fine
- ٢_		₽- -		!	17m 56	:1/	םי	7	SAND TONE PIECE of PARGE GRAVET IN TOP OF THE AND
÷		H			-	-1		Á	A FEW THIN TENSES OF CLAYEY SITT
H	pa	╂┼─	A		57	4	77	4	
		H			6		Η	A	
-		╂┼─			58	+	H	Źł	
1	- +-+	H				:		Ø	
-	-++	††			185		Ħ	Ź	
		¥1						⋬	
L									CASING TO GU
Г								-	

	Date B Date C Hole D Project	agun ampletec lameter , No C/S/ Structu	19- 26- 126- 12-15 12-15 110	021 -0ct 75 m 5-7( Cori St,		95 95 1) 20 Jac -	UTAH DEPARTMENT OF TRANSPORTATION MATERIALS AND TESTS SECTION DRILLING LOG G. D. P. 10800 So. 73 500 No. Equation Project Line Sta. Other Line Sta.	Hole No. <u>17 A</u> Sheet <u>4</u> of <u>10</u> Toral Deprin <u>61.0 m</u> (20 <u>5.1.</u> Cou <u>CID</u> 075060 <u>Pin</u> 851	Form 7.353 0ft) wty 0fD
_	Collar E	levation;	×1335	<u> </u>	7.1		Reference PEP Met	hod Used	
]	Field P	arty	<u>EDDI</u>	ER.	$\frac{\omega_{e}}{\omega_{e}}$	<u>orwa</u>	od GRAHAM SIZEMORE	<u>B-61HDX</u>	
-	÷ -	mm C					Ground Water	Table	
-	po	30	-	TER		101	Depth in Ft.		-
: د _	Mett	Dept	Numt	Ë		Reco.	Date		
	Dritting	Casing Blows p	Sample	Depth I	Samplin	Sample   Soll Gra	Soil type, color, texture, consistency, sampler driving note observed fluctuations in water level, notes on drilling	s, blows per foot on casing, depths circ case, bits used, etc.	ulation lost,
	RB			- 60	H	Hz			
<b></b>					Ę	FZ	dk. grey to grey silty clay		
					Ē				
7		₩		_19m		-¥			
				- 63		E			 
7		<b>¦<u></u><u> </u> </b>		- 4		FŹ			11
4	V	Y					· · · · · · · · · · · · · · · · · · ·	Casing	<u>+0 65'</u>
	≣lby			20m	:5	Z			
ł				<b>6</b> 6	К		ak. grey to grey silty clay wi	th a trace of find	SAND
	4	/	7A-67	- L7	-14	4		/0	19-95
t							alk to med arow silty llab	<u> </u>	
		+	ļ			- 7			•
1-				21 49		$-\square$			
5		1		7		Ŕ			
┥		╢		┤╞		- 2	med to dk grey silty charge ince		
Ţ		$\downarrow$	ļ			A	······································	· · · · · · · · · · · · · · · · · · ·	
┢				22 T2	┥┝				
T_		⋣		73	] [	H			·
		H				Ŕ			· · · · · · · · · · · · · · · · · · ·
<b>   </b>		1		74-	1 [	. K			
1-	Shelby	¥		, 75	ᆉ	A		rasing	to 75'
	11	Π	NR	23m- 76	2	A		· · · · · · · · · · · · · · · · · · ·	**
	RB	+	֥	Ē		A	hit a hand layer at 76' 0 % nco	sery	
L			· 	77-	1	Æ	med to dk grey silty clay w/ o	rganies - med bon us	ood
	- +-+	$\left  \right $		78	┥┝	-4			
Ē		ţ _		24 m		Ē			
		H		ŀ		A		ALCI_	p da'
	<u>I</u>	<b>.</b>		80-	1l				
-	······································		<u> </u>			<del></del>		 	

.

Signal       And the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first interaction of the first inte	Date Bi Date C Hole D Project jerr ype o ta. of allor E ield P	omple lamet No. Nam f Struc Struc Elevat		-0 26-0 7-15- 1-15 1-15 1-15 1-15 1-15 1-15 1-1	ct- 0ct- 5m 7 (1 25 25	- 9 - 95 m (11) RR - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	20	76	UTAH DEPARTMENT OF TRANSPORTATION MATERIALS AND TESTS SECTION DRILLING LOG Stridy - G. D. P. 10800 Sp. 70 500 No. S.L. County Equation Project Line Sto. C/D 0750601D Total Depth 61.0 M (200FF) 
11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     <	Drilling Method	Caeing Depth	Blows perman 300 mm	Sample Number	Depth in meters	- Sampling	Sample Recovery	Soil Graph	Ground Water Table  Death in Ft.  Time  Date  DESCRIPTION  Sail type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation lost, observed fluctuations in water level, notes on drilling ease, bits used, etc.
1 1 grace minim to coase sand, minor gravel, trace 1 1 grace to lt bin fine to coase sand, minor gravel, trace 1 1 grace to lt bin fine to coase sand, minor gravel, trace 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<i>6</i> 4	17 <i>A</i> -92	8 8 8 25 8 8 8 8 8 8 8 1 2 5 8 1 2 5 8 1 2 5 1 8 1 2 5 1 1 3 1 8 1 2 5 1 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1				Med grey claying Silt. with a minor of cand It to and silt will minor could and true graved trensititized contact with gravels below: multi colored sands and gravels - It gray for graved sand. Cassing to 90' 33/150 mm 31/150 mm 33/150 mm 28/150 mm -regidense - It to mid grave sends and gravels - Coasse conds and fine the bearie gravels. It gray medium to coasse sand, moderst gravel, trave It gray to 14 bea for to coasse sand, minor gravel, trave stilt. It grey to 14 bea for to coasse sand, minor gravel, trave

19_11-95		17 A Form R-353
Date Segun $36 - 0.4 - 95$	UTAH DEPARTMENT OF TRANSPORTATION MATERIALS AND TESTS SECTION	Hole No
Hole Diameter 75mm	DRILLING LOG	SheetO of /U
Project No. SP-15-7(11) 296	,	lordi Deprin (21-0 W (200 FF)
viect Name <u>275</u> CORRIGOR.	G. D. P. 10800 So. to 500 No.	S.L. COUNTS
SEISMIC STUDY	Equation Project Line Sta.	CID 0750601D -
Type of Structure		DIN 351
Collar Elevation #1335 m	Hole Sta. $700002$ , $2001424$ Rt.	Ft., LtFt., of &
Field Porty DEPPLER, WURWOOD	GRAHAM Merk	Rig B-61 H DX
- 12 B	Ground Water	Table
	soth in Ft	
	<u>ata</u>	
	DESCRIPTION	
Soll Dep	Soli type, color, texture, consistency, sampler driving notes, observed fluctuations in water level, notes on drilling ed	blows per fact on casing, depths circulation lost,
	42/150 mm 52/150mm - PEE.	$(N_1 - 22)$ and $(M_1 - 22)$
PEN REF.		ska some very nense
08 10-101 20 3	t brn to It grey fine to course sans	d. W. miher gravel
	h h h h h h h h h h h h h h h h h h h	0
	The that the course sand why me	nor gravel totr. silt
h		
┝━━┼╾┼┼┥╞┝━╾┥╺╞╽┝╽┊╢━		
	······································	
	- bra fine to coarse sand w/ mino	r chavel + tr. silt
	·····	
	+ grey sitty clay approx 28 m	m wide unit.
	7/150 mm 43/150 mm 36/150 man	25/10 de la la la la la la la la la la la la la
PEN III	t grey sitty fine sand	
	+ any silty clay	
III		
	+ green silty elay with tr. sa	nd a trace fine : mayel
		ř (
35 115		· · ·
┝━━╄━━╫┤╞┝━━┥╵╞║┝┢╤╣━━		
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	•
	· · · · · · · · · · · · · · · · · · ·	-
	+ only time sand with minor s	14
	bra silta class	
¥ 111 120 120 FIFK		
	· · · · · · · · · · · · · · · · · · ·	
		مودانين المتحمد بداميم متماديهم تماميم والمتعاوي والمعام والمعام والمتعادي والارتباد والارتباد والارتباد المار

.

Date Begun $19-0c$ Date Completed $26-0c$ Hale Olameter $75$ m Project No. $9-15$ oject Name $-15$ 5615M1C Type of Structure Sta. of Structure Collar Elevation $513251$ Field Party HEDP (.77)	T-95 UTAH DEPARTMENT O MATERIALS AND DRILLING T(11)296 Curridor - G.D.P. 10600 S TLANY Equation Hole Sta. 10600 MI Reference A Curridor - G.A.HAM	FTRANSPORTATION TESTS SECTION 3 LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG 3  LOG $3 \text$
	$     \begin{array}{c}                                     $	Ground Water Table DESCRIPTION wistency, somoler driving notes, blows per toot on cosing, destra circulation lost, ater level, notes on drilling ease, bits used, etc. 10-20-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23-95 10-23
	40-1    %	

Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	Date Begun 19 - 0 Date Completed 26 - 0 Hole Dlameter 75 H Project No. 50-15 - 7 SETSMIC Type of Structure Sta. of Structure Collar Elevation 5/33 Field Party HEPPLE		UTAH DEPARTMENT OF TRANSPORTATION MATERIALS AND TESTS SECTION DRILLING LOG	Form R-353 Hole No. 17 A Sheet <u>9</u> of 10 Toral Depth <u>61.0</u> m (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (200 ff) <u>SL</u> (
RS 110 10 11 bran to 14 gray time to counse sand with trace 1 1 11 11 11 11 11 11 11 11 11 11 11 11	Drilling Method Cesing Depth Blows per <b>Fins</b> 300 m	0epth in FTET Sampling Sample Recovery Soli Graph at D	Ground Water 1 in Ft. DESCRIPTION Soil type, color, texture, consistency, sampler driving note abserved fluctuations in water level, notes on drilling	s, blows per foot on casing, depths circulation lost, ease, bits used, etc.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		brown fire to coarre sand w Drawn fire to coarre sand w Drawn fire to coarre sand w Drawn fire to coarre sand w and trace silt Drawn fire to coarre sand w and trace silt Drawn fire to coarre sand w and trace silt Drawn fire to coarre sand w Drawn fire to coarre sand Drawn fire to coarre sand	Coanse sand with trace Coanse sand with trace It. Cashing to 145 DENSE- 10-23-95 The moderate free gravel 10-24-95 Dith minor fine gravel It. It. It. It. It. It. It. It.

]	Date B Date C	egun Completed	19-(	<u>)ct -</u>	. <b>9</b> 5		UTAH (	DEPARTME	ENT OF TI AND TES	RANSPORTATIO	)N Hoi Stri	e No	17A	F	form R+353
1	Hale D Project	No	75 r P-15	nm -7(	111	) 29	6	DR	ILLING L	JG	Toto	ol Depth_	61.D m	(200Ft	)
	oject	Nome	I-15 SE	Cor 15410	ridi C	or - ( STV	<u>4.D.P.</u>	10800	So to	SOON Project Line Sta	<u>л</u>	ID V	Cour	h.	
j	Type o	f Structu	ur •					101	Equation -	Other Line Sto. $+ T - 1E$	د -	!N	a17	<u></u>	
-	Collar E	levation	×133.	5 m	. 0	2	Ho	ference	PEP	7	_ Rt Method Use	_Ft, L1. ed	Ft., o	r t	
]	Field P	arty_H		<u>2, w</u>	OKU	000	), GRAH	AM			Rig	<u>B-61</u>	HDX		
		10 10		2 miles			Death in Et	1		Ground V	Water Table				
	Ihod	H N	- Pe	Ter T		OVALY									<u> </u>
-	Ilng Me	us per 1	ple Nur	th in <b>M</b>	npling	<mark>Ple Rec</mark> Graph	Dote Soil typ	e, color, texts	re.consister	DESCRIPT	TION			!	
	Dri	<u></u>	San	<b>a</b>	San	Soll Soll	observe	d fluctuation	ns in water	level, notes on drill	ling ease, b	oits used	, etc.		
1	RB	Ш—		160		- ::-	It brow	n fix	to ci	an san	d with	~ 11	iner fin	e con	el.
₽		╆╋┿╼╼	 			- 1.	+r.	silt a	und -	tr. mediam	- grave	٨	· · · · · · · · · · · · · · · · · · ·	/	
				162	:   -										
1		<del>   </del>		163		0.	•		· · · ·						
				1.16		10	·			<u> </u>					
Ł	Y			504	+	2	43/150	nn 50	11000	DEFU CA	×1 - 1	I FR V	sut ) Eals	casing	to 165
	DEN				K		It bearen	<u>a fine</u>	+0 00	ase same	L wit	hm	iner fine	grave	
	KB			166-	ĪÈ		<u> </u>	SILF an	nd tr.	medium g	ravel			1	-
				167- 51m -	╎┟	i.et	······	•				· · · · · · · · · · · · · · · · · · ·			
<b>_</b>				16	╎┝						3				
F		11		162-										-	
		H		E H		×0									
<u>}</u>		H		Stan E	F	6.F	It brown	hin t	1 coar	Se sand	with	med	erate fi	n grav	J,
				ni F					and	miner midi	them gat	-ul			
		╂╌┨		172 - 1	H	.0				······				-	
		┟┼──╿		173	H								·		
				53m										•	
<u> </u>	¥  ,	Int		Ē		Őμ	50/101 h	nm RE	FUSA	-VERY D	DENKIS		sit co	sing to	275
<b>-</b>	PEN		-176	"El	7	۶Ę	most s	sample 1	wailed	awry - res	idual	sang	the fine +	to coon	se
				176		á-	gau	<u>9</u>	na an	<u>a 3117 11</u>	DE IQ	Servil	L)		
		}		mm -	H	×–	H brow	a fine	to coa	trace along	with	med	erate f	in q	rallal,
	-+-1	-		178E	H	2					<u>}</u>				
		<u> </u>		, <b>79</b>	Ę										
<b>-</b>					+				<u></u>	·····					
-		·····		100		•· • =									
Ī															
1-															·

_								
				L	0	_		Form R-353
	Date Be	gun	<u>14- U</u>	$\frac{1}{2}$	- 7	<u>د</u>		MATERIALS AND TESTS SECTION HILE NO. 10
	Date C	mpieti	•d <u>26</u> -	Ocr	-4	<u>۱</u>		DRILLING LOG
	Hole Di	ameter	<u>رت</u> ،	mir	<u> </u>	<del></del>	4.0.	Total Depth ZODET
	Project	No	<u>SP-1</u>	<u>S-1</u>	UI	0'	240	S. D. Margaria C. Co. of
	rject	Name .	<u>I-D</u>	Cor	ride	$\underline{\pi}$	<u>- (9</u>	.D. P., 10:00 % to SUON SE COURT
			Sels	MIC		nD	<u>)4</u>	Equation Project Line Std. CTO 01000000
	Type of	Struc	ture					10/10 S at T-15 S S S A
	Sta. of S	Structu	re					Hole Sta. [0600 5. AT 1975 Rt. Ft., Lt. Ft., of C
_	Collar E	levatio	<u>133</u>	5 1	<u>^</u>			Reference PEF Method Used
	Field Pa	rty <u> ۲</u>	EPPLEI		<i>10</i> K	<u>.</u>		
			<u> </u>		.			Ground Water Table
			0	ž	1			Denth in Ft
71	q		100	19	ġ	2		Time
	qle	E	1 e		7	2 S	-	Date
. [	ž	a	ă X	-			1de	DESCRIPTION
ור	IIIa	-	awa light	4 a		nple	10	Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths circulation lost,
	۵	8	So B	å	1 5	Sol	ŝ	observed fluctuations in water level, notes on drilling ease, bits used, etc.
Ļ		<u>    -</u>		- 18	Ъ	Н		
- r	KB	+++		-557	El		4	IT brown The to coase cond with minor the to coase
┛		┼╂┞─	<u> </u>	- 19	H	Η		Gravel and Thee slip.
		++			FL	-	~	
-			<u>+</u>	18	٤H	Н	/	
-		₩		-	E	$\left  + \right $	5-1	
				- 18-	ъН	Η	1	
		H		-lan	<u></u>	-	لو.	
	1		1	-184	'日	H	<.]	casim to 185
	Y	V		1	Ļ١.		0?	87/ISD mm REFUSAL - VERY DENSE
	PEN	I Re	174-18	6 18-	FR	77	X	It brown fine to coarse sand with fine to roak
Th	KB_	Π		160	EL	Ľ	.0[	gravel and trace silt
<b></b>		Ш			Έl		$\boldsymbol{X}$	1
				- 187	Ľ١.	Н		
1_		H	ļ	- <b>*</b> ***	F1	ĻΪ		COUNE
1_				- 160	H	H	6	
$\vdash$		H			El		:/	
				- 159	H	H		
		$\mathbf{H}$		-	El	+L	$\sim$	
-		+		- 90	H	H'		It beam firs to coasse sand with firs to coasse
-		+			<u> </u>	۲ŀ		crawl and miner silt
1-		11-		- 191	Ħ	H.	·/	
		1			Fl	٢k	<u> </u>	
				7 17	El		:7	
		Π			El	Ľ	6	
		$\Pi$				[]		
		11_		-	Ы	Ľ	1	
1_		$\mu$		- "	<u></u>	4	ا بر	Cally to 195
	Y	Yloc	<u></u>	- 100	ĽĻ	Ľ	<u>ب</u> وب	50/48mm KEFUSAL - VERY DENSE, 10-25-45
	VEN		17A-AL	빅 "]	FF	ţ į	<u>/</u>	It brown fine TO coarse sand with the to coarse 10-26-73
	KR	<del>. </del>	+	156	H	H	*	gravy and monor sitt.
		+		ا مد ا	El	ŀľ	<u>;</u> ;}	1
		<del>  </del>	+	- ¹⁰ ก	H	H	<u>/</u>	
		+		-	El	۲Ľ	ił	·
u Bu		<del>: -</del>		1 190	H	H	<u>_</u> }	
7	┙┼╌┤	÷	}	-	٤l	۲l	10	
ł			+	- 199	Ħ	H.	討	
-					<b> </b>	16		T.D=61.0 m (200 ft) 10-26-95
4 -		/		400		· . 1		
	····							HVC Caring set to 60,5 m (198H)
1-								Ŷ

	GRAPHIC		THICKNESS	SATURATED	SHEAR WAVE	-
DEPTH (R	PROFILE	DRILL LOG DESCRIPTION	OF LAYER (ft)	WEIGHT (pcf)	VELOCITY(IVS)	
4			5.0	117 (MOIST)		
		2 SILTY CLAY WITH A FEW LENSES	16.0	116	790	17
12		OF CLAYEY SILT				
20	$=$ $\overline{z}\overline{z}\overline{z}\overline{z}\overline{z}$	SILTY SAND	3.0	117	740	
24						
28						
32						
36		4 SILTY CLAY WITH SOME LENSES OF CLAYEY SILT AND SILTY SAND	47.0	114	830	17
40						
44						
40						
52	Ę					
56						
60						
	7///					
		S SANDY SILT WITH SOME CLAY	12.0	123	1010	2
/9 						
90						
		6 SILTY SAND AND GRAVEL	12.0	125	1240	Ű
10						
82						
96		7 SANDY SILT	5.0	123	1330	0
100						
104		SILTY SAND WITH THIN LENSES OF CLAYEY SILT	16.0	125	1160	0
108						
112				,		
116		9 SILTY SAND AND GRAVEL	4.0	129	1120	0
120				<u> </u>		
124	=////	10 SANDY SILT	8.0	124	1160	U
178						
137		11 SILTY SAND	3.0	128	1330	0
		12 SANDY SILT	8.0	125	1310	0
				<u> </u>		
140		13 SILTY SAND WITH SOME GRAVEL	7.0	129	1340	0
144			••		1380	
148		14 GLATET SILT WITH SAND	3.0	140		<u> </u>
152		15 SILTY SAND WITH LENSES OF CLAYEY SILT	11.0	131	1500	U
156						
160						
164		18 SILTY SAND AND GRAVEL	15.0	131	1440	0
160						
172						
178		17 CLAYEY SILT	3.0	129	1430	0
180						~
184		18 SILTY SAND WITH FINE AND SOME MEDIUM GRAVEL	21.0	132	1450	0
186						
199	the second					
192						

•

Č.



## **10600 SOUTH -- SUMMARY OF LABORATORY TESTING**

Adjust bo

Run No Job No Client Projec Site: Locati Cone: CPT Da CPT Til CPT Fi	: 96-110 : 96-306 : KLEINFI t: BANGER B77 on: BANGER 20 TO te: 96/29/ me: 13:14 Le: 306877	4-0929-227 .2 ELDER TER HWY. TER N A 045 10 .cor	7									
Water Avera Su Nk Phi M Dr M	Table (m) ging Incre t used: ethod : ethod :	: ment (m):	3.00 0.25 12.50 Robertsor Jamiolkow	(ft): n and Cam wski - Al Zones	9.8 Ipanella, 19 I Sands	983						
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	··
0.41	0.12	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	
1.23	0.38	0.0	0.0	0.0	7.3 12 2	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	
2.05	0.62	0.0	0.0	0.0	17.1	0.0	0.0	0.0	0.0	0.0	0.0	
3.69	1.12	0.0	0.0	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	
4.51	1.38	0.0	0.0 7 A	0.0	26.8 30.8	0.0	3.0	5.3	45.7	0.0	0.0	
5.55	1.88	1145.3	11.1	1.0	34.6	0.0	4.6	7.6	88.9	30.0	36.0	
6.97	2.12	1323.5	11.5	0.9	39.1	0.0	5.3	8.3	102.8	30.0	36.0	
7.79	2.38	1227.5	15.1	1.2	43.6	0.0	4.9	8.8	94.7	0.0	0.0	
8.61	2.62	1252.2	16.1	1.1	52.6	0.0	5.9	8.0	114.1	30.0	36.0	
10.25	3.12	2067.5	14.4	0.7	55.9	1.2	8.3	10.8	160.8	30.4	38.0	
11.07	3.38	1144.0	6.1	0.5	57.9	3.7	4.6	5.9	80.0	30.0	34.0	
11.89	3.62	1388.0	18.8	0.7	62.0	8.6	5.1	6.4	97.0	30.0	32.0	
12.71	4.12	1383.5	12.2	0.9	64.1	11.0	5.5	6.8	104.7	30.0	34.0	
14.35	4.38	4453.6	51.0	1.1	66.2	13.5	14.8	17.9	0.0	50.0	40.0	
15.17	4.62	2639.9	39.3	1.5	68.5 70.4	15.9	10.6	12.5	212.7	35.3	38.0	
15.99	4.00	6331.3	104.8	1.7	72.5	20.8	21.1	24.3	° 0.0	58.8	42.0	
17.63	5.38	8268.9	132.8	1.6	74.6	23.3	27.6	31.2	0.0	66.0	42.0	
18.45	5.62	9514.4	108.3	1.1	76.9	25.8	23.8	26.6	0.0	09.0 72 5	42.0 44 N	
19.27	5.88	10666.4	158.4	2.4	81.3	30.7	10.6	11.5	203.8	32.3	36.0	
20.09	6.38	5207.0	120.2	2.3	83.4	33.1	20.8	22.3	407.2	51.2	40.0	
21.74	6.62	15563.1	200.6	1.3	85.6	35.6	38.9	41.2	0.0	82.2	44.0	
22.56	6.88	5536.3	162.0 05.0	2.9	87.7 89.8	40.5	16.1	16.7	247.7	0.0	0.0	
25.38	7.38	3220.U 4954.3	116.8	2.4	91.8	42.9	19.8	20.2	385.6	48.4	40.0	
25.02	7.62	2784.7	56.6	2.0	93.9	45.4	11.1	11.3	211.6	31.5	36.0	
25.84	7.88	4829.2	87.5	1.8	96.0	47.8 50.3	9.5	9.4	178.1	30.0	34.0	
26.66	8.12 8.38	2574.U 6621.3	32.1 87.7	1.3	100.2	52.7	22.1	21.6	0.0	55.4	40.0	
28.30	8.62	22081.3	166.5	0.8	102.5	55.2	44.2	42.7	0.0	89.6	46.0	
29.12	8.88	16672.9	185.2	1.1	104.9	57.6	41.7 36 6	39.8 34 4	0.U n n	81.2	44.0 44.0	1
29.94	9.12 0 78	10296.7	136.9	0.7	107.2	62.5	43.4	40.6	0.0	88.2	46.0	(
31.58	9.62	10338.4	204.6	2.0	111.9	65.0	34.5	31.9	0.0	66.6	42.0	ļ
32.40	9.88	14197.7	241.0	1.7	114.2	67.4	35.5	32.5	0.0	75.4	42.0	
33.22	10.12	9887.3	244.2	2.5	116.4 118 7	69.9 72.3	55.U 60.2	29.9 54.1	0.0	95.0	46.0	)
34.04 34.86	10.50	19614.6	308.5	1.6	121.1	74.8	49.0	43.6	0.0	83.8	44.0	J
35.68	10.88	8467.1	182.4	2.2	123.3	77.3	28.2	24.9	0.0	59.5	40.0	i i
36.50	11.12	6469.9	173.9	2.7	125.4	79.7 82 2	25.9 10 8	22.0	378.7	43.6	38.0	, ]
37.32	11.38	4943.9 11035 K	159.9	2.8	127.5	84.6	27.6	23.7	0.0	66.4	42.0	)
38.96	11.88	2710.2	83.8	3.1	131.8	87.1	13.6	11.6	199.3	0.0	0.0	J
39.78	12.12	5694.8	74.7	1.3	133.9	89.5	19.0	16.1	0.0	47.0	38.0	1
3/110	12.38	6858.0	74.3	1.1	136.2	92.0	1/.1	7.2	154.7	30.0	32.0	ċ
40.60	16.00				742 4							-

ConeTec Inc. - CPT Interpretation

••••••••••			AvaFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60 (s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
Depth (ft)	Depth (m)	Avgut (kPa)	(kPa)	(%)	(kPa) 	(KPa)	 6 5	5.4	111.7	30.0	30.0	3.0
		1437 4	16.7	1.0	142.4	99.5	6.6	5.4	113.1	30.0	30.0	3.0
43.06	13.12	1037.4	12.0	0.7	144.5	101.0	6.0	5.6	117.7	30.0	50.0	2.0 4 0
43.88	13.38	1009.0	21.6	1.3	146.5	104.2	14.0	11.3	259.9	31.5	54.0	4.0
44.70	13.62	750/ 1	58.1	1.7	148.6	106.7	11.5	9.1	208.5	30.0	52.0	6.0
45.52	13.88	3304.1	61.4	2.1	150.6	109.1	10.2	8.1	182.3	30.0	32.0	3.0
46.34	14.12	2000.0	58.8	2.3	152.7	111.0	8 4	6.6	113.2	0.0	0.0	3.0
47.16	14.38	2342.0	42.7	2.5	154.7	114.0	5 6	4.4	90.1	30.0	30.0	3.0
47.98	14.62	1685./	10.9	1.4	156.8	116.5	5.7	4.4	91.1	30.0	30.0	3.0 Z ()
48.80	14.88	1399.4	14.5	1.0	158.8	118.9	57	4.4	91.2	30.0	30.0	3.0
49.62	15.12	1410.0	10.0	0.7	160.9	121.4	7 4	5.6	124.4	30.0	30.0	3.0
50.44	15.38	40/1 8	18.3	1.0	162.9	125.7	8.0	6.8	155.2	30.0	50.0	1.0
51.26	15.62	1041.0	23.4	1.0	164.9	120.3	11.8	8.9	0.0	30.1	34.0	1.0
52.08	15.88	2231.3	46.6	1.3	167.1	120.0	11 2	8.4	0.0	30.0	) 32.0	4 0
52.90	16.12	3535.3	41.5	1.2	169.2	131.2	22 6	16.9	0.0	48.4	4 38.0	
53.72	16.38	3367.2	100.5	1.5	171.4	133./	22.0	8 1	192.2	30.0	ງ 32.0	) 6.0
54.54	16.62	6782.0	100.5	1.5	173.5	136.1	10.9	0.1	231.2	30.0	0 32.0	) 6.0
55.36	16.88	2712.6	41.0	1.4	175.6	138.6	12.0	7.5	167.0	30.	0 30.0	) 3.0
56.18	17.12	3203.7	40.1 27 6	1.1	177.6	141.0	9.0	5 1	114.3	30.	0 30.0	<b>j</b> 3.0
57.00	17.38	2406.4	21.0	1.5	179.7	143.5	7.0		93.1	30.	0 30.	0 3.1
57 82	17.62	1752.2	20.4	0.7	181.7	145.9	6.0	4.5	02 5	30.	o 30.	o 3.
58 64	17.88	1492.0	11.0	0.7	183.7	148.4	6.0	4.3	02 0	30.	0 30.	o 1.
50.04	18.12	1488.2	9.0	0.0	185.8	150.8	5.9	4.3	08 0	30.	<u>0</u> 30.	o 3.
60 28	18.38	1486.3	8.0	0.0	187.8	153.3	6.3	6 4.7 7	10/ 0	30.	0 30.	03.
41 10	18.62	1577.1	10.0	0.0	189.9	155.7	6.6	5 4.7	104.3	30.	n 30.	0 3.
4 03	18.88	1657.3	11.2	0.7	101 9	158.2	6.4	4.5	99.0	2 JU. 2 30	n 30.	<u>0</u> 1.
(2.75	19.12	1597.7	9.9	0.0	10/ 0	160.6	6.	4.3	94.0	s 30.	0 30	ō 3.
62.13	19.38	1536.6	9.0	) U_O	106 0	163.1	6.	3 4.4	- <u>48</u> -	7 70	0 30	0 3.
63.37	10 62	1585.4	9.2	2 0.0	108 1	165.5	6.	6 4.6	102.	5 JU	0 30	n 3.
64.39	10.88	1641.8	9.6	5 0.6	190-	168.0	6.	9 4.8	107.	9 30	0 30	0 3
65.21	20.12	1716.7	10.2	2 0.6	200.	170 4	6.	8 4.7	106.	8 50	0 30	0 3
66.03	20.12	1707.3	10.1	1 0.6	5 202.4	172 0	7.	1 4.8	111.	1 50	.0 30	.0 J
66.85	20.30	1766 5	11.	30.0	5 204-	- 175 /	7.	2 4.9	114.	2 30	.0 .50	.0 3
67.67	7 20.62	1900.5	11.	z 0.0	5 206.	3 1/3.4	, , , , , , , , , , , , , , , , , , ,	1 5.5	132.	0 30	.0 50	.0 .7
68-49	20.88	2074 7	12	9 0.0	6 <b>208.</b>	5 1//.0	, υ. , α	2 5.5	132.	.6 30	.0 30	د u.
69.3	1 21.12	2030.1	13	3 0.	7 210.	4 180.	, 0. , e	7 5.9	143.	,4 30	.0 30	.u 3
70.1	3 21.38	2040.3	17	z 0.	8 212.	4 182.	, Ö.	5 5.6	137.	.1 30	0.0 30	-0 5
70.9	5 21.62	2107.3	15	9 0.	8 214.	5 185.4	. 0.	6 5.0	) – 0.	.0 30	0.0 30	
71.7	7 21.88	2112.9	16	7 0.	7 216.	6 187.0		2 54	131	.5 30	).0 30	
72.5	9 22.12	2269.	15	n 0.	7 218.	7 190.		7 5 5	132	.8 30	<b>J.O 3</b> 0	).0
73.4	1 22.38	2053.0	15	δ 0.	8 220.	7 192.			0	.0 30	0.0 30	0.0
74.2	3 22.62	2073.0	- 12	5 0.	6 222.	.8 195.	0 0	7 5	í 13Ī	.6 3	0.0 30	).0
75.0	15 22.8	3 2040.	<b>1</b>	9 0.	7 224	.9 197.	4 8		5 135	7 3	0.0 3	0.0
75.8	7 23.1	2067.	0 14.	.0 0. c 0	R 227	.0 199.	98	.5	/ () /	0 3	0.0 3	0.0
76 /	23.3	3 2123.	2 17		6 229	1 202.	36	.8 4.4	4 0	0 3	0.0 3	0.0
77	1 23.6	2 2040.	4 12		7 231	2 204.	8 8	.4 5.	4 134	., .	0.0 3	0.0
79	23.8	B 2097.	8 14	.2 0	4 277	3 207.	2 6	.9 4.	4 U		0 0 3	0.0
/0 70	15 24.1	2 2080.	313	.> 0	······································	4 209	.7 8	i.7 5.	5 15/	., 3	in n 3	0.0
/7.	07 74 3	8 2169.	4 15	.9 0	נב <i>ג</i> ו. קדר פ	5 212	.1 7	.9 5.	U (	.0 2	in n 7	0.0
(7.	70 74 6	2 2357.	8 19	.1 0	.0 2.0	7 214	.6 8	3.7 5.	5 (	J.U J	10.0 J	0.0
<b>B</b> 80.	41 24 P	8 2624	3 21	.4 0	-0 237	0 217	.0 8	3.5 5.	3 (	J.U -	0.0 7	0.0
81.	/7 251	2 2538.	.6 19	0.8 0	.0 241	1 210	5	8.5 5.	.3 (	0.0		0.0
82.	43 27.0	8 2547.	.9 19	).9 Q	.0 244	2 222	.0	<b>B.</b> 0 5.	.0 1	0.0		0 0
83.	23 23.3	2 2387	.7 18	3.1 0	.8 240	<b>2.</b> <i>2 2 2 2 2 2 2 2 2 2</i>	.4	8.8 5.	.5	0.0		
84.	07 25.0	UR 2638	1 24	4.5 C	.9 240	0.4 <u>226</u>	.9	8.5 5	.3	0.0	50.0	10.0
- 84.	OY 23.0	2 2563	.5 11	3.7 ⁽	)./ 250	J.0 220	.3	7.8 4	.8	0.0	JU.U	20.0
85 .	(1 20.	20 2771	2 14	4.5 (	0.6 25	C.O <u>CC</u> 7	8	7.8 4	.8	0.0	50.0	30.0
86.	.53 26	00 07E7	- - - -	8.8 (	<b>).8</b> 254	4.9 251	.0	75 4	.6	0.0	30.0	50.0
87	.35 26.	2222	······································	4.9 (	0.7 25	7.1 234	. 4	77 4	.7	0.0	30.0	30.0
88	.17 26.	88 2230	- 1	5.9	0.7 25	9.3 236		78 4	.7	0.0	30.Q	30.0
88	.99 27.	12 2317	1 1	4.9	0.6 26	1.4 239		77 4		0.0	30.0	30.0
89	.81 27.	58 2554	5 1	5.7	0.7 26	3.6 24	1.0	78 4	.7	0.0	30.0	30.0
90	.63 27.	62 2296		6 5	0.7 26	5.8 24	4.U	79 /	7	0.0	30.0	30.0
91	.45 27.	88 2326		7 1	0.7 26	8.0 24	5.5	1.0	 . 0 1	55.8	30.0	30.0
- 07	.27 28.	12 2336	5.Z	5 0	1.0 27	70.1 24	8.9	<b>y.y</b>	2.7 I. 2.0 1	56.5	30.0	30.0
70	.09 28	.38 2466	5.0	(J.Y	1 0 27	72.1 25	1.4	9.9	<b>.y</b> 13	52 1	30.0	30.0
07	.91 28	.62 2479	7.2	(4.)	1 1 27	74.2 25	3.8	9.7		56 5	30.0	30.0
<b>7</b>	73 28	.88 242	B.7	20.4	1 1 2	76.2 25	6.3	10.0	<b>5.</b> 7 1	57 0	30.0	30.0
	55 29	.12 248	9.4	21.0	1 1 2	78.3 25	8.7	10.0	<b>5.</b> 9 1	A1 0	30.0	30.0
			08	28.0			4 3	10 3	o.u 1	01.7		70 0
- <u>9</u> .	5 37 20	.38 249	y.0		4 2 2	80.3 20	11.4	10.0	/ - 4	77 1	30.0	30.0
90 90	5.37 29 7 10 20	.38 249 .62 256	5.4	29.8	1.2 2	80.3 20 82.4 20	<b>3.</b> 6	10.8	6.3 1	73.1	30.0	30.0
91	5.37 29 7.19 29	.38 249 .62 256 .88 270	5.4 9.2	29.8 30.6	1.2 2 1.1 2	80.3 20 82.4 20 86.4 20	53.6 56.1	10.8	6.3 1 6.7 1	173.1 185.6	30.0	30.0

ConeTec	Inc CPT Interpretation
Run No:	96-1104-0929-2277

ConeTec Run No:	Inc CF 96-1104 - 306877.	27 Interpre -0929-2277 .COR	tation						Page:	3		
Depth I	Depth	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 /s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
(ft) 99.65 100.47 101.29 102.11 102.94 103.76 104.58 105.40 106.22 107.04 107.86 108.68 109.50 110.32 111.14 111.96 112.78 113.60 114.42 115.24 116.06 116.88 117.70	(m) 30.38 30.62 31.12 31.38 31.62 31.88 32.62 32.88 33.12 32.88 33.12 33.38 33.62 33.88 34.12 34.38 34.62 34.38 35.62 35.38 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.62 35.88 35.88 35.62 35.88 35.88 35.88 35.62 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.88 35.8	(kPa) 2751.3 4413.6 4097.3 3418.0 3767.3 2847.7 2814.5 2841.9 3182.1 3436.5 3971.2 4742.8 4045.8 5654.5 4829.4 3906.9 4275.9 4829.4 3906.9 4275.9 4829.4 3906.9 4275.9 4829.4 3906.9 55771.2 5661.7 8692.4	33.3 104.3 74.8 51.7 28.2 28.2 38.6 70.2 59.6 83.8 55.2 154.2 97.9 58.0 124.4 161.3 190.3 91.7 161.2 1773.4 259.7	1.2 2.4 1.8 1.5 1.3 1.0 1.2 1.2 2.0 1.5 1.8 1.4 2.7 2.0 1.4 2.6 2.4 1.8 2.6 2.4 1.8 3.0	286.5 288.5 290.6 292.8 295.0 297.1 299.2 301.3 303.5 305.6 307.7 309.9 312.1 314.2 316.2 318.4 320.5 322.6 324.7 328.8 330.9 333.0 333.0	268.5 271.0 273.5 275.9 278.4 280.8 283.3 285.7 288.2 290.6 293.1 295.5 298.0 300.4 302.9 305.3 307.8 310.2 312.7 315.1 317.6 320.1 322.5 325.0	11.0 17.7 13.7 11.4 12.6 9.5 11.3 9.5 10.6 13.7 13.2 15.8 13.5 22.6 19.3 13.0 14.3 19.4 24.8 31.1 16.6 23.1 22.6 34.8	6.4 10.2 7.8 6.5 7.2 5.4 6.4 5.3 6.0 7.7 7.4 8.8 7.5 12.5 10.6 7.1 7.8 10.6 13.5 16.9 9.0 12.4 12.1 18.6	175.7 308.3 0.0 0.0 0.0 178.6 0.0 227.2 0.0 227.2 0.0 0.0 403.2 336.8 0.0 0.0 338.2 444.8 571.1 0.0 409.6 400.5 642.6 280.1	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	30.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	3.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

3

.

. ,





PLATE A-9


PLATE A-10

-

٤.	lient:
	Sounding:
	Date:

*KLEINFELDER B77 29-Oct-96* 

Source:BeOffset (m):0.Cone:AlGeophone:0.

Beam & Hammer 0.56 AD 045 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For	Shear Wave	Velocity	Corresponding Depth Increment			
		X-Over						
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)		
2.40	2.46							
3.40	3.45	5.2	189 🦟	619	2.4 · 3.4	7.9 - 11.2		
4.40	4.44	5.1	194	637	3.4 - 4.4	11.2 - 14.4		
5.40	5.43	4.4	226 🛩	741	4.4 - 5.4	14.4 - 17.7		
6.40	6.42	4.0	249	817	5.4 - 6.4	17.7 - 21.0		
7.40	7.42	3.9	256	838	6.4 - 7.4	21.0 - 24.3		
8.40	8.42	3.8	262	861	7.4 - 8.4	24.3 - 27.6		
9.40	9.42	3.7	270	885	8.4 - 9.4	27.6 - 30.8		
10.40	10.42	4.1	244 🗸	799	9.4 - 10.4	30.8 34.1		
11.40	11.41	3.8	263	862	10.4 - 11.4	34.1 - 37.4		
12.40	12.41	3.7	270	886	11.4 - 12.4	37.4 - 40.7		
13.40	13.41	4.4	227	745	12.4 - 13.4	40.7 - 44.0		
14 40	14.41	3.5	285	937	13.4 - 14.4	44.0 47.2		
15.40	15.41	3.8	263 🖉	863	14.4 - 15.4	47.2 - 50.5		
16.40	16.41	3.9	256	841	15.4 - 16.4	50.5 - 53.8		
17 40	17.41	3.5	286	937	16.4 - 17.4	53.8 - 57.1		
18.40	18.41	4.1	244	800	17.4 - 18.4	57.1 - 60.4		
19.40	19.41	4.1	244	800	18.4 - 19.4	60.4 - 63.6		
20.40	20.41	3.8	263 🗸	863	19.4 - 20.4	63.6 - 66.9		
20.40	21.41	3.8	263	863	20.4 - 21.4	66.9 - 70.2		
21.40	27.41	3.7	270	886	21.4 - 22.4	70.2 - 73.5		
22.40	22.41	3.9	256	841	22.4 23.4	73.5 - 76.8		
23.40	23.41	4.2	238	781	23.4 - 24.4	76.8 - 80.1		
24.40	25.41	4.5	222 🗸	729	24.4 - 25.4	80.1 - 83.3		
25.40	26.41	4.6	217	713	25.4 - 26.4	83.3 - 86.6		
20.40	27.41	4.2	238	781	26.4 - 27.4	86.6 - 89.9		
27.40	28.41	3.9	256	841	27.4 - 28.4	89.9 - 93.2		
20.40	20.41	4.2	238	781	28.4 - 29.4	93.2 - 96.5		
29.40	25.41	3.6	278	911	29.4 - 30.4	96.5 - 99.7		
30.40	21 40	33	303	994	30.4 - 31.4	99.7 - 103.0		
31.40	22.40	3.4	294	965	31.4 - 32.4	103.0 - 106.3		
32.40	32.40	3.4	278	911	32.4 - 33.4	106.3 - 109.6		
33.40	33.40	3.0	333	1093	33.4 - 34.4	109.6 - 112.9		
34.40	25.40	31	323	1058	34.4 - 35.4	112.9 - 116.1		
35.40	36.40	2.7	370	1215	35.4 - 36.4	116.1 - 119.4		

. -

1 ConeTec Inc. - CPT Interpretation Interpretation Output - Release 1.00.07 96-0805-1047-4593 Run No: 96-309 Job No: Kleinfelder Client: Project: I15 Section 8 - 3300 S 115, S8: 115 Median, 33-SC-34 Site: Location: 3300 S Structure 20 TON A 040 Cone: CPT Date: 96/19/06 CPT Time: 19:48 CPT File: KA33S034.COR (ft): 32.8 10.00 Water Table (m): Averaging Increment (m): 0.25 12.50 Su Nkt used: Robertson and Campanella, 1983 Phi Method : Jamiolkowski - All Sands Dr Method : Used Unit Weights Assigned to Soil Zones ...... ----------. . . . . E.Stress Hyd. Pr. N60 (N1)60 Dr Phi OCR Su AvgQt Avafs AvgRf Depth Depth (blows/ft) (kPa) (%) (deg.) (ratio) (kPa) (kPa) (%) (m) (kPa) (kPa) (ft) -----. . . . . . . . . . . . . . . . -----. . . . . . . . . ------. . . . . . . ----..... 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 2.4 0.0 0.0 0.12 0.41 7.3 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.23 0.38 1.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 0.0 2.05 0.62 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 17.1 1.0 0.0 0.88 2.87 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.9 0.0 0.0 1.0 3.69 1.12 0.0 0.0 0.0 0.0 0.0 0.0 1.0 26.8 0.0 1.38 1.0 4.51 0.0 0.0 0.0 0.0 0.0 1.0 31.7 0.0 1.0 0.0 0.0 5.33 1.62 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 36.6 1.88 1.0 0.0 6.15 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 41.4 0.0 6.97 2.12 1.0 0.0 0.0 0.0 0.0 0.0 1.0 46.3 0.0 2.38 1.0 0.0 0.0 7.79 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 51.2 2.62 8.61 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 56.1 9.43 2.88 0.0 0.0 0.0 1.0 0.0 60.9 0.0 0.0 0.0 0.0 1.0 10.25 3.12 1.0 65.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.38 1.0 0.0 11.07 0.0 0.0 0.0 1.0 0.0 0.0 0.0 70.7 1.0 0.0 0.0 11.89 3.62 0.0 0.0 0.0 1.0 0.0 0.0 0.0 75.6 0.0 1.0 0.0 3.88 12.71 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 80.4 4.12 1.0 0.0 13.53 0.0 0.0 0.0 0.0 1.0 85.3 0.0 0.0 1.0 0.0 0.0 4.38 14.35 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 90.2 4.62 15.17 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 95.1 1.0 0.0 15.99 4.88 1.0 0.0 0.0 0.0 99.9 0.0 0.0 0.0 0.0 0.0 5.12 1.0 16.81 0.0 0.0 0.0 0.0 0.0 1.0 0.0 104.8 1.0 0.0 0.0 17.63 5.38 0.0 0.0 0.0 0.0 1.0 0.0 109.7 0.0 5.62 1.0 0.0 0.0 18.45 0.0 0.0 1.0 0.0 1.0 0.0 0.0 114.6 0.0 0.0 0.0 5.88 19.27 0.0 1.0 119.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.12 1.0 20.09 0.0 0.0 1.0 0.0 0.0 0.0 124.3 0.0 0.0 0.0 6.38 1.0 20.92 0.0 0.0 1.0 0.0 0.0 0.0 0.0 129.2 0.0 0.0 1.0 21.74 6.62 1.0 134.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.88 1.0 22.56 0.0 0.0 0.0 0.0 1.0 0.0 0.0 138.9 7.12 1.0 0.0 0.0 23.38 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 143.8 7.38 24.20 0.0 0.0 1.0 0.0 0.0 148.7 0.0 0.0 0.0 0.0 1.0 25.02 7.62 1.0 0.0 0.0 0.0 0.0 0.0 153.6 0.0 0.0 0.0 25.84 7.88 1.0 1.0 **0.**0 0.0 0.0 0.0 0.0 0.0 158.4 8.12 1.0 0.0 0.0 26.66 0.0 1.0 0.0 0.0 0.0 0.0 0:0 163.3 0.0 1.0 0.0 8.38 27.48 0.0 0.0 1.0 0.0 0.0 0.0 168.2 0.0 0.0 0.0 1.0 28.30 8.62 0.0 1.0 0.0 0.0 0.0 0.0 0.0 173.1 0.0 8.88 1.0 0.0 29.12 1.0 0.0 0.0 0.0 0.0 0.0 0.0 177.9 9.12 1.0 0.0 0.0 29.94 1.0 0.0 0.0 0.0 0.0 0.0 0.0 182.8 0.0 0.0 9.38 1.0 30.76 0.0 1.0 0.0 0.0 0.0 0.0 187.7 0.0 0.0 0.0 1.0 31.58 9.62 0.0 1.0 0.0 0.0 0.0 0.0 0.0 192.6 9.88 1.0 0.0 0.0 32.40 3.0 110.7 0.0 0.0 1.2 7.9 5.5 196.0 1581.2 36.9 2.3 10.12 33.22 30.0 30.0 3.0 7.1 4.9 124.9 27.4 198.1 3.7 10.38 1763.4 1.6 34.04 104.3 30.0 30.0 3.0 4.2 200.1 6.1 6.0 19.9 1.3 1510.1 34.86 10.62 0.0 3.0 118.6 0.0 8.5 5.8 53.1 3.1 202.2 8.6 10.88 1693.9 35.68 3.0 0.0 0.0 204.2 11.0 8.4 5.7 116.4 1670.1 41.6 2.5 36.50 11.12 7.3 5.0 70.2 0.0 0.0 1.5 13.5 1097.5 36.0 3.3 206.3 11.38 37.32 77.8 0.0 0.0 1.5 19.9 6.0 208.3 - 15.9 4.1 11.62 1196.4 1.7 38.14 1.5 30.0 210.4 18.4 5.3 3.6 88:3 30.0 1332.5 20.2 1.5 11.88 38.96 1.5 30.0 20.8 5.4 3.6 88.8 30.0 212.4 12.12 1342.9 15.7 1.2 39.78 6.0 101.4 30.0 30.0 1.5 4.0 23.3 1505.2 27.2 1.8 214.5 40.60 12.38 1.5 30.0 30.0 95.6 12.62 1436.7 19.5 1.4 216.5 25.8 5.7 3.8 41.42 30.0 1.5 11.5 0.9 218.5 28.2 5.1 3.4 82.8 30.0 1281.3 42.24 12.88

Page:

ConeTec Inc. - CPT Interpretation Run No: 96-0805-1047-4593 CPT File: KA33S034.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 ( (blows	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
	13 12	1393.8	13.1	0.9	220.6	30.7	5.6	3.7	91.4	30.0	30.0	1.5
43.88	13.38	1245.9	12.7	1.0	222.6	33.1	5.0	3.3	104.0	30.0	30.0	1.5
44.70	13.62	1571.4	13.4	0.9	224.7	32.0	7.2	4.7	122.0	30.0	30.0	3.0
45.52	13.88	1789.7	26.5	1.5	228.8	40.5	4.7	3.0	72.6	30.0	30.0	1.5
46.34	14.12	1358.5	6.3	0.5	230.8	42.9	5.4	3.5	86.8	30.0	30.0	1.5
47.98	14.62	1937.8	49.7	2.6	232.9	45.4	9.7	6.2	132.8	30.0	30.0	3-0
48.80	14.88	2848.0	68.6	2.4	234.9	47.8	11.4	7.2	202.2	30.0	30.0	3.0
49.62	15.12	2814.8	51.8	2.3	239.0	52.7	14.9	9.5	275.6	30.0	32.0	6.0
50.44	15.30	4779.3	93.8	2.0	241.1	55.2	15.9	10.0	0.0	33.5	32.0	1.0
52.08	15.88	3578.6	76.9	2.1	243.2	57.6	14.3	9.0	262.2	30.0	32.0	°0_U 3\Ω
52.90	16.12	2157.8	56.8	2.6	245.5	60.1	11.7	7.2	161.6	0.0	0.0	3.0
53.72	16.38	2330.0	02.0 121.0	2.1	247.3	65.0	18.7	11.6	348.8	32.4	32.0	6.0
54.54	16.88	2482.3	73.3	3.0	251.4	67.4	12.4	7.7	173.1	0.0	0.0	3.0
56.18	17.12	1538.0	27.6	1.8	253.5	69.9	6.2	3.8	97.2	30.0	30.0	1.5
57.00	17.38	1344.5	8.7	0.6	255.5	72.3	5.4	2.9	69.7	30.0	30.0	1.5
57.82	17.62	1203.5	0.U 8 1	0.5	259.6	77.3	5.8	3.5	89.0	30.0	30.0	1.5
50.64	17.88	1340.7	8.4	0.6	261.7	79.7	5.4	3.2	79.9	30.0	30.0	1.5
60.28	18.38	1391.3	6.2	0.4	263.7	82.2	5.6	3.4	83.6	30.0	30.0	1.5
61.10	18.62	1394.7	5.5	0.4	265.8	84.6	5.6	5.5	132.0	30.0	30.0	1.5
61.93	18.88	2005.2	19.8	1.0	267.0	89.5	9.1	5.5	154.2	30.0	30.0	3.0
62.75	19.12	3569 2	37.5	1.1	272.0	92.0	11.9	7.1	0.0	30.0	30.0	1.0
66 30	19.62	2733.2	58.6	2.1	274.1	94.4	10.9	6.5	189.2	30.0	30.0	3.0
65.21	19.88	1512.5	23.1	1.5	276.1	96.9	6.0	3.6	91.2	30.0	32.0	1.5
66.03	20.12	4960.0	80.3	1.6	278.2	99.3 101 8	10.2	9. <i>1</i> 12.7	0.0	40.2	34.0	1.0
66.85	20.38	6503.5	151.1	2.0	282.5	104.2	4.8	2.8	64.9	30.0	30.0	1.0
61.01	20.02	1201.5	5.6	0.5	284.6	106.7	4.8	2.8	64.8	30.0	30.0	1.0
69.31	21.12	2395.8	11.0	0.5	286.7	109.1	8.0	4.6	0.0	30.0	30.0	1.0
70.13	21.38	3884.7	55.1	1.4	288.8	111.6	12.9	7.5	85.2	30.0	30.0	1.5
70.95	21.62	1469.9	13.9	0.9	291.0	114.0	5.8	3.3	82.6	30.0	30.0	1.5
71.77	21.88	1598.2	11.8	0.7	295.1	118.9	6.4	3.6	94.7	30.0	30.0	1.5
73.41	22.38	1582.0	13.1	0.8	297.1	121.4	6.3	3.6	93.1	30.0	30.0	1.5
74.23	22.62	1432.0	8.1	0.6	299.1	123.9	5.7	3.2	80.7	30.0	30.0	1.5
75.05	22.88	3367.1	23.0	0.7	301.3	120.3	25.5	14.3	0.0	43.7	34.0	1.0
75.87	23.12	1995/ 0	245 5	2.4	305.7	131.2	47.1	26.4	0.0	69.4	40.0	1.0
77 51	23.50	21514.0	313.5	1.5	308.0	133.7	53.8	30.0	0.0	73.1	40.0	1.0
78.33	23.88	23288.1	322.3	1.4	310.3	136.1	58.2	32.3	0.0	75.3	40.0	1.0
79.15	24.12	13972.5	207.2	1.5	312.6	138.6	34.9	19.3	0.0	46.1	34.0	1.0
79.97	24.38	8461.9 5804 7	170.0	2.0	316.9	141.0	23.6	13.0	434.9	35.6	32.0	6.0
80.79	24.02	2206.3	47.3	2.1	319.0	145.9	8.8	4.8	139.3	30.0	30.0	1.5
82.43	25.12	3777.3	93.0	2.5	321.0	148.4	15.1	8.3	264.6	30.0	30.0	5.0
83.25	25.38	8754.2	162.1	1.9	323.1	150.8	29.2	15.9	441 0	40.7	.32.0	6.0
84.07	25.62	5990.8	156.6	2.0	323.2	155.7	10.7	5.8	175.1	30.0	30.0	3.0
84.89	25.88	2075.4	42.8	2.1	329.3	158.2	8.3	4.5	127.0	30.0	30.0	1.5
86.53	26.38	1965.4	26.3	1.3	331.4	160.6	7.9	4.2	117.9	30.0	30.0	1.5
87.35	26.62	5423.9	64.4	1.2	333.5	163.1	18.1	9.7	U.U 53/ 0	32.3 40 5	32.0	6.0
88.17	26.88	7187.3	194.3	2.7	335.6	165.5	20.7	73	179.0	0.0	0.0	3.0
88.99	27.12	2742.8	92.2	2.0	339.7	170.4	7.6	4.0	111.2	30.0	30.0	1.5
89.81 Qn 43	27.62	2254.4	38.1	1.7	341.7	172.9	9.0	4.8	139.2	30.0	30.0	1.5
91.45	27.88	7485.3	151.4	2.0	343.8	175.4	25.0	13.2	0.0 502 0	41.3	34.0 72 0	1.U 6.0
92.27	28.12	6810.4	162.3	2.4	345.9	177.8 120 2	21.2	12.0	416.3	33.5	32.0	6.0
93.09	28.38	5732.5	156.0	2.1	340.0	182.7	44.7	23.4	0.0	57.7	38.0	1.0
93.91	28.62	15420.0 22101 8	318.7	1.4	352.3	185.2	55.3	28.8	0.0	72.0	40.0	1.0
94./J 05 55	29.12	5933.5	156.5	2.6	354.5	187.6	23.7	12.3	431.3	34.2	32.0	0.U 1 5
96.37	29.38	2490.1	25.7	1.0	356.6	190.1	10.0	5.2	125.5	30.0	30.0	1.0
97.19	29.62	3717.9	48.0	1.3	358.7	192.5	12.4	5.9	186.0	30.0	30.0	3.0
98.01	29.88	2881.1	37.8	1.4	0 JOU.Ö	195.0	7.8	4.0	110.2	30.0	30.0	1.5
98.83	30.12	1937.6	21.9									

ConeTec Inc. - CPT Interpretation Run No: 96-0805-1047-4593 CPT File: KA33S034.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
	70 79	2202 6	17.9	0.8	364.9	199.9	8.8	4.5	131.0	30.0	30.0	1.5
99.65	20.20	7455 5	78 1	2.1	366.9	202.3	14.6	7.5	246.9	30.0	30.0	3.0
100.47	30.02	4099 7	96 3	1.4	369.0	204.8	23.3	11.9	0.0	38.3	32.0	1.0
101.29	50.00	0700.7	10.5	2 1	371.1	207.2	8.6	4.4	126.6	30.0	30.0	1.5
102.11	51.12	2101.1	44.4	1.9	373.2	209.7	17.3	8.8	0.0	30.0	30.0	1.0
102.94	31.30	5190.0	106.7	1 0	375.4	212.1	18.6	9.4	0.0	31.6	32.0	1.0
103.76	31.62	3390.7	21 0	1 1	377 5	214.6	8.0	4.0	112.8	30.0	30.0	1.5
104.58	31.88	2001.8	21.7	2 5	370 6	217.0	10.0	5.0	113.0	0.0	0.0	1.5
105.40	32.12	2008.7	50.7	2.2	381 6	219 5	11.7	5.9	186.7	30.0	30.0	1.5
106.22	32.38	2935.1	2/5 5	2.4	383 7	222.0	32.1	16.1	0.0	46.9	34.0	1.0
107.04	32.62	9033.1	243.3	1 0	386 0	224.4	78.5	39.2	0.0	87.1	42.0	1.0
107.86	32.88	39243.0	400.0	0.7	388 5	226.9	77.9	38.9	0.0	92.0	42.0	1.0
108.68	33.12	46/12.8	340.5	0.7	301.1	229.3	68.2	34.1	0.0	88.1	42.0	1.0
109.50	33.38	40927.3	223.4	0.5	371.1	231.8	64.8	32.4	0.0	86.6	42.0	1.0
110.32	33.62	38891.8	200.3	0.7	306 2	234 2	70.9	35.5	0.0	89.1	42.0	1.0
111.14	33.88	42560.7	203.1	0.7	308 7	236 7	73.2	36.6	0.0	89.9	42.0	1.0
111.96	34.12	43937.9	244./	0.0	601 3	239 1	70.1	35.1	0.0	88.5	42.0	1.0
112.78	34.38	42073.2	1/5.2	0.4	401.5	23741						

. ...

. ..

Page: 3







Client: Sounding: Date: KLEINFELDER 33-SC-34 19-Jun-96

(34/12in

L'A. H. La Laure Sura & ...

Source:Beam & HammerOffset (m):0.56Cone:AD 040 (20 tonne)Geophone:0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wav	e Velocity	Corresponding Depth Increment					
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)				
11.15 12.15 13.15 14.15 15.15 16.15 17.15 18.15 20.15 21.15 22.15 23.15 24.15 25.15 26.15 27.15 28.15 29.15 30.15 31.15 32.15 33.15 34.15	11.16 12.16 13.16 14.16 15.16 16.16 17.16 18.16 20.16 21.16 22.16 23.16 24.16 25.16 26.16 27.16 28.16 30.16 31.16 32.15 33.15 34.15	4.8 4.9 5.0 5.0 4.1 3.8 3.6 4.0 4.3 4.3 4.3 4.3 4.5 4.6 4.4 4.3 3.4 4.1 3.2 4.8 3.4 3.4 3.2	208 204 204 * 200 244 263 278 * 250 232 208 213 222 * 217 233 233 294 	683 669 656 656 800 863 911 820 763 683 698 729 713 745 763 763 965 800 1025 683 965 1025	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36.6 - 39.9 39.9 - 43.1 43.1 - 46.4 46.4 - 49.7 49.7 - 53.0 53.0 - 56.2 59.5 - 62.8 62.8 - 66.1 66.1 - 69.4 69.4 - 72.7 72.7 - 76.0 76.0 - 79.2 79.2 - 82.5 82.5 - 85.8 85.8 - 89.7 89.1 - 92.4 92.4 - 95.6 98.9 - 102. 102.2 - 105. 105.5 - 108. 108.8 - 112.				

ConeTec Interpr Run No: Job No: Client: Project Site: Locatio Cone: CPT Dat CPT Tim CPT Fil	Inc CP etation OL 96-0805 96-309 Kleinfe : I15 Sec I15, SE n: 3300 S 20 TOM e: 96/19/C e: 00:33 e: KA33S03	PT Interpre- itput - Re -1048-5536 	etation lease 1.00 6 3300 S ian, 33-SC	:-38					rage:			
Water Averag Su Nkt Phi Me Dr Me	Table (m): ing Increm used: thod : thod :	: ment (m): ts Assigne	10.00 0.25 12.50 Robertsor Jamiolkow d to Soil	(ft): n and Cam wski - Al Zones	32.8 panella, 19 l Sands	983						·
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 ( blows	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
0 41	0, 12	 1.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0
1.23	0.38	1.0	0.0	0.0	7.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0 1 0
2.05	0.62	1.0	0.0	0.0	12.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0
2.87	0.88	1.0	0.U n n	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0
3.69 4 51	1.12	1.0	0.0	0.0	26.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0
5.33	1.62	1.0	0.0	0.0	31.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0
6.15	1.88	1.0	0.0	0.0	36.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0
6.97	2.12	1.0	0.0	0.0	41.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0
7.79	2.38	1.0	0.0	0.0	51.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0
0.01	2.88	1.0	0.0	0.0	56.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0
10.25	3.12	1.0	0.0	0.0	60.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0
11.07	3.38	1.0	0.0	0.0	65.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0
11.89	3.62	1.0	0.0	0.0	70.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0
12.71	3.88	1.0	0.0	0.0	80.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0
13.55	4.12	1.0	0.0	0.0	85.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0
14.30	4.62	1.0	0.0	0.0	90.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0
15.99	4.88	1.0	0.0	0.0	95.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0
16.81	5.12	1.0	0.0	0.0	99.9	0.0	0.0	0.0.	0.0	0.0	0.0	1.0
17.63	5.38	1.0	0.0	0.0	104.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0
18.45	5.62	1.0	0.0	0.0	114.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0
19.27	5.00	1.0	0.0	0.0	119.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0
20.09	6.38	1.0	0.0	0.0	124.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0
21.74	6.62	1.0	0.0	0.0	129.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0
22.56	6.88	1.0	0.0	0.0	134.1	0.0	0.0	0.0	0.0	0.0	· 0.0	1.0
23.38	7.12	1.0	0.0	0.0	143_8	0.0	0.0	0.0	0.0	0.0	0.0	1.0
24.20	7 62	1.0	0.0	0.0	148.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0
25.84	7.88	1.0	0.0	0.0	153.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0
26.66	8.12	1.0	0.0	0.0	158.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0
27.48	8.38	1.0	0.0	0.0	163.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0
28.30	8.62	1.0	0.0	0.0 n n	173.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0
29.12	9.12	1.0	0.0	0.0	177.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0
30.76	9.38	1.0	0.0	0.0	182.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0
31.58	9.62	1.0	0.0	0.0	187.7	0.0	0.0	0.0	U.U 7 0	0.0	0.0	0.8
32.40	9.88	279.7	4.8	1.7	191.7	0.0	6.8	4.8	93.6	0.0	0.0	1.5
33.22	10.12	1596.5	32.8	2.1	196.3	3.7	8.0	5.6	111.7	0.0	0.0	3.0
34.04	10.62	1380.8	21.0	1.5	198.4	6.1	5.5	3.8	94.1	30.0	30.0	1.5
35.68	10.88	1421.8	25.6	1.8	200.4	8.6	7.1	4.9	97.0	U.U 30 0	0.0 10 01	1.5
36.50	11.12	1350.5	16.0	1.2	202.5	11.0	5.4 g n	5.1	91.0 110 8	0.0	0.0	3.0
37.32	11.38	1603.6	32.3	2.0	204.5	13.5	54	3.7	89.8	30.0	30.0	1.5
38.14	11.62	1545.5	15.5	1.2	208.6	18.4	4.6	3.1	73.2	30.0	30.0	1.5
38.96	11.00	1720 8	30.6	1.8	210.7	20.8		4.7	119.9	30.0	30.0	3.0
40.60	12.38	1725.5	30.1	1.7	212.7	23.3	.9	4.6	119.2	30.0	30.0	3.0
41.42	12.62	1289.9	10.2	0.8	214.7	25.8	2.2	3.4	84.0	30.0	30.0	1.5
42.24	12.88	1469.9	12.9	0.9	216.8	28.2	5.9	2.9	¥0.U	30.0	20.0	

المراجع المراجع المراجع المراجع المراجع (مراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع مراجع المراجع ال

....

• •

Page: 1

. In Haddands Mrive

ConeTec Inc. - CPT Interpretation Run No: 96-0805-1048-5536 CPT File: KA33S038.COR

3230.0

2470.4

2914.2

20790.9

32646.3

33140.8

32397.0

22812.2

3537.0

79.6

63.6

85.5

236.5

230.1

186.8

169.6

137.1

104.7

2.5

2.6

2.9

1.1

0.7

0.6

0.5

0.6

3.0

344.9

347.0

349.0

351.3

353.7

356.2

358.7

361.2

363.4

177.8

180.3

185.2

187.6

190.1

192.5

195.0

197.4

182.7 ..

12.9

9.9

14.6

41.6

65.3

55.2

54.0

45.6 17.7 6.8

5.2

7.6

·21.7

34.0

28.6

27.9 23.5 9.1 216.6

155.4

190.6

. 0.0

0.0

0.0

0.0

0.0

238.1

30.0

30.0

0.0

70.2

83.1

83.4

82.7

72.5

0.0

30.0

30.0

40.0

42.0

42.0

42.0

40.0

0.0

0.0

3.0

1.5

3.0

1.0

1.0

1.0

1.0

1.0

3.0

28.12

28.38

28.62

28.88

29.12 29.38

29.62

29.88

30.12

92.27

93.09

93.91

94.73

95.55

96.37

97.19

98.01

98.83

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
43.06	13.12	1527.5	11.8	0.8	218.8	30.7	6.1	4.0	102.2	30.0	30.0	1.5
43.88	13.38	1622.7	17.5	1.1	220.9	33.1	6.5	4.3	109.5	30.0	30.0	1.5
44.70	13.62	1587.0	20.9	1.5	222.9	35.0	0.3	4.2	106.3	30.0	30.0	1.5
43.32	12.00	7277 0	24.0	2.0	225.0	20.0	17 1	4./	260 9	20.0	30.0	5.0
40.34	14.12	2496.9	58.1	2.0	227.0	40.5	10.0	6.5	178.0	30.0	30.0	3.0
47.98	14.62	2721.1	59.8	2.2	231.1	45.4	10.9	7.0	· 195.6	30.0	30.0	3.0
48.80	14.88	3762.4	97.2	2.6	233.2	47.8	15.0	9.6	278.5	30.0	32.0	6.0
49.62	15.12	3096.2	79.4	2.6	235.2	50.3	12.4	7.9	224.9	30.0	30.0	3.0
50.44	15.38	2195.0	80.3	3.7	237.3	52.7	14.6	9.3	152.4	0.0	0.0	3.0
51.26	15.62	5982.8	114.2	1.9	239.4	55.2	19.9	12.6	0.0	40.0	34.0	1.0
52.08	15.88	4796.5	143.2	3.0	241.5	57.6	19.2	12.1	359.8	33.6	32.0	6.0
52.90	16.12	2000.5	63.0	3.1	243.5	60.1	10.0	6.5	135.7	0.0	0.0	3.0
55.72	16.30	1472.0	25.9	1.0	242.0	62.0	5.0	3.0	91.0	30.0	30.0	1.5
55 36	16.02	1621 6	10.0	0.7	247.0	67.4	57	3.5	88 4	30.0	30.0	1.5
56 18	17 12	1555.4	8.7	0.7	251 7	69.9	6.2	3.8	98.7	30.0	30.0	1.5
57.00	17.38	2062.0	23.8	1.2	253.8	72.3	8.2	5.1	138.9	30.0	30.0	3.0
57.82	17.62	3393.5	55.1	1.6	255.8	74.8	13.6	8.3	245.0	30.0	30.0	3.0
58.64	17.88	4728.6	77.3	1.6	257.9	77.3	15.8	9.6	0.0	32.2	32.0	1.0
59.46	18.12	2496.5	52.4	2.1	260.0	79.7	10.0	6.1	172.5	30.0	30.0	3.0
60.28	18.38	2049.9	31.9	1.6	262.1	82.2	8.2	5.0	136.5	30.0	30.0	3.0
61.10	18.62	6354.0	114.2	1.8	264.2	84.6	21.2	12.8	0.0	40.4	34.0	1.0
61.93	18.88	4125.3	49.9	1.2	266.4	87.1	13.8	8.2	0.0	30.0	32.0	1.0
62.75	19.12	25/5.5	63.4 145 4	2.5	268.5	89.5	10.5	6.2	177.4	30.0	30.0	3.0
63.57	19.58	11343.3	102.0	1.5	270.7	92.0	28.4	10.9	0.0	20.0	38.0	1.0
65 21	19.02	5775 5	173 0	3.0	275.0	94.4	23 1	13 6	432 3	37 0	42.0	1.0
66.03	20.12	1387.1	9.2	0.7	277.3	99.3	5.5	3.3	80.8	30.0	30.0	15
66.85	20.38	1371.0	10.2	0.7	279.3	101.8	5.5	3.2	79.2	30.0	30.0	1.5
67.67	20.62	3482.7	43.0	1.2	281.5	104.2	11.6	6.8	0.0	30.0	30.0	1.0
68.49	20.88	1667.5	24.7	1.5	283.6	106.7	6.7	3.9	102.2	30.0	30.0	1.5
69.31	21.12	1503.1	19.0	1.3	285.6	109.1	6.0	3.5	88.7	30.0	30.0	1.5
70.13	21.38	1721.6	21.8	1.3	287.7	111.6	6.9	4.0	105.8	30.0	30.0	1.5
70.95	21.62	1617.6	15.0	0.9	289.7	114.0	6.5	3.7	97.1	30.0	30.0	1.5
71.77	21.88	1422.8	10.6	0.7	291.8	116.5	5.7	3.3	81.2	30.0	30.0	1.5
72.59	22.12	2015.7	39.9	2.0	293.8	118.9	8.1	4.6	128.2	30.0	30.0	1.5
7/ 27	22.30	12/04 0	102.3	2.0	290.0	121.4	20.2	20.0	0.0	02.0 58 0	38.0	1.0
75.05	22.02	20267 7	200 /	2.0	300 /	123.9	50.7	23.0	0.0	71 9	20.0	1.0
75.87	23.12	18011.1	259.6	1.4	302.7	128.8	45.0	25.3	0.0	68.3	40.0	1.0
76.69	23.38	15257.3	171.6	1.1	305.0	131.2	38.1	21.4	0.0	63.4	38.0	1.0
77.51	23.62	10118.1	164.6	1.6	307.3	133.7	33.7	18.8	0.0	51.5	36.0	1.0
78.33	23.88	3413.4	91.8	2.7	309.4	136.1	13.7	7.6	237.4	30.0	30.0	3.0
79.15	24.12	2183.4	52.1	2.4	311.4	138.6	8.7	4.8	138.7	30.0	30:0	1.5
79.97	24.38	4146.3	107.5	2.6	313.5	141.0	16.6	9.2	295.3	30.0	30.0	3.0
80.79	24.62	9177.9	119.6	1.3	315.7	143.5	22.9	12.6	0.0	48.3	36.0	1.0
81.61	24.88	6920.7	184.1	2.7	317.8	145.9	27.7	15.2	516.6	40.2	34.0	6.0
82.45	25.12	2955.5	112.2	5.8 วะ	319.9	148.4	14.8	8.1 57	179.0	0.0	0.0	5.0
03.25 84 07	25.30	2104.0	22.9 27 0	2.5	321.9	157 7	7 /	5./ / 0	100.0	10.0	1.0	1.5
84.07 86 80	25.02	2491 5	47 4	1.0	324.0	155.5	10 0	4.U 5.4	160 R	30.0	30.0	1.5
85 71	26.12	5891.1	129.8	2.2	328.1	158.2	23.6	12.7	432.4	35.1	32.0	6.0
86.53	26.38	2050.9	47.3	2.3	330.1	160.6	8.2	4.4	124.8	30.0	30.0	1.5
87.35	26.62	1978.6	32.0	1.6	332.2	163.1	7.9	4.2	118.7	30.0	30.0	1.5
88.17	26.88	2143.5	45.6	2.1	334.2	165.5	8.6	4.6	131.5	30.0	30.0	1.5
88.99	27.12	9571.8	138.0	1.4	336.4	168.0	23.9	12.8	0.0	48.6	36.0	1.0
89.81	27.38	5416.1	184.6	3.4	338.6	170.4	27.1	14.4	392.6	0.0	0.0	6.0
90.63	27.62	5574.1	117.9	2.1	340.7	172.9	18.6	9.9	0.0	33.0	32.0	1.0
91.45	27.88	6869.1	99.8	1.5	342.8	175.4	22.9	12.1	0.0	38.9	32.0	1.0

Page: 2

LI, ILA, MERIE RATERIA MERITA (N. 1919)

ConeTec Inc. - CPT Interpretation Run No: 96-0805-1048-5536 CPT File: KA33S038.COR

Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60 [.]	(N1)60	Su	Dr	Phi	OCR
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blow	s/ft)	(kPa)	(%)	(deg.)	(ratio)
99.65 100.47 101.29 102.11 102.94 103.76 104.58 105.40	30.38 30.62 30.88 31.12 31.38 31.62 31.88 32.12	2910.2 4440.2 3926.4 5896.2 12284.8 16179.4 40018.1 43972.2	62.5 122.4 92.9 160.4 377.7 302.2 291.3 321.2	2.1 2.8 2.4 2.7 3.1 1.9 0.7 0.7	365.5 367.5 369.6 371.6 373.7 375.9 378.3 380.8	199.9 202.3 204.8 207.2 209.7 212.1 214.6 217.0	11.6 17.8 15.7 23.6 49.1 40.4 66.7 <b>73.3</b>	6.0 9.1 8.0 12.0 24.9 20.4 33.6 36.8	187.6 309.6 268.2 425.4 936.1 0.0 0.0 0.0	30.0 30.0 33.3 54.3 62.1 88.0 90.6	30.0 30.0 32.0 36.0 38.0 42.0 42.0	3.0 3.0 6.0 1.0 1.0

••

*****

Page: 3







Client: Sounding: Date: KLEINFELDER 33-SC-38 19-Jun-96

Source:Beam & HammerOffset (m):0.56Cone:AD 040 (20 tonne)Geophone:0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Way	ve Velocity	Corres Depth I	ponding ncrement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
(///) 11.10 12.10 13.10 14.10 15.10 16.10 17.10 18.10 19.10 20.10 21.10 22.10 23.10 24.10 25.10 26.10 27.10 28.10 29.10 30.10 31.10 32.10	(//// 11.11 12.11 13.11 14.11 15.11 16.11 17.11 18.11 19.11 20.11 21.11 22.11 23.11 24.11 25.11 26.11 27.11 28.11 29.11 30.11 31.11 32.10	5.2 4.5 4.4 4.3 4.4 3.8 3.7 3.5 4.4 4.6 5.2 4.2 4.3 4.1 4.8 4.4 4.3 4.0 3.7 3.5 3.4	192 222 227 263 270 286 * 227 217 192 238 232 * 244 208 227 233 250 * 270 286 294	630 728 745 762 745 863 886 937 745 713 631 781 763 800 683 745 763 820 887 937 965	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36.4 - 39.7   39.7 - 43.0   46.3 - 49.5   49.5 - 52.8   52.8 - 56.1   56.1 - 59.4   59.4 - 62.7   65.9 - 69.2   69.2 - 72.5   72.5 - 75.8   75.8 - 79.1   79.1 - 82.3   82.3 - 85.6   88.9 - 92.2   92.2 - 95.5   95.5 - 98.8   98.8 - 102.0   102.0 - 105.3

مىرىيە كەركىيى ئىلىغان يېرىكىيى ئەرىپى يېرىپى ھەركى ھەركىيە راغىيە كەركى يېر

-----

1 Page: ConeTec Inc. - CPT Interpretation Interpretation Output - Release 1.00.07 Run No: 96-0913-0858-2140 96-309 Job No: Kleinfelder Client: Project: 115 Section 10 115, S10:S.R.201,09-SC-4 Site: Location: Jordan R.Struct 20 TON A AD041 Cone: CPT Date: 96/07/08 CPT Time: 15:07 CPT File: KA09S04.COR (ft): 6.6 2.00 Water Table (m): 0.25 Averaging Increment (m): 12.50 Su Nkt used: Robertson and Campanelia, 1983 Phi Method : Jamiolkowski - All Sands Dr Method : Used Unit Weights Assigned to Soil Zones AvgFs AvgRf E.Stress Hyd. Pr. N60 (N1)60 Su Dr Phi OCR Depth AvgQt Depth (kPa) (%) (kPa) (kPa) (blows/ft) (kPa) (%) (deg.) (ratio) (m) (kPa) (ft) ...... . . . . . . . . . . . . . . . . . 95.0 66.2 0.0 50.0 1.0 2.4 0.0 33.1 56.6 0.3 0.12 16553.4 0.41 7.3 52.8 0.0 **95**.0 50.0 1 0 0.0 26.4 13205.2 115.4 0.9 0.38 1.23 42.5 0.0 84.7 48.0 1.0 12.1 0.0 21.2 **6370.**0 73.2 1.1 0.62 2.05 0.0 22.8 62.2 46.0 1.0 11.4 0.88 3419.7 33.0 1.0 16.7 0.0 2.87 407.8 70.3 10.0 46.0 0.0 20.5 40.9 2.6 21.2 5118.4 132.7 3.69 1.12 27.1 222.4 0.0 0.0 10.0 3.0 25.8 0.0 14.0 2805.3 83.2 4.51 1.38 15.8 28.2 250.8 0.0 0.0 10.0 30.2 0.0 3.2 3164.7 100.2 5.33 1.62 18.6 30.9 295.0 0.0 0.0 10.0 0.0 128.9 3.5 34.8 3722.8 1.88 6.15 219.6 10.0 38.0 1.2 13.9 22.1 0.0 0.0 82.8 3.0 6.97 2.12 2784.2 167.3 0.0 10.0 40.1 3.7 10.7 16.5 0.0 2134.5 64.9 3.0 2.38 7.79 138.5 0.0 0.0 6.0 8.9 13.4 1780.0 45.0 2.5 42.1 **6.**1 2.62 8.61 0.0 0.0 6.0 9.3 13.7 144.1 44.2 8.6 1853.9 57.5 3.1 2.88 9.43 128.3 6.0 11.0 35.1 2.1 46.2 8.3 12.0 0.0 0.0 3.12 1660.5 10.25 13.5 6.6 9.3 100.5 0.0 0.0 6.0 48.3 1318.2 39.4 3.0 11.07 3.38 0.0 20.7 62.5 42.0 1.0 15.9 15.1 0.7 50.4 3.62 6021.2 42.1 11.89 0.0 1.0 80.3 46.0 0.5 52.8 18.4 22.9 30.8 11437.3 52.8 12.71 3.88 55.2 20.8 18.9 24.9 0.0 67.8 44.0 1.0 70.9 0.9 4.12 7561.7 13.53 42.0 1.0 17.2 22.2 0.0 64.4 57.5 23.3 65.0 0.9 4.38 6867.5 14.35 52.8 40.0 1.0 0.0 19.7 4658.5 52.8 1.1 59.7 25.8 15.5 4.62 15.17 67.2 1.0 44.0 7849.0 42.8 0.5 61.9 28.2 19.6 24.4 0.0 15.99 4.88 1.0 19.4 23.7 0.0 66.4 42.0 30.7 64.2 1.1 16.81 5.12 7759.4 85.7 74.1 44.0 1.0 33.1 25.8 31.0 0.0 66.5 5.38 10335.1 136.3 1.3 17.63 0.0 81.3 44.0 1.0 68.9 35.6 27.0 31.9 0.4 13521.5 47.6 5.62 18.45 38.0 22.5 26.1 0.0 75.5 44.0 1.0 0.3 71.3 32.1 19.27 5.88 11253.4 44.0 25.4 0.0 74.8 1.0 40.5 22.3 73.7 20.09 6.12 11149.8 17.3 0.2 44.0 23.4 26.3 0.0 75.7 1.0 42.9 0.1 76.1 6.38 11715.5 12.0 20.92 42.0 1.0 63.4 78.5 45.4 19.4 21.4 0.0 0.2 16.2 21.74 6.62 7750.2 0.0 55.6 40.0 1 0 47.8 15.0 16.3 80.8 6.88 5987.0 14.4 0.2 22.56 18.6 61.5/ 42.0 1.0 50.3 20.0 0.0 17.6 0.2 83.1 7445.1 7.12 23.38 69.8 42.0 1.0 26.7 0.0 85.4 52.7 25.2 10090.8 87.9 0.9 7.38 24.20 1.0 73.8 44.0 55.2 29.4 30.7 0.0 87.7 1.2 7.62 11755.7 145.5 25.02 44.0 1.0 37.9 0.0 79.9 90.0 57.6 36.8 14712.6 194.0 1.3 7.88 25.84 73.5 44.0 1.0 30.4 0.0 29.8 176.8 1.5 92.3 60.1 11924.9 8.12 26.66 42.0 29.8 0.0 73.0 1.0 0.9 94.6 62.5 29.6 11854.9 109.5 27.48 8.38 87.4 46.0 1.0 65.0 39.7 39.5 0.0 96.9 19849.7 210.4 1.1 28.30 8.62 91.9 46.0 1.0 67.4 47.1 46.3 0.0 99.4 23571.4 260.0 1.1 29.12 8.88 91.0 46.0 1.0 69.9 46.2 44.8 0.0 101.8 9.12 23090.7 253.3 1.1 29.94 42.2 40.4 0.0 88.1 46.0 1.0 72.3 253.7 1.2 104.2 9.38 21093.7 30.76 44.0 1.0 0.0 86.4 47.7 74.8 50.3 20115.1 243.4 1.2 106.6 9.62 31.58 44.0 83.4 1.0 0.0 108.9 77.3 36.6 34.3 18310.0 170.3 0.9 9.88 32.40 20.5 0.0 62.1 42.0 1.0 1.1 111.3 79.7 22.0 8819.5 96.0 10.12 33.22 52.4 0.0 0.0 1.5 5.7 5.2 113.5 82.2 21.1 2.5 850.7 34.04 10.38 0.0 1.5 0.0 0.4 114.8 84.6 2.9 2.6 30.0 10.62 574.8 2.1 34.86 1.0 0.0 87.1 2.6 2.4 25.2 0.0 115.5 517.9 2.0 0.4 35.68 10.88 0.0 0.0 1.0 89.5 2.8 2.6 28.7 0.4 116.2 11.12 564.9 2.1 36.50 0.0 1.5 0.0 30.3 2.9 2.7 2.0 0.3 116.8 92.0 587.2 37.32 11.38 1.0 0.0 0.0 . 94.4 117.5 2.7 2.4 26.1 0.4 11.62 537.7 2.1 38.14 . 0.0 3.0 60.5 0.0 118.9 96.9 4.9 4.4 971.9 11.4 1.2 38.96 11.88 150.1 30.0 32.0 6.0 99.3 7.5 8.4 120.9 2097.0 28.7 1.4 39.78 12.12 6.0 30.0 32.0 8.6 176.4 1.2 123.0 101.8 9.7 28.8 2429.9 12.38 40.60 30.0 32.0 6.0 125.0 104.2 10.0 8.7 181.6 1.8 12.62 2498.7 45.1 41.42 3.0 0.0 0.0 7.0 111.0 106.7 8.1 127.1 1621.7 48.5 3.0 12.88 42.24

ConeTec In	nc CPT Interpretation
Run No:	96-0913-0858-2140
CPT File:	KA09S04.COR

Denth	Denth	AvqQt	Avgfs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi (dec.)	OCR
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo)	WS/TT) 	(KPA)		(ueg.)	
	13 12	4830.6		1.8	129.2	109.1	16.1	13.9	0.0	42.8	38.0	1.0
43.00	13.38	3269.3	60.5	1.9	131.3	111.6	13.1	11.2	242.1	31.5	34.U 34.0	6.0
44.70	13.62	3373.1	62.3	1.8	135.5	114.0	07	8.1	173.6	30.0	32.0	6.0
45.52	13.88	2421.9	47.4	2.0	137.4	118.9	6.7	5.6	113.7	30.0	30.0	3.0
46.34	14.12	3641.8	72.0	z.0	139.5	121.4	14.6	12.1	270.5	33.6	34.0	6.0 3.0
47.98	14.62	1902.6	54.8	2.9	141.5	123.9	9.5	13 1	0.0	41.2	36.0	1.0
48.80	14.88	4817.5	82.8	1.7	145.0	128.8	51.5	41.7	0.0	82.6	44.0	1.0
49.62	15.12	20004.9	416.7	1.8	148.2	131.2	57.6	46.3	0.0	85.6	44.0	1.0
51.26	15.62	17244.6	220.7	1.3	150.5	133.7	43.1	54.4 10 3	237.5	30.0	34.0	6.0
52.08	15.88	3257.9	87.0 46.8	2.7	154.7	138.6	13.1	10.3	0.0	34.3	34.0	1.0
52.90	16.12	2811.4	47.3	1.7	156.9	141.0	11.2	8.8	201.1	30.0	32.0	6.0
54.54	16.62	5629.9	81.3	1.4	159.0	143.5	18.8	14.6	0.0	44.2	38.0	1.0
55.36	16.88	8625.6	132.2	1.5	161.1	145.9	20.0	6.2	0.0	30.0	32.0	1.0
56.18	17.12	3941.4	39.1	1.0	165.5	150.8	13.1	10.0	0.0	33.4	34.0	1.0
57.82	17.62	12322.7	115.9	0.9	167.7	153.3	30.8	23.3	0.0	65.9 76.8	40.0	1.0
58.64	17.88	18151.9	178.7	1.0	170.1	158.2	29.6	22.1	0.0	56.1	38.0	1.0
59.46	18.12	6624.6	177.3	2.7	174.5	160.6	26.5	19.6	503.2	47.5	38.0	6.0
61.10	18.62	18007.4	177.3	1.0	176.7	163.1	36.0	26.5	0.0	76.0	42.0	1.0
61.93	18.88	2592.6	54.3	2.1	179.0	165.0	8.0	5.8	131.8	30.0	30.0	3.0
62.75	19.12	1996.5	5.9	0.5	183.1	170.4	4.5	3.2	61.4	30.0	30.0	1.5
63.37 64.39	19.50	1316.8	8.9	0.7	185.1	172.9	5.3	3.8	76.7	30.0	30.0	1.5
65.21	19.88	1029.1	5.4	0.5	187.1	175.4	4.1	2.9	55.9	30.0	30.0	1.5
66.03	20.12	1065.3	8.5 7 7	0.0	191.2	180.3	4.7	3.4	65.1	30.0	30.0	1.5
67.67	20.38	995.6	4.2	0.4	193.3	182.7	4.0	2.8	49.6	30.0	30.0	1.5
68.49	20.88	1134.6	7.9	0.7	195.3	185.2	4.5	5.2 4 7	103.0	30.0	30.0	3.0
69.31	21.12	1672.1	15.9	1.0	197.4	190.1	5.8	4.0	84.1	30.0	30.0	1.5
70.15	21.50	1351.3	10.6	0.8	201.5	192.5	5.4	3.7	76.6	30.0	30.0	1.5
71.77	21.88	1340.3	14.5	1.1	203.5	195.0	5.4	3.7	15.3	30.0	30.0	1.5
72.59	22.12	1443.0	12.2	0.8	205.0	197.4	13.2	9.0	232.0	30.0	32.0	6.0
73.41	22.38	1918.4	7.4	0.4	209.7	202.3	6.4	4.3	0.0	30.0	30.0	1.0
75.05	22.88	1656.0	10.8	0.7	211.8	204.8	6.6	4.5	99.2	30.0	30.0	3.0
75.87	23.12	1849.8	12.8	0.7	215.9	207.2	7.5	5.0	116.8	30.0	30.0	3.0
76.69	23.38	1885.9	34.1	1.7	218.0	212.1	8.1	5.4	128.2	30.0	30.0	3.0
78.33	23.88	3220.0	64.8	2.0	220.0	214.6	12.9	8.5	222.8	30.0	32.0	3.0
79.15	24.12	2922.4	57.0	2.0	222.1	217.0	6.8	4.4	99.5	30.0	30.0	1.5
79.97	24.38	1687.8	17.0	0.8	226.2	222.0	8.6	5.6	135.9	30.0	30.0	3.0
81.61	24.88	1457.4	12.6	0.9	228.2	224.4	5.8	3.8	80.4	30.0	30.0	3.0
82.43	25.12	2272.0	40.9	1.8	230.3	226.9	20.2	13.0	0.0	40.8	34.0	1.0
83.25	25.38	13518 1	247.2	1.8	234.6	231.8	45.1	28.8	0.0	63.7	40.0	1.0
84.89	25.88	16682.0	168.4	1.0	236.8	234.2	33.4	21.2	0.0	69.6 50.8	40.0	1.0
85.71	26.12	8698.6	143.0	1.6	239.1	236./	29.0	16.4	0.0	43.2	36.0	1.0
86.53	26.38	6/14.0 17221 0	204.0	1.2	243.6	241.6	43.1	27.0	0.0	70.1	40.0	1,0
87.33	26.88	26529.4	120.1	0.5	246.0	244.0	44.2	27.6	0.0	82.3	42.0	1.0
88.99	27.12	24014.5	161.7	0.7	248.5	246.5	48.0	29.8	0.0	82.8	42.0	1.0
89.81	27.38	27240.5	185.5	0.6	253.3	251.4	61.5	37.8	0.0	86.2	42.0	1.0
90.03	27.88	30209.4	215.6	0.7	255.7	253.8	60.4	37.0	0.0	85.5	42.0	1.0
92.27	28.12	27653.9	223.4	0.8	3 258.2	256.3	55.5	21.7	0.0	70.2	40.0	1.0
93.09	28.38	17888.8	202.7	1.1	200.0 262.8	261.2	14.4	8.7	246.2	30.0	30.0	3.0
93.91	28.02	3015.1	23.6	0.8	3 264.9	263.6	10.1	6.0	· 0.0	30.0	30.0	ט.ו. ו ז_0
95.55	29.12	2864.0	52.6	1.8	3 267.0	266.1	11.5	) 6.9 3 8.2	233.3	30.0	30.0	3.0
96.37	29.38	3454.3	75.9	Z.2	2 269.1	200.0	41.2	24.5	0.0	67.3	40.0	1.0
97.19	29.62	16495.1 10403 A	241.4	1.	5 273.5	273.5	48.7	28.8	0.0	72.0	40.0	) 1.0 h 1.0
98.83	30.12	26935.7	429.1	1.0	6 275.8	275.9	67.3	5 39.7	0.0	<b>6</b> 1.1	42.0	

Page: 2

. . . . . . . .



-----

ConeTe Run No CPT Fi	c Inc ( : 96-09 le: KA09S	CPT Interpr 13-0858-214 04.COR	etation 0						Page	: 3		
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPar)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	27835.9	546.3	2.0	278.1	278.4	69.6	40.8	0.0	82.0	42.0	1.0

,

.









Client: Sounding: Date: KLEINFELDER 09-SC-04 7-Aug-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

Geophone	Distance	Last Time	Shear Wav	e Velocity	Corresp	Corresponding			
Depth		Interval For			Depth Increment				
		X-Over							
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)			
0.95	1.10								
1.95	2,03	8.3	i → 112	366	1.0 - 2.0	3.1 - 6.4			
2.95	3.00	4.8	205	673	2.0 - 3.0	6.4 - 9.7			
3.95	3.99	4.7	210	689	3.0 - 4.0	9.7 - 13.0			
4.95	4.98	5.4	¥ 184	603	4.0 - 5.0	13.0 - 16.2			
5.95	5.98	5.0	199	653	5.0 . 6.0	16.2 - 19.5			
6.95	6.97	5.2	192	629	6.0 7.0	19.5 - 22.8			
7.95	7.97	5.5	183	600	7.0 - 8.0	22.8 - 26.1			
8.95	8.97	5.3	190	624	8.0 9.0	26.1 - 29.4			
9.95	9.97	5.3	- 187	614	9.0 - 10.0	29.4 32.6			
10.95	10.96	6.7	149	489	10.0 - 11.0	32.6 - 35.9			
11.95	11.96	7.6	131	431	11.0 - 12.0	35.9 · 39.2			
12.95	12.96	5.8	172	565	12.0 - 13.0	39.2 42.5			
13.95	13.96	6.0	167	546	13.0 - 14.0	42.5 45.8			
14.95	14.96	5.2	🖌 194	637	14.0 - 15.0	45.8 - 49.0			
15.95	15.96	4.6	220	721	15.0 - 16.0	49.0 - 52.3			
16.95	16.96	5.1	198	649	16.0 - 17.0	52.3 - 55.6			
17.95	17.96	4.8	208	683	17.0 - 18.0	55.6 58.9			
18.95	18.96	4.7	213	698	18.0 - 19.0	58.9 - 62.2			
19.95	19.96	5.0	¥ 200	656	19.0 - 20.0	62.2 65.5			
20.95	20.96	6.3	159	521	20.0 - 21.0	65.5 - 68.7			
21.95	21.96	5.7	177	580	21.0 - 22.0	68.7 - 72.0			
22.95	22.96	5.6	180	591	22.0 23.0	72.0 - 75.3			
23.95	23.96	4.9	204	669	23.0 - 24.0	75.3 - 78.6			
24.95	24.96	5.1	<b>- 196</b>	643	24.0 - 25.0	78.6 - 81.9			
25.95	25.96	4.6	217	713	25.0 - 26.0	81.9 - 85.1			
26.95	26.96	4.2	241	790	26.0 - 27.0	85.1 - 88.4			
27.95	27.96	3.9	260	852	27.0 - 28.0	88.4 - 91.7			
28.95	28.96	3.9	256	841	28.0 - 29.0	91.7 - 95.0			
29.95	29.96	5.0	<b>∠ 200</b>	656	29.0 - 30.0	95.0 - 98.3			

and a second second second second second second second second second second second second second second second Second as a second second second second second second second second second second second second second second se مىلىيى ئەركىيىلىدىنى ئىلىيىتىكى تەركىيىكى ئەربىيى ئەۋىيىلىدىن ئىلىيىتىكە ھەردى

1 ConeTec Inc. - CPT Interpretation Interpretation Output - Release 1.00.07 Run No: 96-0913-0913-1466 96-309 Job No: Client: Kleinfelder Project: 115 Section 10 115, S10:S.R. 201,09-SC-23 Site: Location: 900 W Structure 20 TON A AD041 Cone: CPT Date: 96/06/08 CPT Time: 08:29 CPT File: KA09S23.COR 2.00 (ft): 6.6 Water Table (m): 0.25 Averaging Increment (m): 12 50 Su Nkt used: Robertson and Campanella, 1983 Phi Method : Jamiolkowski - All Sands Dr Method : Used Unit Weights Assigned to Soil Zones -----------..... E.Stress Hyd. Pr. N60 (N1)60 Su Dг Phi OCR AvgFs AvgRf Depth AvgQt Depth (kPa) (%) (deg.) (ratio) (kPa) (kPa) (blows/ft) (kPa) (%) (kPa) (ft) (m) -----. . . . . . . ----------------------------. . . . . . . 95.0 50.0 1.0 31.0 61.9 0.0 87.2 0.6 0.0 2.4 0.12 15477.7 0.41 0.0 95.0 50.0 1.0 7.2 42.0 83.9 12591.0 219.8 1.7 0.0 0.38 1.23 380.3 76.7 10.0 19.1 38.1 48.0 96.0 11.8 0.0 2.0 0.62 4765.5 2.05 144.3 42.0 10.0 44.5 31.3 1.7 16.2 0.0 7.3 14.6 0.88 1820.3 2.87 20.1 5.9 45.7 0.0 0.0 6.0 0.0 3.0 1.12 0.8 3.69 590.9 4.6 0.0 1.9 3.7 27.8 0.0 0.0 6.0 2.0 0.5 23.2 1.38 370.1 4.51 37.0 0.0 0.0 6.0 4.7 0.4 26.3 0.0 2.4 488.4 2.0 5.33 1.62 11.2 20.0 222.1 48.0 42.0 10.0 30.1 0.0 37.4 1.3 1.88 2806.2 6.15 7.2 12.2 112.9 0.0 0.0 6.0 43.5 3.0 33.4 1.2 2.12 1446.5 6.97 10.0 247.7 48.9 42.0 3135.2 35.4 3.7 12.5 20.6 66.6 2.1 7.79 2.38 37.6 46.7 74.5 0.0 90.9 48.0 1.0 331.2 2.4 6.1 13996.7 8.61 2.62 35.5 0.0 69.7 44.0 1.0 128.2 1.9 39.7 8.6 22.9 9.43 2.88 6858.5 42.0 11.0 19.9 30.1 0.0 79.6 46.0 1.0 9969.5 46.3 0.5 10.25 3.12 0.0 76.4 46.0 1.0 9151.8 22.9 33.6 89.2 .1.0 44.4 13.5 11.07 3.38 81.4 46.0 1.0 46.7 15.9 27.9 40.0 0.0 11179.5 131.1 1.2 11.89 3.62 0.9 49.0 18.4 30.9 43.2 0.0 90.0 46.0 1.0 133.9 3.88 15468.9 12.71 28.6 39.0 0.0 72.4 44.0 1.0 20.8 51.3 8575.0 167.9 2.0 13.53 4.12 1.0 42.0 70.5 1.5 53.5 23.3 15.5 20.8 0.0 54.4 4.38 4660.7 14.35 2.5 55.6 25.8 10.7 14.0 164.5 0.0 0.0 6.0 53.7 2137.6 15.17 4.62 57.7 28.2 14.1 18.2 0.0 50.5 40.0 1.0 1.4 4.88 4229.5 60.0 15.99 84.4 0.0 0.0 6.0 7.2 30.7 5.7 16.81 5.12 1144.9 22.3 2.0 59.8 33.1 40.5 0.0 3.0 0.3 61.2 3.0 3.8 0.0 2.0 600.3 17.63 5.38 35.6 45.6 0.0 0.0 3.0 3.3 4.1 61.9 667.0 2.0 0.3 18.45 5.62 32.0 38.0 4.5 64.7 30.0 6.0 3.6 5.88 910.0 2.0 0.2 63.2 19.27 30.0 32.0 6.0 5.5 82.4 1135.4 9.1 0.8 65.3 40.5 4.5 6.12 20.09 4.2 5.0 58.4 0.0 0.0 3.0 839.2 66.6 42.9 0.3 20.92 6.38 2.3 3.7 4.4 50.6 0.0 0.0 3.0 45.4 67.3 6.62 745.7 2.2 0.3 21.74 50.3 0.0 0.0 3.0 3.7 4.4 6.88 744.5 3.2 0.4 68.0 47.8 22.56 53.9 0.0' 0.0 3.0 0.7 69.3 50.3 4.0 4.7 794.0 5.2 7.12 23.38 0.0 0.0 3.0 70.7 52.7 4.1 4.8 55.5 2.0 0.2 817.3 24.20 7.38 40.2 0.0 0.0 3.0 55.2 3.1 3.6 71.4 7.62 629.2 2.0 0.3 25.02 1.5 33.3 0.0 0.0 2.0 0.4 72.1 57.6 2.7 3.2 7.88 546.5 25.84 0.0 1.5 32.0 0.0 72.7 60.1 2.7 3.1 2.2 0.4 532.6 26.66 8.12 2.7 3.1 32.4 0.0 0.0 1.5 73.4 62.5 8.38 541.1 2.0 0.4 27.48 0.0 1.5 2.8 3.2 33.2 0.0 74.1 65.0 8.62 554.7 2.0 0.4 28.30 0.0 0.0 1.5 26.4 74.7 67.4 2.4 2.7 471.9 2.0 0.4 8.88 20.12 1.5 0.0 69.9 22.0 0.0 75.4 2.1 2.4 419.8 2.0 0.5 29.94 9.12 0.0 1.5 72.3 2.7 26.0 0.0 76.1 2.4 2.0 0.4 30.76 9.38 473.1 0.0 0.0 1.5 76.8 74.8 2.3 2.6 25.2 2.0 0.4 9.62 466.7 31.58 32.4 0.0 0.0 1.5 3.1 77.4 77.3 2.8 559.2 2.0 0.4 32.40 9.88 38.0 1:0 78.9 79.7 9.9 10.9 0.0 36.0 26.4 0.9 10.12 2980.2 33.22 6.0 158.2 30.0 34.0 82.2 8.6 9.3 2140.3 1.0 81.0 21.1 34.04 10.38 1.5 82.3 84.6 3.3 3.6 39.9 0.0 0.0 665.9 3.3 0.5 34.86 10.62 6.7 111.8 30.0 32.0 6.0 87.1 6.3 9.9 0.6 83.7 35.68 10.88 1568.7 1.0 9.7 0.0 32.4 36.0 9.1 85.8 89.5 11.12 2744.4 20.5 0.7 36.50 6.0 200.9 31.5 36.0 1.8 87.9 92.0 10.8 11.2 49.6 11.38 2691.5 37.32 3.0 30.0 4.5 4.7 75.4 30.0 .94.4 90.0 1127.4 13.2 1.2 11.62 38.14 1.0 38.0 ****.7** 0.0 45.1 15.0 92.1 96.9 73.7 1.7 11.88 4424.4 38.96 6.0 34.0 30.0 152.4 94.2 99.3 5.4 8.5 2098.8 22.8 1.1 39.78 12.12 3.0 30.0 101.8 4.1 4.1 67.1 30.0 96.2 1036.4 5.4 0.5 12.38 40.60 6.0 32.0 5.9 102.6 30.0 5.9 104.2 1484.4 7.7 0.5 98.3 41.42 12.62 3.0 30.0 30.0

S**.5** 

106.7

1.6

22.2

12.88

42.24

1366.4

100.3

5.3

92.7

Page:

للاحظ الأرفية والأرابية الدراب فالمتحد ويتراريها التورير والمرارية الم

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0913-1466 CPT File: KA09S23.COR

Denth	Depth	AvqQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blow	s/ft)	(kPa)	(%)	(deg.)	(ratio)
			• • • • • • • • • • • • • • • • •			100 1	77	 7 E			•••••	4 E
43.06	13.12	730.5	5.4	0.5	101.7	109.1	20 2	28.1	41.0	71.3	42.0	1.0
43.88	13.38	23710 0	336.8	1 4	105.5	114.0	59.3	56.5	0.0	91.3	46.0	1.0
44.70	17.92	<u>6540 0</u>	149 1	23	107.6	116.5	26.2	24.7	505.3	54.0	40.0	10.0
43.32	14 12	2445.4	30.2	1.2	109.7	118.9	9.8	9.1	177.3	30.0	34.0	6.0
40.34	14.38	1847.1	20.3	1.1	111.7	121.4	7.4	6.8	129.1	30.0	32.0	6.0
47.98	14.62	2751.8	63.7	2.3	113.8	123.9	11.0	10.1	. 201.1	30.0	34.0	6.0
48.80	14.88	21624.1	321.7	1.5	115.9	126.3	54.1	49.1	0.0	87.5	44.U	1.0
49.62	15.12	5319.9	69.6	1.3	118.2	120.0	37.0	33 0	0.0	40.0	20.0 42 n	1.0
50.44	15.38	14793.8	210.7	1.5	120.4	133.7	42.5	37.6	0.0	79.6	44.0	1.0
52 08	15.02	9601.0	131.7	1.4	125.0	136.1	24.0	21.0	0.0	62.9	40.0	1.0
52.90	16.12	20992.5	383.8	1.8	127.3	138.6	52.5	45.5	0.0	85.1	44.0	1.0
53.72	16.38	9737.6	165.4	1.7	129.5	141.0	32.5	27.9	0.0	62.8	40.0	1.0
54.54	16.62	1232.0	4.3	0.3	131.7	143.5	4.9	4.2	76.5	30.0	30.0	3.0
55.36	16.88	1003.7	2.0	0.2	133.7	145.9	4.0	5.4	57.9 110 9	30.0	30.0	1.5
56.18	17.12	1668.5	18.3	1.1	135.7	140.4	0./ / 0	3.0	56.0	30.0	30.0	15
57.00	17.58	999.5	7.8	0.0	137.0	153.3	4.0	3.4	41.3	0.0	.0.0	1.5
58 64	17.82	932.2	2.0	0.2	140.5	155.7	3.7	3.1	50.9	30.0	30.0	1.5
59.46	18,12	896.5	2.0	0.2	141.9	158.2	4.5	3.7	47.7	0.0	0.0	1.5
60.28	18.38	804.4	2.0	0.2	142.5	160.6	4.0	3.3	40.1	0.0	0.0	1.5
61.10	18.62	968.3	6.8	0.7	143.9	163.1	3.9	3.2	52.9	30.0	30.0	1.5
61.93	18.88	1102.5	4.0	0.4	146.0	165.5	4.4	5.0	63.3 10/ 0	30.0	20.0	1.5
62.75	19.12	1616.0	19.0	1.2	148.0	100.0	0.0 7 0	5.6	115 0	30.0	30.0	3.0
65.57	19.38	1/20.3	13.3	0.9	152 1	172.9	4.2	3.3	58.3	30.0	30.0	1.5
65 21	19.88	1011.2	3.0	0.3	154.1	175.4	4.0	3.2	54.5	30.0	30.0	1.5
66.03	20,12	1079.0	3.9	0.4	156.2	177.8	4.3	3.4	59.6	30.0	30.0	1.5
66.85	20.38	1148.1	4.2	0.4	158.2	180.3	4.6	3.6	64.8	30.0	30.0	1.5
67.67	20.62	1235.6	5.8	0.5	160.3	182.7	4.9	3.8	71.4	30.0	30.0	1.5
68.49	20.88	1097.1	5.9	0.5	162.3	185.2	4.4	5.4	00.0	30.0	30.0	1.5
69.31	21.12	4318.3	58.6	1.4	104.4	107.0	14.4	8 2	188 9	30.0	32.0	6.0
70.15	21.30	2640 3	35 1	1.3	168.6	192.5	10.6	8.0	182.3	30.0	32.0	6.0
71.77	21.88	1694.0	12.5	0.7	170.7	195.0	6.8	5.1	106.3	30.0	30.0	3.0
72.59	22.12	1625.1	22.6	1.4	172.7	197.4	6.5	4.8	00.4	30.0	30.0	3.0
73.41	22.38	3372.0	60.4	1.8	174.7	199.9	13.5	10.0	239.8	30.0	32.0	6.0
74.23	22.62	4374.4	75.0	1.7	176.9	202.3	14.6	10.7	0.0	30.4	24.0	1.0
75.05	22.88	17626.3	140.4	0.8	179.2	204.8	35.3 50 1	27.0	0.0	00.2	42.U 44 N	1.0
15.8/	23.12	0050.1	121 3	1 3	184 1	209.7	22.6	16.3	0.0	55.7	38.0	1.0
77 51	23.50	8621.6	93.5	1.1	186.4	212.1	21.6	15.5	0.0	54.1	38.0	1.0
78 33	23.88	3235.8	34.1	1.1	188.6	214.6	10.8	7.7	0.0	30.0	32.0	1.0
79,15	24.12	3418.1	16.8	0.5	190.8	217.0	11.4	8.1	0.0	30.0	32.0	1.0
79.97	24.38	3131.0	17.2	0.6	192.9	219.5	10.4	7.4	0.0	30.0	32.0	1.0
80.79	24.62	8029.6	97.7	1.2	195.2	222.0	20.1	14.1	0.0	51.4	58.U 40.0	1.0
81.61	24.88	14202.7	332.8	2.5	197.4	224.4	47.3 56.7	33.0	0.0	80.8	40.0	1.0
82.45	25.12	16802 5	274.2 226 8	1.7	201.9	229.3	42.0	28.9	0.0	72.1	42.0	1.0
86 07	25.62	8923.0	142.8	1.6	204.2	231.8	29.7	20.4	0.0	53.8	38.0	1.0
84.89	25.88	5499.3	80.5	1.5	206.3	234.2	18.3	12.5	0.0	39.8	34.0	1.0
85.71	26.12	2619.9	39.7	1.5	208.5	236.7	10.5	7.1	174.0	30.0	30.0	3.0
86.53	26.38	2191.2	24.2	1.1	210.5	239.1	8.8	5.9	139.3	30.0	30.0	3.0
87.35	26.62	1772.0	12.1	0.7	212.0	241.0	4.7	4.0	87 7	30.0	30.0	1.5
88.17	26.88	1555.2	6.8	0.4	214.0	244.0	53	4.2	68.6	30.0	30.0	1:5
88.99	27.12	1320.1	2.0	0.2	218.7	248.9	5.4	3.6	71.5	30.0	30.0	1.5
00 63	27.50	2948.6	15.7	0.5	220.8	251.4	9.8	6.5	0.0	30.0	30.0	1.0
91.45	27.88	9940.8	163.7	1.6	223.0	253.8	33.1	21.7	0.0	55.6	38.0	1.0
92.27	28.12	13033.7	246.6	1.9	225.2	256.3	43.4	28.3	0.0	63.2	40.0	1.0
93.09	28.38	13307.6	273.4	2.1	227.3	258.7	44.4	28.8	0.0	65.7 E9 1	40.0	1.0
93.91	28.62	10987.0	317.1	2.9	229.4	261.2	43.Y 15 7	20.4	0.7.7	64 n	40.0	1.0
9473	28.88	13593.5	349.1	2.6	231.5	203.0	23.2	14.8	423.0	39.4	34.0	6.0
95.55	29.12	3/8/.9 1026 7	25 4	1.3	235.7	268.5	7.7	4.9	113.8	30.0	30.0	1.5
97 10	29.62	1778.2	12.2	0.7	237.7	271.0	7.1	4.5	101.6	30.0	30.0	1.5
98.01	29.88	3714.4	81.8	2.2	239.8	273.5	14.9	9.4	256.1	30.0	32.0	6.U
98.83	30.12	6914.9	169.2	2.4	241.8	275.9	27.7	17.4	511.8	44.0	30.0	0.0

. . . . . . . . . .

ConeTec II	nc CPT Interpretation
Run No:	96-0913-0913-1466
CPT File:	KA09S23.COR

.

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60. (blow	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
00 65	30.38	2776.4	62.6	2.3	243.9	278.4	11.1	7.0	180.3	30.0	30.0	3.0
100 47	30.62	6823.8	72.2	1.1	246.1	280.8	17.1	10.6	0.0	43.4	36.0	1.0
101.30	30.88	7857.3	153.9	2.0	248.3	283.3	26.2	16.3	0.0	47.3	36.0	1.0
101.29	21 12	12003 0	326 5	2 5	250.5	285.7	43.0	26.6	0.0	61.4	38.0	1.0
102.11	71 79	21017 0	325 4	1 5	252 7	288.2	54.8	33.7	0.0	76.5	42.0	1.0
102.94	71 47	270/2 1	261 7	1 1	255 1	290.6	46.1	28.2	0.0	77.8	42.0	1.0
105.70	31.02	2/021 0	720 7	1 3	257 4	203 1	62.3	38.0	0.0	79.9	42.0	1.0
104.58	31.00	10157 0	367.7	1.5	250 7	205 5	47 9	29.1	0.0	72.2	40.0	1.0
105.40	32.12	19155.0	201.0	2 5	241 0	208 0	31 8	19.2	590.9	46.9	36.0	6.0
106.22	32.30	(940.4	140 0	Z.J Z 1	263 9	300.6	27.5	13.5	314.6	0.0	0.0	6.0
107.04	32.02	7003 7	107 0	2 4	266 0	302.4	16 0	9.6	273.9	30.0	32.0	6.0
107.86	32.00	JYYZ.J /755 /	103.9	2.0	268.0	305 3	17.4	10.4	302.6	30.0	32.0	6.0
108.68	33.12	4300.0	123.5	2.0	270 1	307.8	18 7	11 1	326.9	31.2	32.0	6.0
109.50	33.38	4003.0	132.5	2.0	270.1	310.2	20.6	12 2	364 5	37.8	32.0	6.0
110.32	33.62	5138.3	120.9	2.5	272.1	310.2	20.0	5 7	145 5	30.0	30.0	3 0
111.14	33.88	2405.3	34.9	1.5	214.2	715 1	10 3	<b>5</b> .7	158 5	30.0	30.0	3.0
111.96	34.12	2572.5	53.3	2.1	2/0.2	313.1	10.5	11 2	777 1	21 2	30.0	5.0
112.78	34.38	4759.8	136.5	2.9	2/8.3	317.0	19.0	4 1	150 1	70 0	32.0	2.0
113.60	34.62	2589.1	34.7	1.3	280.3	320.1	10.4	6.1	129.1	30.0	30.0	1.5
114.42	34.88	2105.6	16.4	0.8	282.4	322.5	0.4	4.7	00.0	70.0	20.0	1.5
115.24	35.12	1858.3	14.2	0.8	284.4	325.0	7.4	4.3	<b>77.7</b>	70.0	30.0	1.5
116.06	35.38	1798.2	12.9	0.7	286.5	327.4	1.2	4.2	94.7	30.0	30.0	1.7
116.88	35.62	1911.8	14.4	0.8	288.5	329.9	7.6	4.4	103.5	30.0	50.0	1.5
117.70	35.88	2180.9	18.0	0.8	290.6	352.5	8.7	5.0	124.0	30.0	30.0	1.5
118.52	36.12	1 <b>9</b> 47.2	16.8	0.9	292.6	334.8	7.8	4.5	105.6	30.0	30.0	1.5
119.34	36.38	2966.5	26.7	0.9	294.7	337.2	9.9	5.6	0.0	30.0	30.0	1.0
120.16	36.62	3569.8	46.1	1.3	296.9	339.7	11.9	6.8	0.0	30.0	30.0	1.0
120.98	36.88	3068.0	30.6	1.0	299.1	342.1	10.2	5.8	0.0	30.0	30.0	1.0
121.80	37.12	4446.0	136.3	3.1	301.2	344.6	17.8	10.0	304.0	30.0	32.0	6.0
122.62	37.38	12945.1	229.8	1.8	303.3	347.0	43.2	24.2	0.0	58.8	38.0	1.0
123.44	37.62	8961.3	211.3	2.4	305.5	349.5	29.9	16.7	0.0	48.1	36.0	1.0
124.26	37.88	12476.7	320.1	2.6	307.6	351.9	41.6	23.2	0.0	57.5	38.0	1.0
125.08	38.12	6630.2	196.2	3.0	309.7	354.4	26.5	14.7	477.3	39.3	34.0	6.0
125 90	38.38	3327.9	55.0	1.7	311.8	356.8	13.3	7.4	212.7	30.0	30.0	3.0
126 72	38.62	3765.3	80.3	2.1	313.8	359.3	15.1	8.3	247.4	30.0	30.0	3.0
127 54	38.88	5198.3	148.1	2.8	315.9	361.7	20.8	11.5	361.7	32.0	32.0	6.0
128 36	39.12	6482.0	128.9	2.0	318.0	364.2	21.6	11.9	0.0	38.3	32.0	1.0
120 18	39 38	3637.1	61.6	1.7	320.1	366.6	14.5	8.0	236.0	30.0	30.0	3.0
130 00	30 62	4866.2	88.5	1.8	322.2	369.1	16.2	8.8	0.0	30.0	32.0	1.0
170 82	30 88	4600.2	102 3	2.3	324.3	371.6	17.7	9.6	298.7	30.0	30.0	3.0
130.02	40 12	2687 9	56 7	2.1	326.4	374.0	10.8	5.8	159.0	30.0	30.0	1.5
131.04	40.72	203/ 0	81 3	2 8	328.4	376.5	14.7	7.9	178.3	0.0	0 <b>.0</b>	3.0
132.40	40.50	2434.0	178 7	7.8	330 5	378 9	18 1	9.8	233.4	0.0	0.0	3.0
133.28	40.02	3020.0	130.7	2.0	772 5	381 /	18 0	07	303 7	30.0	30.0	3.0
154.10	40.88	4309.0	00.7 107 7	2.0	77/ 4	787 8	34 4	18 4	630 0	45.6	34.0	6.0
134.92	41.12	8593.5	283./	3.3	774 4	786 7	34.4	18 2	622 9	45.3	. 34.0	6.0
135.74	41.38	8508.9	221.0	3.0	779 7	1388 7	11 1	5 0	164 0	30 0	30 0	1.5
136.56	41.62	2///.5	60.9	2.2	338./	200./	10.7	57	156 /	30.0	30.0	1.5
137.38	41.88	2687.0	01.4	2.5	340./	J71.2	10.7	5 0	150.4	30.0	30.0	1 5
138.20	42.12	2732.5	56.7	2.1	342.1	373.0	10.9	J.0 / 0	127./	30.0	30.0	1 5
139.02	42.38	2289.3	44.5	1.9	344.8	370.1	¥.2	4.0 7 E	337 0	20.0	30.0	 
139.84	42.62	3583.4	68.4	1.9	546.8	378.5	14.5	(.)	221.0	20.0	30.0	1.0
140.66	42.88	2623.1	24.1	0.9	349.0	401.0	8.7	4.0	205.0	30.0	30.0	7.0
141.48	43.12	3326.8	67.4	2.0	351.1	403.4	15.5	7.0	205.8	<u>30.0</u>	20.0	3.0
142.30	43.38	28032.2	391.3	1.4	353.2	405.9	70.1	36.5	0.0	78.7	42.0	1.0

.•

Page: 3

- - 64 M. Bar 2 4.3

······

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

a sa ka sa kasara na na na na na







KLEINFELDER

09-SC-23

Client: Sounding: Date:

Source:

6-Aug-96 Beam & Hammer nt: 0.56

Offset (m): Cons: Geophone:

AD 041 (20 tonne) 0.20 m above tip

0	Distance	Lest Time	Shear Wave	Velocity	Correspo	nding
Geophone	Listance				Depth Inc	rement
Depth			1	ļ		
		imei	(m/s)	(ft/s)	(m)	(ft)
(m)				<u>,                                     </u>		
	1 15					
1.00	2.00	3.6	¥ 259	848	1.0 - 2.0	3.3 - 6.6
2.00	2.00	4.7	232	762	2.0 - 3.0	6.6 - 9.8
3.00	4.04	5.0	197	<b>64</b> 6	3.0 - 4.0	9.8 - 13.1
4.00	5.02	4.8	¥ 208	677	4.0 - 5.0	13.1 - 16.4
0.00	8.03	6.1	163	535	5.0 - 6.0	16.4 - 19.7
0.00	7.02	7.2	138	454	6.0 - 7.0	19.7 - 23.0
7.00	8.02	6.1	163	536	7.0 - 8.0	23.0 · 26.2
8.00	0.02	7.3	137	448	8.0 - 9.0	26.2 - 29.5
9.00	8.02 10.02	8.3	* 120	395	9.0 - 10.0	29.6 - 32.8
10.00	11 01	6.0	166	546	10.0 - 11.0	32.8 - 36.1
11.00	12.01	5.7	175	575	11.0 - 12.0	36.1 - 39.4
12.00	12.01	5.5	183	601	12.0 - 13.0	39.4 - 42.7
13.00	14.01	4.7	215	705	13.0 - 14.0	42.7 - 45.9
14.00	15.01	6.5	¥ 153	501	14.0 - 15.0	45.9 - 49.2
10.00	16.01	4,5	220	722	15.0 - 16.0	49.2 - 52.5
17.00	17.01	4.5	220	722	16.0 - 17.0	52.5 - 55.8
17.00	18.01	6.3	158	517	17.0 - 18.0	55.8 - 59.1
10.00	19.01	6.8	147	482	18.0 - 19.0	59.1 - 62.3
19.00	20.01	5.2	+ 194	637	19.0 - 20.0	62.3 - 65.6
20.00	20.01	6.3	189	619	20.0 - 21.0	65.6 - 68.9
21.00	22.01	5.0	200	656	21.0 - 22.0	68.9 · 72.2
22.00	23.01	5.1	196	643	22.0 23.0	72.2 - 75.5
23.00	24.01	3.3	308	1009	23.0 24.0	75.5 - 78.7
24,00	25.01	4.9	¥ 204	669	24.0 - 25.0	78.7 - 82.0
28.00	28.01	3.8	263	963	25.0 - 26.0	82.0 - 85.3
20.00	27.01	4.1	247	810	26.0 - 27.0	85.3 . 88.6
27.00	28.01	6.2	192	631	27.0 - 28.0	88.6 - 91.9
20.00	29.01	3.6	278	911	28.0 - 29.0	91.9 - 95.1
20.00	30.01	4.5	225	737	29.0 - 30.0	95.1 - 98.4
31.00	31.01	4.3	235	772	30.0 · 31.0	98.4 - 101.7
32.00	32.00	3.8	267	875	31.0 · 32.0	101.7 - 105.0
33.00	33.00	3.8	261	858	32.0 - 33.0	105.0 - 108.3
34.00	34.00	3.5	283	929	33.0 - 34.0	108.3 - 111.5
35.00	35.00	4.0	* 249	818	34.0 - 35.0	111.6 - 114.8
38.00	36.00	3.6	278	911	35.0 - 36.0	114.8 - 118.1
37.00	37.00	4.0	247	812	36.0 - 37.0	118.1 - 121.4
38.00	38.00	3.7	270	887	37.0 - 38.0	121.4 - 124.7
39.00	39.00	3.6	282	924	38.0 . 39.0	124.7 - 128.0
40.00	40.00	3.8	* 265	868	39.0 - 40.0	128.0 - 131.2
41.00	41.00	3.6	279	914	40.0 41.0	131.2 134.6
42.00	42.00	3.7	271	889	41.0 - 42.0	134.5 137.8
43.00	43.00	3.7	272	894	42.0 - 43.0	137.8 - 141.1

المراجع والمراجع والمراجع والمراجع

-----

أأألف ومنعا

- ----

كالأنتخ محماطت

ConeTer Interp Run No Job No Client Projec Site: Locati Cone: CPT Da CPT Ti COT Ti CPT Fi Water Avera	c Inc C retation 0 : 96-080 : 96-309 : Kleinf t: 115 Se I15, S on: 900W-C 20 T0 te: 96/04/ me: 12:08 le: KAO9R0 Table (m) ging Incre	PT Interpr utput - Re 5-1136-460 elder ction 10 - 10: Rmp 90 /900W-D N A 040 06 30.COR : : : : : :	etation lease 1.00 9 900 W 0W-C, 09-F 0W-C, 09-F 2.00 0.25	).07 RC-30 (ft):	6.6				Paye.			
Su Nk Phi M Dr M Used	t used: ethod : ethod : Unit Weigh	ts Assigne	12.50 Robertsor Jamiolkou ed to Soil	n and Cam vski - Al Zones	panella, 19 l Sands	283						
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
0.41	0.12	32413.1	147.2	0.5	2.5	0.0	54.0	108.0	0.0	95.0	50.0	1.0
1.23	0.38	21422.0	168.2	0.8	12 1	0.0	25.8	51.7	515.7	85.0	48.0	10.0
2.05	0.62	2779.6	77.2	2.8	16.6	0.0	13.9	27.8	221.0	0.0	0.0	10.0
3.69	1.12	1243.4	39.8	3.2	21.1	0.0	8.3	16.6	97.8	0.0	0.0	10.0
4.51	1.38	925.2	27.8	3.0	25.6	0.0	6.2	11.9	72.0 81 1	0.0	0.0	6.0
5.33	1.62	1044.3	59.1	5.8	30.1	0.0	11.3	18.9	87.8	0.0	0.0	6.0
6.15	1.88	11 <b>3</b> 1.7	40.4	4.1	37.6	1.2	9.7	15.4	74.1	0.0	0.0	6.0
0.9/ 7.70	2.38	4223.8	24.6	0.6	39.6	3.7	14.1	21.9	0.0	55.8	42.0	1.0
8.61	2.62	6578.2	18.3	0.3	41.9	6.1	16.4	24.9	0.0	67.7	44.0	1.0
9.43	2.88	8251.8	21.0	0.3	44.2	8.6	16.5	24.5	0.0	75 0	44.U 46.0	1.0
10.25	3.12	9215.7	29.0	0.3	46.7	11.0	25 7	20.4	0.0	84.7	46.0	1.0
11.07	3.38	12855.0	59.5	0.5	51 4	15.9	22.1	30.1	0.0	73.2	44.0	1.0
11.89	3.02	2080 0	24 7	1.2	53.6	18.4	8.4	11.2	161.4	31.3	38.0	6.0
13.53	4,12	799.4	7.7	1.0	55.7	20.8	4.0	5.2	57.8	0.0	0.0	6.0
14.35	4.38	952.8	12.9	1.4	57.7	23.3	4.8	6.1	69.7	0.0	0.0	6.0
15.17	4.62	2265.9	32.7	1.4	59.7	25.8	9.1	11.5	180.5	32.1	38.0	6.0
15.99	4.88	2346.4	21.0	1.5	63.8	30.7	4.9	6.0	70.2	0.0	0.0	6.0
17.47	5 78	450 4	4.9	1.1	65.2	33.1	2.3	2.7	28.2	0.0	0.0	1.5
18.45	5.62	723.7	11.2	1.6	66.6	35.6	3.6	4.3	49.7	0.0	0.0	3.0
19.27	5.88	622.2	5.7	0.9	67.9	38.0	2.1	3.7	41.3	0.0	0.0	3.0
20.09	6.12	592.6	5.0	0.8	68.6	40.5	3.0	5.5	38.7	0.0	0.0	3.0
20.92	6.38	606.2	5.6	0.9	69.3	42.Y /5 /	3.U 3.0	3.0 7 K	30 4	0.0	0.0	3.0
21.74	6.62	607.5	5.9	1.0	71.3	47.8	3.3	3.8	42.7	0.0	0.0	3.0
22.56	0.00 7 12	714.4	6.7	0.9	73.3	50.3	3.6	4.1	47.3	<b>0</b> .0'	0.0	3.0
24,20	7.38	647.0	3.8	0.6	74.7	52.7	3.2	3.7	41.6	0.0	0.0	3.0
25.02	7.62	778.5	8.2	1.1	76.1	55.2	3.9	4.4 z 1	51.8 כידד	0.0 n n	0.0	1.5
25.84	7.88	550.2	5.5	1.0	78 1	57.0 60 1	2.0	3.1	42.4	0.0	0.0	3.0
26.66	8.12	565.1 567 9	5.6 7 /	0.8	78.8	62.5	2.8	3.1	34.1	0.0	0.0	1.5
27.48	8.50	510.8	2.7	0.5	79.4	65.0	2.6	2.8	29.3	0.0	0.0	1.5
20.30	8.88	562.9	4.6	0.8	80.1	67.4	2.8	3.1	33.2	0.0	0.0	1.5
29.94	9.12	516.3	3.6	0.7	80.8	69.9	2.6	2.8	29.2	0.0	0.0	1.5
30.76	9.38	494.7	4.7	0.9	81.5	12.5 7/ 8	2.) 7 /	2.1 27	د. ، <i>ک</i> ۱۹	0.0	0.0	3.0
31.58	9.62	681.4	7.1	1.0	84.9	77.3	9.0	9.6	168.0	30.0	34.0	6.0
32.40	9.88	2577.8	17.9	0.7	87.0	79.7	8.6	9.0	0.0	30.4	36.0	1.0
34.04	10.38	680.7	3.7	0.5	88.4	82.2	3.4	3.5	40.8	0.0	0.0	1.5
34.86	10.62	1065.2	10.9	1.0	89.8	84.6	4.3	4.4	/1.3	50.0	30.0	3.0 1 N
35.68	10.88	3147.1	30.7	1.2	91.9	87.1	10.5	20.2	0.0	57.4 57.6	40.0	1.0
36.50	11.12	6008.8	82.4	1.4	94.0	07.7 02 N	6.3	6.3	111.8	30.0	32.0	6.0
37.32	11.38	1505.0	13.0 50 0	1 6	98.3	- 94.4	12.8	12.6	0.0	40.0	38.0	1.0
58.14 ze 04	11.92	2594 7	45.9	1.8	100.4	96.9	10.4	10.1	191.8	30.0	34.0	6.0
30.90 30 78	12.12	1409.3	16.5	1.2	102.4	99.3	5.6	5.5	96.6	30.0	30.0	5.0
40.60	12.38	1319.3	17.0	1.3	104.5	101.8	5 <b>.3</b>	5. <b>1</b>	89.0	50.0	0.0	3.0
41.42	12.62	944.1	15.2	1.6	106.5	104.2	4./	4.5	י מכ ח ח	0.U R/ R	44_0	1.0
42.24	12.88	19249.2	116.0	0.6	108-8	100.7	20.2	1.04	0.0			

Page: 1

ConeTec Inc. - CPT Interpretation Run No: 96-0805-1136-4609 CPT File: KA09R030.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi <b>"(deg.)</b>	OCR (ratio)
43.06	13.12	22713.0	148.5	0.7	111.2	109.1	45.4	42.2	0.0	89.3	46.0	1.0
43.88	13.38	13913.3	75.6	0.5	113.6	111.6	27.8 g 7	25.6	0.0 147 4	74.9	42.0	1.0
44.70	13.62	2075.2	44.7	2.2	115.8	114.0	7.0	6.3	92.5	0.0	0.0	3.0
45.52	13.88	1390.1	110.7	1.1	120.1	118.9	25.4	22.7	0.0	65.1	42.0	1.0
48.34	14.38	1131.9	14.7	1.3	122.2	121.4	5.7	5.0	71.1	0.0	20.0	3.0
47.98	14.62	1184.0	9.2	0.8	124.3	123.9	4./	4.2	74.9 0.0	42.8	38.0	- 1.0
48.80	14.88	4795.8	17.9	0.4	128.4	128.8	20.9	18.1	0.0	58.6	40.0	1.0
49.02 50.44	15.12	2708.5	23.9	0.9	131.0	131.2	9.0	7.7	0.0	30.0	32.0	1.0
51.26	15.62	8742.1	97.7	1.1	133.2	133.7	21.9	18.5	0.0	59.5	40.0 34.0	1.0
52.08	15.88	3560.5	37.9	1.1	135.4	138.6	5.5	4.6	87.3	30.0	30.0	3.0
52.90	16.12	1115.6	9.4	0.8	139.6	141.0	4.5	3.7	66.8	30.0	30.0	1.5
54.54	16.62	1153.1	6.7	0.6	141.7	143.5	4.6	3.8	69.4	30.0	30.0	1.5
55.36	16.88	1054.6	6.4	0.6	145.7	145.9	4.2	3.4	63.2	30.0	30.0	1.5
56.18	17.12	980.0	7.3	0.7	147.8	150.8	3.9	3.2	54.5	30.0	30.0	1.5
57.82	17.62	1182.0	9.3	0.8	149.8	153.3	4.7	3.8	70.3	30.0	30.0	1.5
58.64	17.88	1420.8	19.8	1.4	151.9	155.7	5.7	4.5	0.0	30.0	.32.0	1.0
59.46	18.12	29/1.2	23.5 44.6	1.6	154.0	160.6	11.3	8.8	200.4	30.0	32.0	6.0
61.10	18.62	1266.7	15.2	1.2	158.2	163.1	5.1	3.9	75.6	30.0	30.0	1.5
61.93	18.88	1205.5	14.7	1.2	160.2	165.5	4.8	3.7	70.4	30.0	30.0	1.5
62.75	19.12	1331.8	14.9	1.1	162.5	108.0	5.3	4.1	79.5	30.0	30.0	1.5
63.57	19.38	1320.7	23.4	1.3	166.3	172.9	7.5	5.7	122.5	30.0	30.0	3.0
65.21	19.88	1449.2	18.8	1.3	168.4	175.4	5.8	4.4	88.4	30.0	30.0	3.0
66.03	20.12	1781.3	22.7	1.3	170.4	177.8	7.1	5.5	114.0	30.0	30.0	3.0
66.85	20.38	1908.3 2700 1	16.9 37.2	1.3	174.5	182.7	11.2	8.3	194.6	30.0	32.0	6.0
68.49	20.88	1928.6	30.4	1.6	176.6	185.2	7.7	5.7	125.3	30.0	30.0	3.0
69.31	21.12	3682.9	34.0	0.9	178.7	187.6	12.3	9.0	0.0	30.5	32.0	1.0
70.13	21.38	2926.3	27.1	0.9	180.9	190.1	9.5	6.9	159.5	30.0	30.0	3.0
70.95	21.88	5255.6	64.2	1.2	185.1	195.0	17.5	12.6	1.0.0	40.0	36.0	1.0
72.59	22.12	5728.1	32.3	0.6	187.3	197.4	14.3	10.2	#0.0	42.3	36.0	1.0
73.41	22.38	1646.2	11.7	0.7	189.5	199.9	6.6 0 /	4.1	100.5	30.0	30.0	3.0
74.23	22.62	2559.9	42.1	1.8	191.5	202.3	12.6	8.8	219.3	30.0	32.0	6.0
75.05	23.12	4577.6	52.2	1.1	195.7	207.2	15.3	10.7	0.0	35.3	34.0	1.0
76.69	23.38	2375.7	37.3	1.6	197.8	209.7	9.5	6.6	157.5	30.0	30.0	3.0
77.51	23.62	4814.2	55.9	1.2	199.9 202 0	212.1	16.0	9.9	253.2	30.0	34.0	6.0
78.33	25.88	4928.4	72.2	1.5	202.0	217.0	16.4	11.3	0.0	36.8	34.0	1.0
79.97	24.38	6268.0	63.8	1.0	206.4	219.5	15.7	10.7	0.0	43.5	36.0	1.0
80.79	24.62	9842.1	128.2	1.3	208.7	222.0	24.6	10.7 21.7	0.0	50.5 63.8	40.0	1.0
81.61	24.88	120/0.9	179.6	1.5	213.3	226.9	30.5	20.4	0.0	62.1	40.0	1.0
83.25	25.38	24669.9	268.0	1.1	215.6	229.3	49.3	32.9	0.0	82.1	42.0	1.0
84.07	25.62	30932.7	213.6	0.7	218.1	231.8	61.9	41.0 34 9	0.0	88.5 00 4	44.0 44.0	1.0
84.89	25.88	33507.3	102.3	0.3	220.5	234.2	50.9	33.4	0.0	87.8	44.0	1.0
85.71	26.12	21410.9	75.5	0.4	225.6	239.1	42.8	27.9	0.0	77.4	42.0	1.0
87.35	26.62	3528.5	70.5	2.0	227.8	241.6	14.1	9.2	244.7	30.0	32.0	6.0 z o
88.17	26.88	2111.2	17.4	0.8	229.9	244.0	8.4 0 /	5.5 6 0	148 0	30.0	30.0	3.0
88.99	27.12 27 38	2340.0	23.2 98.2	1.0	231.9	240.5	25.1	16.0	0.0	55.2	38.0	1.0
90.63	27.62	18315.3	145.3	0.8	236.4	251.4	36.6	23.3	0.0	72.3	40.0	1.0
91.45	27.88	15638.9	92.1	0.6	238.9	253.8	31.3	19.8	0.0	6/.6 71.1	40.0 40.0	1.0
92.27	28.12	17737.1	123.2	0.7 n o	241.5	258.7	31.7	19.9	0.0	67.7	40.0	1.0
95.09 oz o1	28.58	3599.1	65.6	1.8	245.9	261.2	14.4	9.0	247.4	30.0	32.0	6.0
94.73	28.88	2169.3	23.0	1.1	248.0	263.6	8.7	5.4	132.6	30.0	30.0	5.0
95.55	29.12	2121.0	22.8	1.1	250.0	266.1	8.5 11 R	5.5 7.3	120.4	30.0	30.0	3.0
96.37	29.38	2950.6 8/20 /	40.9 123 A	1.4	254.2	271.0	28.1	17.2	0.0	49.0	36.0	1.0
97.19 OR 01	29.88	5476.3	113.0	2.1	256.4	273.5	18.3	11.2	0.0	36.5	34.0	1.0
08.83	30,12	2685.2	29.0	1.1	258.5	275.9	9.0	5.4	0.0	50.0	0.00	

2685.2

98.01 98.83

30.12



.

Page: 2

Page: 3 ConeTec Inc. - CPT Interpretation Run No: 96-0805-1136-4609 AvgFs AvgRf E.Stress Hyd.Pr. N60 (N1)60 Su Dr Phi OCR (kPa) (%) (kPa) (kPa) (blows/ft) (kPa) (%) (deg.) (ratio) Depth Depth AvgQt (kPa) (%) (m) (kPa) 30.0 1.0 0.0 30.0 278.4 12.4 7.5 1.5 260.7 99.65 30.38 3712.1 57.4 0.0 74.2 40.0 1.0

0.6 263.0

115.5

100.47 30.62 20666.4

280.8

...

41.3

24.9

2

هنيد.






Client: Sounding: Date: KLEINFELDER 09-RC-30 4-Jun-96

Source:Beam & HammerOffset (m):0.56Cone:AD 040 (20 tonne)Geophone:0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Way	ve Velocity	Corres Depth I	ponding ncrement
<i>(m</i> )	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
(m) 4.80 5.80 6.80 7.80 8.80 9.80 10.80 11.80 12.80 13.80 14.80 15.80 16.80 17.80 18.80 19.80 20.80 21.80 22.80 23.80 24.80 25.80 26.80 27.80 28.80 29.80 30.80	(m) 4.83 5.83 6.82 7.82 8.82 9.82 10.81 11.81 12.81 13.81 14.81 15.81 16.81 17.81 16.81 17.81 19.81 20.81 21.81 22.81 23.81 24.81 25.81 26.81 27.81 28.81 29.81 30.81	X-Over           (ms)           7.5           6.3           7.7           7.8           8.4           6.6           5.8           5.3           4.6           5.4           6.5           5.9           5.7           4.7           4.8           4.5           4.5           4.5           4.5           4.5           4.5           4.5           4.5           4.5           4.5           4.5           4.5           4.3	(m/s) → 133 158 129 128 119 → 151 172 185 → 200 185 154 182 169 → 175 213 208 222 → 250 286 189 270 222 → 233	(ft/s) 435 519 425 420 390 496 565 618 713 607 656 607 504 596 556 575 698 683 729 729 820 937 619 820 937 619 887 729 729	(m) 4.8 - 5.8 5.8 - 6.8 6.8 - 7.8 7.8 - 8.8 8.8 - 9.8 9.8 - 10.8 10.8 - 11.8 11.8 - 12.8 13.8 - 14.8 13.8 - 14.8 14.8 - 15.8 15.8 - 16.8 16.8 - 17.8 15.8 - 16.8 16.8 - 17.8 17.8 - 18.8 18.8 - 19.8 19.8 - 20.8 20.8 - 21.8 21.8 - 22.8 21.8 - 23.8 23.8 - 24.8 24.8 - 25.8 25.8 - 26.8 26.8 - 27.8 27.8 - 28.8 28.8 - 29.8 29.8 - 30.8	(ft) 15.7 - 19.0 19.0 - 22.3 22.3 - 25.6 25.6 - 28.9 28.9 - 32.2 32.2 - 35.4 35.4 - 38.7 38.7 - 42.0 42.0 - 45.3 45.3 - 48.6 48.6 - 51.8 51.8 - 55.1 55.1 - 58.4 58.4 - 61.7 61.7 - 65.0 65.0 - 68.2 68.2 - 71.5 71.5 - 74.8 74.8 - 78.1 78.1 - 81.4 81.4 - 84.6 84.6 - 87.9 87.9 - 91.2 91.2 - 94.5 94.5 - 97.8 97.8 - 101.0
		-				
		1		l I	l l	

مىلەت مەرىپىيە تەرىپىيە تەرىپى

3 12 2 3 Jan ... P.A.

Sandard - A

A 4111 A 41

ConeTec Inc. - CPT Interpretation Interpretation Output - Release 1.00.07 96-0913-0906-4359 Run No: 96-309 Job No: Kleinfelder Client: Project: I15 Section 10 15,S10: RMP.EN.,09-SC-33 Site: Location: Rmp. EN Struct 20 TON A AD041 Cone: CPT Date: 96/05/08 CPT Time: 09:03 CPT File: KA09S33.COR 2.00 (ft): 6.6 Water Table (m): Averaging Increment (m): 0.25 12.50 Su Nkt used: Robertson and Campanella, 1983 Phi Method : Jamiolkowski - All Sands Dr Method : Used Unit Weights Assigned to Soil Zones . . . . . . . . AvgRf Hyd. Pr. N60 (N1)60 Su Dr Phi OCR E.Stress Avafs AvgQt Depth Depth (kPa) (blows/ft) (kPa) (%) (deg.) (ratio) (kPa) (ft) (m) (kPa) (kPa) (%) ------ - - - - - - ------- - - -. . . . . . . . . _ _ _ _ _ . ..... _ - - - - -85.0 95.0 0.0 50.0 1.0 0.4 2.5 0.0 42.5 25508.7 100.4 0.12 0.41 7.3 0.0 27.3 54.7 0.0 95.0 50.0 1.0 8204.4 2.3 191.5 1.23 0.38 89.7 0.0 95.0 50.0 1.0 12.0 0.0 44.9 235.5 1.3 2.05 0.62 17943.6 25.1 50.3 0.0 84.9 48.0 1.0 107.2 1.4 16.7 0.0 7542.4 0.88 2.87 0.0 0.0 4.2 21.2 0.0 9.6 19.2 75.1 6.0 959.5 40.4 3.69 1.12 47.0 0.0 0.0 0.0 4.1 7.9 6.0 25.6 613.1 12.7 2.1 4.51 1.38 5.0 8.9 97.9 30.0 38.0 6.0 1254.4 14.1 1.1 30.1 0.0 1.62 5.33 7.7 0.0 40.5 40.0 1.0 34.7 0.0 12.8 1.88 14.9 0.6 2313.1 6.15 19.8 0.0 61.3 44.0 1.0 38.1 1.2 12.5 0.6 2.12 5007.6 32.5 6.97 0.0 61.6 44.0 1.0 2.38 5209.1 61.3 1.2 40.4 3.7 17.4 26.7 7.79 24.9 0.0 59.5 42.0 1.0 0.9 16.6 4974.6 47.2 42.6 6.1 2.62 8.61 73.4 44.0 1.0 30.3 0.0 8297.3 67.0 0.8 44.8 8.6 20.7 2.88 9.43 81.2 46.0 47.1 11.0 27.9 39.8 0.0 1.0 107.1 1.0 3.12 11159.5 10.25 29.4 40.9 0.0 88.4 46.0 1.0 109.2 0.7 49.4 13.5 3.38 14676.6 11.07 15.9 31.4 42.6 0.0 89.6 46.0 1.0 51.9 15679.4 56.8 0.4 3.62 11.89 35.0 0.0 83.9 46.0 1.0 0.2 54.3 18.4 26.4 3.88 13175.6 22.0 12.71 32.3 0.0 81.6 46.0 1.0 20.2 0.2 56.7 20.8 24.8 13.53 4.12 12424.7 74.8 23.3 20.0 25.4 0.0 44.0 1.0 59.1 9983.1 11.3 0.1 4.38 14.35 51.1 40.0 1.0 25.8 14.9 18.6 0.0 4457.5 27.6 0.6 61.4 4.62 15.17 74.8 44.0 1.0 63.7 28.2 20.8 25.5 0.0 10396.2 59.1 0.6 15.99 4.88 66.1 30.7 14.9 18.0-0.0 58.4 42.0 1.0 0.6 5.12 5973.8 33.9 16.81 3.9 53.6 0.0 0.0 3.0 33.1 4.6 11.5 1.5 68.3 17.63 5.38 771.6 0.0 0.0 3.0 35.6 2.8 3.3 36.0 554.6 4.2 0.8 69.6 18.45 5 62 1.5 2.5 70.3 38.0 2.4 2.8 30.2 0.0 0.0 5.88 485.4 0.5 19.27 40.5 2.6 3.0 32.3 0.0 0.0 1.5 71.0 6.12 515.0 3.1 0.6 20.09 67.5 30.0 30.0 3.0 3.8 72.3 42.9 4.4 6.38 958.4 6.0 0.6 20.92 0.0 3.0 2.5 73.7 45.4 3.1 3.5 40.2 0.0 0.4 621.6 21.74 6.62 47.8 2.8 3.2 34.9 0.0 0.0 1.5 74.4 2.8 0.5 6.88 558.1 22.56 3.7 0.0 0.0 3.0 3.3 42.0 50.3 75.0 23.38 7.12 650.4 4.7 0.7 3.9 45.8 0.0 0.0 3.0 52.7 3.5 7.38 700.4 2.0 0.3 75.7 24.20 0.0 3.0 0.0 55.2 3.7 4.2 48.8 2.0 0.3 76.4 741.8 25.02 7.62 3.4 38.4 0.0 0.0 1.5 77.1 57.6 3.1 0.4 25.84 7.88 614.9 2.2 0.0 0.0 1.5 2.5 2.8 28.6 60.1 8.12 495.5 2.0 0.4 77.7 26.66 27.0 0.0 0.0 1.5 78.4 62.5 2.4 2.6 478.0 2.0 0.4 8.38 27.48 0.0 1.5 79.1 65.0 2.4 2.7 27.2 0.0 483.7 0.4 2.0 28.30 8.62 37.7 0.0 0.0 1.5 67.4 3.1 3.4 79.7 8.88 618.2 2.0 0.3 29.12 0.0 0.0 1.5 69.9 2.4 2.6 26.0 475.3 2.0 0.4 80.4 29.94 9.12 30.0 30.0 3.0 4.5 70.1 0.2 81.8 72.3 4.1 1030.2 2.2 9.38 30.76 30.0 34.0 6.0 74.8 9.0 9.6 167.6 1.0 83.8 31.58 9.62 2254.1 21.7 7.9 30.0 34.0 6.0 77.3 7.5 136.8 1872.8 19.4 1.0 85.9 9.88 32.40 0.0 3.0 51.5 0.0 79.7 4.1 4.2 810.8 2.9 0.4 87.2 10.12 33.22 3.0 5.3 68.4 0.0 0.0 82.2 5.1 10.38 1026.2 28.1 2.7 88.6 34.04 51.3 40.0 1.0 18.7 0.0 90.7 84.6 18.2 1.4 5449.9 74.8 34.86 10.62 6.0 32.0 87.1 115.1 30.0 1.0 92.8 6.5 6.6 10.88 1618.8 16.7 35.68 31.8 36.0 1.0 89.5 9.4 9.5 0.0 94.9 28.2 1.0 11.12 2828.1 36.50 127.5 30.0 32.0 6.0 92.0 7.1 7.1 97.0 22.8 1.3 1782.9 37.32 11.38 3.0 30.0 30.0 99.1 94.4 5.7 5.6 97.6 0.9 11.62 1413.2 12.6 38.14 139.5 30.0 32.0 6:0 ۰. 101.1 96.9 7.8 7.6 1942.3 26.4 1.4 11.88 38.96 9.4 9.0 171.3 30.0 34.0 6.0 103.2 99.3 2343.4 22.5 1.0 12.12 39.78 73.7 42.0 1.0 0.0 24.5 101.8 25.7 84.9 0.7 105.4 40.60 12.38 12862.3 1.0 90.3 46.0 107.8 104.2 57.9 54.6 0.0 23171.8 299.6 1.3 12.62 41.42 42.0 1.0 24.6 22.9 0.0 65.4 106.7 110.1 12.88 119.7 1.2

9839.0

42.24

1 Page:

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0906-4359 CPT File: KA09S33.COR

Depth (ft)	Depth (m)	Avgût (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 ( (blows	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
	47 17	1012 0	 27 4	1.4	112.2	109.1	7.6	7.1	135.2	30.0	32.0	6.0
43.00	13.12	9080.1	119.2	1.3	114.4	111.6	22.7	20.8	0.0	62.6	42.0	1.0
44.70	13.62	25888.0	346.2	1.3	116.7	114.0	64.7 17 5	58.6	0.0	92.5 38.8	36.0	1.0
45.52	13.88	4035.9	47.5	1.2	118.9	110.5	4.4	3.9	68.8	30.0	30.0	3.0
46.34	14.12	1099.0	10.2	0.4	123.1	121.4	4.9	4.3	78.7	30.0	30.0	3.0
47.18	14.62	3416.1	23.2	0.7	125.2	123.9	11.4	10.0	• 0.0	33.3	34.0	1.0
48.80	14.88	8148.2	70.1	0.9	127.4	126.5	20.4	1/./ 20 3	0.0	62.0	40.0	1.0
49.62	15.12	9464.0 11700 0	139.5	1.5	132.0	131.2	29.5	25.1	0.0	68.0	42.0	1.0
51.26	15.62	3627.5	22.7	0.6	134.3	133.7	12.1	10.2	0.0	34.0	34.0	1.0
52.08	15.88	1314.4	4.7	0.4	136.4	136.1	5.5	4.4	68.1	30.0	30.0	1.5
52.90	16.12	1127.8	4.0	0.4	140.5	141.0	4.2	3.5	62.2	30.0	30.0	1.5
54.54	16.62	879.4	2.1	0.2	141.8	143.5	4.4	3.6	47.5	0.0	0.0	1.5
55.36	16.88	1058.2	3.6	0.3	143.2	145.9	4.2	3.5	61.5	30.0	30.0	1.5
56.18	17.12	1081.5	10.9	1.0	145.2	148.4	4.5	5.2	105.4	30.0	30.0	3.0
57.00	17.62	1963.9	31.2	1.6	149.3	153.3	7.9	6.3	132.9	30.0	30.0	3.0
58.64	17.88	1287.6	15.5	1.2	151.4	155.7	5.2	4.1	78.4	30.0	30.0	3.0
59.46	18.12	1285.1	15.2	1.2	155.4	158.2	5.5	4.1	84.2	30.0	30.0	3.0
60.28	18.58	1379.5	14.0	1.2	157.5	163.1	5.5	4.3	84.7	30.0	30.0	3.0
61.93	18.88	1378.0	12.2	0.9	159.6	165.5	5.5	4.3	84.Z	30.0	30.0	3.0
62.75	19.12	1435.7	12.6	0.9	161.6	168.0 170 /	5./	4.4	219 2	30.0	32.0	6.0
63.57	19.38	3074.1 0440 8	53.9 15/ 2	1.0	165.8	172.9	31.5	23.9	0.0	58.4	40.0	1.0
65.21	19.88	2859.6	83.6	2.9	167.9	175.4	14.3	10.8	201.3	0.0	0.0	6.0
66.03	20.12	4506.1	64.3	1.4	170.0	177.8	15.0	11.3	0.0	36.8	34.0	1.0
66.85	20.38	1963.7	15.4	0.8	172.1	180.5	7.9	2.4	89.3	30.0	30.0	3.0
67.67 68.49	20.62	2198.9	22.6	1.0	176.2	185.2	8.8	6.5	147.0	30.0	30.0	3.0
69.31	21.12	3033.1	59.4	2.0	178.3	187.6	12.1	8.9	. 213.4	30.0	32.0	6.0
70.13	21.38	7627.9	74.9	1.0	180.4	190.1	19.1	13.9	0.0	51.1	32.0	1.0
70.95	21.62	3670.1 2010 9	45.5	3.7	184.8	192.5	13.4	9.7	130.5	0.0	0.0	3.0
72.59	22.12	8830.1	84.9	1.0	186.9	197.4	22.1	15.8	<b>0.</b> 0	54.7	38.0	1.0
73.41	22.38	4610.8	79.4	1.7	189.2	199.9	15.4	10.9	0.0	35.9	34.U 0 0	1.0
74.23	22.62	2641.3	72.8	2.8	191.5	202.3	27.9	19.6	0.0	52.7	38.0	1.0
75.05	22.00	14678.0	221.9	1.5	195.6	207.2	36.7	25.7	0.0	68.7	40.0	1.0
76.69	23.38	23666.4	105.7	0.4	198.1	209.7	39.4	27.4	0.0	82.2	42.0	1.0
77.51	23.62	13498.4	86.3	0.6	200.5	212.1	27.0	18.7	0.0	62.8	40.0	1.0
78.33	23.88	12169.2	(9.9 62 7	0.7	203.0	217.0	33.5	22.9	0.0	71.8	42'.0	1.0
79.97	24.12	12240.1	84.0	0.7	207.8	219.5	24.5	16.6	0.0	62.6	40.0	1.0
80.79	24.62	15200.8	136.9	0.9	210.2	222.0	30.4	20.5	0.0	68.6	40.0	1.0
81.61	24.88	14496.1	155.1	1.1	212.0	224.4	26.2	17.5	0.0	57.7	38.0	1.0
83.25	25.38	13081.4	206.8	1.6	217.2	229.3	32.7	21.7	0.0	63.9	40.0	1.0
84.07	25.62	27888.2	158.7	0.6	219.6	231.8	46.5	30.7	0.0	85.4	44.0	1.0
84.89	25.88	26186.8	138.7	0.5	222.2	234.2	43.0 56 7	28.7	0.0	90.8	44.0	1.0
85.71	26.12	31883.1	173.1	0.0	224.7	239.1	53.1	34.5	0.0	88.7	44.0	1.0
87.35	26.62	32126.8	258.4	0.8	229.7	241.6	64.3	41.5	0.0	88.8	44.0	1.0
88.17	26.88	29212.8	341.6	1.2	232.2	244.0	58.4	37.5	0.0	85.9	42.0	1.0
88.99	27.12	12259.5	206.6	1./	234.7	240.5	21.8	13.8	309.5	0.0	0.0	6.0
90.63	27.62	2077.4	55.7	2.7	238.7	251.4	10.4	6.6	127.0	0.0	0.0	3.0
91.45	27.88	1918.1	22.6	1.2	240.8	253.8	7.7	4.8	113.9	30.0	30.0 0 0	1.5
92.27	28.12	2517.9	67.6 144 4	2.7	242.8	258.7	24.5	15.3	0.0	45.6	36.0	1.0
93.09 07 01	28.55	6484.9	161.3	2.5	247.1	261.2.	25.9	16.2	478.1	41.9	34.0	6.0
94.73	28.88	6487.1	143.1	2.2	249.2	263.6	21.6	13.4	· 0.0	41.8	34.0 42 0	1.0 1.0
95.55	29.12	23930.6	271.5	1.1	251.5	266.1	41.9	29.5 40.7	0.0	81.8	42.0	1.0
96.37	29.38	26485.3	582.0 100 3	1.4	255.0	271.0	44.0	26.9	0.0	70.0	40.0	1.0
97.19 98.01	29.88	19216.6	215.5	1.1	258.5	273.5	38.4	23.4	0.0	72.4	40.0	1.0
98.83	30.12	16727.2	239.1	1.4	260.8	275.9	41.8	25.3	0.0	08.5	40.0	1.0

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0906-4359 CPT File: KA09S33.COR

CPT Fi	le: KAO9S3	3.COR										
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
						278 4	39.7	24.0	0.0	58.4	38.0	1.0
99.65	30.38	11911.0	2/0.4	2.5	203.1	280.8	32.1	19.3	599.3	47.0	36.0	6.0
100.47	30.62	8036.9	244.4	2.0	203.2	283 3	23.4	14.0	330.2	0.0	0.0	6.0
101.29	30.88	4678.4	167.9	2.0	207.2	285.7	22.3	13.3	402.3	36.4	32.0	6.0
102.11	31.12	5584.3	152.2	7 7	209.3	288.2	28.2	16.7	519.0	42.9	34.0	6.0
102.94	31.38	7047.1	224.0	3.2	273 4	290.6	19.2	11.4	261.7	0.0	0.0	3.0
103.76	31.62	3835.7	77.0	2.2	275 4	293.1	13.1	7.7	216.4	30.0	30.0	3.0
104.58	31.88	32/3.4	11.9	1 9	277 5	295.5	12.0	7.0	193.5	30.0	30.0	3.0
105.40	32.12	2991.4	54.5 68.0	1.0	279.5	298.0	14.6	8.5	245.5	30.0	30.0	3.0.
106.22	32.38	3040.4	26.0	1.0	281.6	300.4	9.3	5.4	0.0	30.0	30.0	1.0
107.04	32.02	2/0/.0	20.7	0.8	283.8	302.9	8.9	5.2	0.0	30.0	30.0	1.0
107.86	32.88	2013.0	16 6	0.7	286.0	305.3	7.6	4.4	0.0	30.0	30.0	1.0
108.68	35.12	2207.0	16.0	0.0	288.1	307.8	8.1	4.7	114.7	30.0	30.0	1.5
109.50	35.38	2029.0	17.2	0.9	290.1	310.2	7.7	4.5	106.9	30.0	30.0	1.5
110.32	33.02	2170 3	25.6	1 2	292.2	312.7	8.7	5.0	126.0	30.0	30.0	1.5
111.14	33.00	21/7.5	21.2	1.0	294.2	315.1	8.8	5.0	126.5	30.0	30.0	1.5
111.96	34.12 7/ 79	2068 5	14.9	0.7	296.3	317.6	8.3	4.7	116.4	30.0	30.0	1.5
112.70	34.30	2337 1	58.4	2.5	298.3	320.1	9.3	5.3	137.5	30.0	30.0	1.5
113.00	34.02	6215 0	111.6	1.8	300.4	322.5	20.7	11.7	0.0	37.9	32.0	1.0
114.46	75 12	11708 1	260.6	2.2	302.6	325.0	39.0	22.0	0.0	55.9	38.0	1.0
112.24	75 78	16159 9	210.1	1.3	304.8	327.4	40.4	22.6	0.0	65.1	38.0	1.0
116.00	35.62	3659.2	95.6	2.6	307.0	329.9	14.6	8.2	241.8	30.0	30.0	3.0
110.00	25 88	2744 0	59.8	2.2	309.1	332.3	11.0	6.1	168.2	30.0	50.0	3.0
117.70	74 17	6102 3	136.5	2.2	311.2	334.8	20.6	11.5	0.0	37.3	32.0	1.0
110.32	74 78	4615 0	101.9	2.2	313.3	337.2	18.5	10.2	317.2	30.0	32.0	6.0
119.34	36.30	2414.2	23.3	1.0	315.3	339.7	9.7	5.3	140.7	30.0	30.0	1.5
120.10	36.88	2476.3	29.9	1.2	317.4	342.1	9.9	5.4	145.3	30.0	30.0	1.5
120.90	37 12	10558.0	179.6	1.7	319.5	344.6	35.2	19.3	0.0	52.2	36.0	1.0
127.60	37 38	6429.7	167.8	2.6	321.6	347.0	25.7	14.0	460.9	37.9	32.0	<b>0</b> .0
123 44	37.62	3120.9	66.7	2.1	323.6	349.5	12.5	6.8	195.8	30.0	30.0	3.0
12/ 26	37.88	2215.4	25.0	1.1	325.7	351.9	8.9	4.8	123.0	30.0	30.0	1.5
125 08	38,12	2935.5	52.7	1.8	327.7	354.4	11.7	6.3	180.3	30.0	30.0	3.0
125.00	38.38	11604.5	216.2	1.9	329.8	356.8	38.7	20.8	0.0	54.4	30.0	1.0
126 72	38 62	12203.4	268.1	2.2	332.0	359.3	40.7	21.8	0.0	55.8	38.0	7.0
127 54	38.88	4812.6	131.7	2.7	334.1	361.7	19.3	10.3	329.3	30.0	32.0	1.5
128 36	39,12	2291.5	22.4	1.0	336.2	364.2	9.2	4.9	127.5	30.0	20.0	1.5
120.30	39.38	2716.8	36.2	1.3	338.2	366.6	10.9	5.8	161.0	50.0	30.0	1.2
127.10	30 62	3157.8	65.1	2.1	340.3	369.1	12.6	6.7	195.9	30.0	30.0	3.0
130.00	39.88	2861.0	78.0	2.7	342.3	371.6	14.3	7.6	171.8	0.0	0.0	<b>3</b> .0
171 44	40 12	2230.1	26.1	1.2	344.4	374.0	8.9	4.7	120.9	50.0	0.0	1.7
132 //	40.38	2457.2	25.4	1.0	346.4	376.5	9.8	5.2	138.7	50.0	30.0	1.5
132.40	40.62	11743.0	147.7	1.3	348.6	378.9	29.4	15.4	0.0	54.0	0.00	1.0
122.20	40.00											

...

#### Page: 3









_____



KLEINFELDER

Client: Sounding: Date:

09-SC-33 5-Aug-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For	Shear Wave	• Velocity	Corresponding Depth Increment		
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)	
(////	,,,,,,	(11.2)	(110.0)	1.0,0,	1		
0.90	1.06						
1 90	1.98	10.6	⊷ 87	286	0.9 - 1.9	3.0 - 6.2	
2.90	2.95	7.6	128	420	1.9 2.9	6.2 - 9.5	
3.90	3.94	5.7	173	568	2.9 - 3.9	9.5 - 12.8	
4.90	4.93	6.0	167	547	3.9 - 4.9	12.8 - 16.1	
5.90	5.93	7.7	¥ 130	427	4.9 - 5.9	16.1 - 19.4	
6.90	6.92	8.0	125	411	5.9 - 6.9	19.4 - 22.6	
7.90	7.92	6.9	145	474	6.9 - 7.9	22.6 - 25.9	
8.90	8. <del>9</del> 2	8.9	112	368	7.9 - 8.9	25.9 29.2	
9.90	9.92	7.6	131	431	8.9 - 9.9	29.2 - 32.5	
10.90	10.91	6.2	🛫 161	528	9.9 - 10.9	32.5 · 35.8	
11.90	11.91	5.3	188	618	10.9 - 11.9	35.8 - 39.0	
12.90	12.91	5.2	192	630	11.9 - 12.9	39.0 - 42.3	
13.90	13.91	5.3	190	624	12.9 13.9	42.3 - 45.6	
14.90	14.91	4.5	225	737	13.9 - 14.9	45.6 - 48.9	
15.90	15.91	5.8	+ 172	565	14.9 - 15.9	48.9 - 52.2	
16.90	16.91	6.7	150	<b>,49</b> 3	15.9 - 16.9	52.2 - 55.4	
17.90	17.91	6.5	154	504	16.9 - 17.9	55.4 - 58.7	
18.90	18.91	5.7	175	575	17.9 - 18.9	58.7 - 62.0	
19.90	19.91	5.2	192	631	18.9 - 19.9	62.0 · 65.3	
20.90	20.91	4.6	¥ 220	721	19.9 - 20.9	65.3 - 68.6	
21.90	21.91	4.5	222	729	20.9 · 21.9	68.6 71.9	
22.90	22.91	4.3	<b>2</b> 32	763	21.9 22.9	71.9 75.1	
23.90	23.91	3.8	263	863	22.9 · 23.9	75.1 - 78.4	
24.90	24.91	4.6	217	713	23.9 - 24.9	78.4 - 81.7	
25.90	25.91	4.0	¥ 253	830	24.9 - 25.9	81.7 - 85.0	
26.90	26.91	4.0	250	820	25.9 · 26.9	85.0 - 88.3	
27.90	27.91	4.2	241	790	26.9 · 27.9	88.3 - 91.5	
28.90	28.91	3.8	267	875	27.9 · 28.9	91.5 - 94.8	
29.90	29.91	3.9	256	841	28.9 - 29.9	94.8 - 98.1	
30.90	30.91	3.8	<i>∔</i> 267	875	29.9 · 30.9	98.1 - 101.4	
31.90	31.90	4.3	233	763	30.9 - 31.9	101.4 - 104.7	
32.90	32.90	4.2	238	781	31.9 - 32.9	104.7 - 107.9	
33.90	33.90	4.3	235	772	32.9 33.9	107.9 - 111.2	
34.90	34.90	3.0	333	1093	33.9 34.9	111.2 - 114.5	
35.90	35.90	4.6	¥ 220	721	34.9 - 35.9	114.5 - 117.8	
36.90	36.90	4.1	244	800	35.9 36.9	117.8 • 121.1	
<b>37.9</b> 0	37.90	4.0	250	820	30.9 - 37.9	121.1 - 124.3	
38.90	38.90	4.0	253	831	37.9 - 38.9		
39.90	39.90	3.8	267	875	38'8 - 38'8	127.6 - 130.9	

and a substant attack and and a set and

KLEINFELDER

SS-SC-17

17-Jun-96

,

Client: Sounding: Date:

Source: Offset (m): Cone: Geophone:

a

Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For	Shear Way	e Velocity	Corresp Depth in	onding crement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
1.60	1.70					
2.60	2.66	6.0	¥ 161	527	1.6 2.6	5.2 - 8.5
3.60	3.64	7.9	125	409	2.6 3.6	8.5 • 11.8
4.60	4.03	6.9	144	4/1	3.6 - 4.6	11.8 - 15.1
5.60	5.63	7.5	- 133	435	4.6 5.6	15.1 - 18.4
6.60	6.62	6.4	156	510	5.6 - 6.6	18.4 - 21.7
7.60	7.62	5.8	172	564	6.6 - 7.6	21.7 · 24.9
8.65	8.67	5.8	181	593	7.6 - 8.7	24.9 - 28.4
9.65	9.67	5.4	185	606	8.7 - 9.7	28.4 - 31.7
10.65	10.66	5.2	¥ 192	630	9.7 . 10.7	31.7 - 34.9
11.05	11.66	5.0	200	655	10.7 • 11.7	34.9 - 38.2
12.65	12.66	7.8	128	420	11.7 - 12.7	38.2 - 41.5
13.60	13.61	5.6	169	556	12.7 - 13.6	41.5 - 44.6
14.05	14.66	5.2	202	662	13.6 - 14.7	44.6 - 48.1
15.60	15.61	5.4	<b>⊬ 176</b>	577	14.7 - 15.6	48.1 - 51.2
16.60	16.61	5.8	172	565	15.6 - 16.6	51.2 - 54.5
17.60	17.61	5.6	178	586	16.6 - 17.6	54.5 - 57.7
18.60	18.61	4.8	208	683	17.6 - 18.6	57.7 - 61.0
19.60	19.61	5.2	192	631	18.6 - 19.6	61.0 - 64.3
20.60	20.61	4.2	<i>₩</i> 238	781	19.6 - 20.6	64.3 - 67.6
21.60	21.61	3.0	333	1093	20.6 - 21.6	67.6 - 70.9
22.60	22.61	5.2	192	631	21.6 22.6	70.9 - 74.1
23.60	23.61	5.4	185	607	22.6 - 23.6	74.1 - 77.4
24.60	24.61	5.4	185	607	23.6 - 24.6	77.4 - 80.7
25.60	25.61	4.6	→ 217	713	24.6 - 25.6	80.7 - 84.0
26.60	26.61	4.6	217	713	25.6 - 26.6	84.0 - 87.3
27.65	27.66	3.4	309	1013	26.6 - 27.7	87.3 - 90.7
28.65	28.66	3.2	312	1025	27.7 - 28.7	90.7 - 94.0
29.65	29.66	4.6	217	713	28.7 - 29.7	94.0 - 97.3
			•		29 2	





and the second second second second second second second second second second second second second second second







KLEINFELDER SS-SC-34

21-May-96

Client: Sounding: Date:

Geophone:

6

Source: Offset (m): Cone:

Beam & Hammer 0.56 AD 025 (20 tonne) 0.20 m above tip

Geophone Depth	Distance Last Time Interval For X-Over		Shear Way	e Velocity	Corresponding Depth Increment				
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)			
3.80	3.84			1					
4.80	4.83	6.4	* 155	508	3.8 - 4.8	12.5 - 15.			
5.80	5.83	5.7	* 174	572	4.8 513 5.8	15.7 - 19.			
6.80	6.82	6.0	166	545	5.8 6.8	19.0 - 22.			
7.80	7.82	5.7	175	574	6.8 7.8	22.3 - 25.			
8.80	8.82	5.5	181	595	7.8 - 8.8	25.6 - 28.			
9.80	9.82	5.1	196	642	8.8 - 9.8	28.9 - 32.			
10.80	10.81	5.7	<i>+</i> 175	575	9.8 . 10.8	32.2 - 35.			
11.80	11.81	7.1	141	462	10.8 - 11.8	35.4 - 38.			
12.80	12.81	6.2	161	529	11.8 12.8	38.7 . 42			
13.80	13.81	5.2	192	630	12.8 13.8	42.0 - 45.			
14.80	14.81	5.3	189	619	13.8 - 14.8	45.3 - 48.			
15.80	15.81	5.4	* 185	607	14.8 15.8	48.6 . 51.			
16.80	16.81	5.9	169	556	15.8 16.8	51.8 - 55.			
17.80	17.81	5.7	175	575	16.8 - 17.8	55.1 - 58.			
18.80	18.81	4.7	213	698	17.8 - 18.8	58.4 . 61.			
19.80	19.81	3.9	256	841	18.8 . 19.8	61.7 65			
20.80	20.81	3.9	¥ 256	841	19.8 - 20.8	65.0 - 68			
21.80	21.81	4.1	244	800	20.8 21.8	68.2 . 71			
22.80	22.81	5.7	175	575	21.8 . 22.8	715.74			
23.80	23.81	4.5	222	729	22.8 23.8	74.8 . 78			
24.80	24.81	4.1	244	800	23.8 . 24.8	78 1 . 81			
25.80	25.81	3.9	<b>- 4</b> 256	841	24.8 25.8	81.4 . 84			
26.80	26.81	3.5	286	937	25.8 26.8	84.6 . 87			
28.80	28.81	4.6	435	1426	26.8 28.8	87.9 . 94			
29.80	29.81	4.6	217	713	28.8 29.8	94.5 . 97.			
					29,3				







Client: Sounding: Date:

KLEINFELDER SS-SC-43 21-May-96

Source: Offset (m): Cone: Geophone:

Beam & Hammer 0.56 . AD 025 (20 tonne) 0.20 m above tip

540

	•		÷, ·			
Geophone Depth	Distance	Last Time Interval For X-Over	Shear Way	e Velocity	Corresp Depth In	onding crement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
0.90	1.06					
1.90	1.98	7.1	<b>≠</b> 130	425	0.9 - 1.9	3.0 6.2
2.90	2.95	8.3	117	385	1.9 2.9	6.2 9.5
3.90	3.94	4.5	219	719	2.9 - 3.9	9.5 - 12.8
4.90	4.93	5.2	191	626	3.9 - 4.9	12.8 - 16.1
5.90	5.93	4.9	<i>¥</i> 203	666	4.9 5.4 5.9	16.1 - 19.4
6.90	6.92	6.3	158	519	5.9 - 6.9	19.4 - 22.6
7.90	7.92	5.1	196	- 641	6.9 - 7.9	22.6 - 25.9
8.90	8.92	4.4	227	744	7.9 - 8.9	25.9 - 29.2
9.90	9.92	7.1	141	461	8.9 - 9.9	29.2 - 32.5
10.90	10.91	6.6	¥ 151	496	9.9 - 10.9	32.5 35.8
11.90	11.91	7.7	130	426	10.9 - 11.9	35.8 - 39.0
12.90	12.91	5.1	196	643	11.9 - 12.9	39.0 - 42.3
13.90	13.91	5.6	178	585	12.9 - 13.9	42.3 - 45.6
14.90	14.91	5.8	172	565	13.9 - 14.9	45.6 - 48.9
15.90	15.91	5.8	<b>+ 172</b>	565	14.9 - 15.9	48.9 - 52.2
16.90	16.91	5.7	175	575	15.9 - 16.9	52.2 - 55.4
17.90	17.91	5.4	185	607	16.9 - 17.9	55.4 - 58.7
18.90	18.91	5.0	200	656	17.9 - 18.9	58.7 - 62.0
19.90	19.91	4.1	244	800	18.9 - 19.9	62.0 - 65.3
20.90	20.91	4.8	<i>-</i> ∡ 208	683	19.9 - 20.9	65.3 - 68.6
21.90	21.91	4.1	244	800	20.9 - 21.9	68.6 - 71.9
22.90	22.91	3.9	256	841	21.9 - 22.9	71.9 - 75.1
23.90	23.91	3.9	256	841	22.9 - 23.9	75.1 - 78.4
24.90	24.91	3.8	263	863	23.9 - 24.9	78.4 - 81.7
25.90	25.91	4.1	🐳 244	800	24.9 - 25.9	81.7 85.0
26.90	26.91	5.0	200	656	25.9 - 26.9	85.0 - 88.3
27.90	27.91	3.6	278	911	26.9 - 27.9	88.3 - 91.5
28.90	28.91	4.8	208	683	27.9 - 28.9	91.5 - 94.8
29.90	29.91	3.7	270	887	28.9 - 29.9	94.8 - 98.1
					in the second second second second second second second second second second second second second second second	

a

			•											
														.*
	ConeTe	c Inc	CPT Interpr	etation	0.07					Page	: 1 _.		1 ±.	1 - E-
	Interp Pup No	- 96-09	00tput - Ke 13-0820-577	slease I.U 75	<b></b> .		. *						. 14 . 2	an an an an an an an an an an an an an a
	Job No	: 96-30	9	•										e na se
F	Client	: Klein	felder	-e: , , , , , , , , , , , , , , , , , , ,	,	4	.d	* 1	11 1967	•	1		- $  -$	1 AP 19
	Projec	t: 115 S	ection 4		,			, ÷	· · ·				÷	
A.	Site:	15,54	:115,00-SC-	35				. ·				,		
N ₁₀	Cone:	20 T	ON A 041									· ·		
	CPT Da	te: 96/23	/07											
	CPT Ti	me: 08:24	÷	· ·										
	CPT Fi	le: KA06S.	35.COR											
	Water	Table (m	):	2.00	(ft);	6.6								• •
	Ауега	ging Incr	ement (m):	0.25									•	
	Su Nk	t used:	· · ·	12.50										
	Dr M	ethod :		Jamiolko	n anciùan ⊿ski - Al	ipaneila, I Sanda	1983							
	Used I	Unit Weigl	hts Assigne	d to Soil	Zones			•						
												• • • • • • • • • •		
	Ueptn (ft)	veptn (m)	AVGUT (kPa)	AVGIS (kPa)	AVGRT	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi (dec.)	OCR	
						(Kra)	(KFØ) 		JWS/IC)	( KP 8 )	(A)	(deg.)	(ratio)	
	0.41	0.12	18570.8	71.6	0.4	2.4	0.0	37.1	74.3	0.0	95.0	50.0	1.0	
	1.23	0.38	5449.4	121.4	2.2	7.1	0.0	21.8	43.6	435.4	87.7	50.0	10.0	
	2.05	0.88	2974.2	51.4	2.4	16.1	0.0	10.5	57.U 23.8	236.6	76.0	<b>48.</b> 0	10.0	
	3.69	1.12	1155.0	18.1	1.6	20.6	0.0	5.8	11.6	90.8	0.0	0.0	10.0	
	4.51	1.38	991.1	15.2	1.5	25.1	0.0	5.0	9.7	77.3	0.0	0.0	6.0	
	2.33	1.02	<b>900.9</b> 777 4	20.9	2.2	29.6	0.0	4.8	8.7	75.0	0.0	0.0	6.0	
	6.97	2.12	924.2	26.3	2.8	37.4	1.2	6.2	9.9	70.8	0.0	0.0	6.0 6.0	
	7.79	2.38	828.7	14.4	1.7	39.4	3.7	4.1	6.5	62.8	0.0	0.0	6.0	
	8.61	2.62	.854.4	18.7	2.2	41.5	6.1	4.3	6.5	64.5	0.0	0.0	6.0	
	9.45	<b>2.00</b> 3.12	995.0	17.2	2.0	43.5	8.6 11 0	4.3	6.3	64.1	0.0	0.0	6.0	
	11.07	3.38	1193.4	25.7	2.2	47.6	13.5	6.0	8.5	90.6	0.0	0.0	<b>6.</b> 0	
	11.89	3.62	1268.6	16.8	1.3	49.7	15.9	5.1	7.0	96.2	30.0	34.0	6.0	
Car	12.71	3.88	1619.7	30.9	1.9	51.7	18.4	6.5	8.8	124.0	30.0	36.0	6.0	
	14.35	4.38	1705.7	24.1	1.5	55.8	20.8	6.5 6.8	8.6 8 0	123.1	30.0	36.0	6.0	
	15.17	4.62	1700.7	28.5	1.7	57.9	25.8	6.8	8.8	129.4	30.0	36.0	6.0	
Υ	15.99	4.88	1832.4	39.5	2.2	59.9	28.2	7.3	9.3	139.5	30.0	36.0	6.0	
	17.63	5.38	2523.0	32.2 56.8	2.1	62.0 64 0	30.7	8.4	10.5	127.6	0.0	0.0	6.0	
	18.45	5.62	2615.4	68.5	2.6	66.1	35.6	10.5	12.6	201.1	34.8	38.0	6.0	
	19.27	5.88	1217.6	33.8	2.8	68.1	38.0	6.1	7.2	88.9	0.0	0.0	6.0	
	20.09	0.12	898.2 1019 0	10.2	1.1	70.2	40.5	4.5	5.2	63.0	0.0	0.0	3.0	
	21.74	6.62	2324.1	39.7	1.7	74.3	42.7	2.1	5.9 10 6	176 4	30.0	U.U 36 0	6.0	
	22.56	6.88	3404.1	43.1	1.3	76.4	47.8	11.3	12.7	0.0	40.3	38.0	1.0	
	23.38	7.12	937.5	15.0	1.6	78.5	50.3	4.7	5.2	64.7	0.0	0.0	3.0	
	24.20	7.62	615.1	2.1	0.3	79.8	52.7	3.1	3.4	38.6	0.0	0.0	1.5	
	25.84	7.88	573.6	2.7	0.5	81.2	57.6	2.9	3.1	34.8	0.0	0.0	1.5	
	26.66	8.12	588.5	2.9	0.5	81.9	60.1	2.9	3.2	35.7	0.0	0.0	1.5	
	27.48	8.58	<b>664.</b> 1 <b>724.6</b>	5.5	0.5	82.5	62.5	3.3	3.6	41.5	0.0	0.0	3.0	
	29.12	8.88	878.1	28.3	3.2	85.9	67.4	5.9	6.2	40.1 58.0	0.0	0.0	3.0	
	29.94	9.12	813.4	11.2	1.4	88.0	69.9	4.1	4.2	52.4	0.0	0.0	3.0	
	30.76	9.38	707.9	5.1	0.7	90.0	72.3	3.5	3.7	43.6	0.0	0.0	1.5	
	32.40	9.88	656.5	6.2	0.8	91.4	74.8	ב.כ זז	).4 7 7	39.4	0.0	0.0	1.5	
	33.22	10.12	609.5	4.9	0.8	94.1	79.7	3.0	3.1	34.9	0.0	0.0	1.5	
	34.04	10.38	582.2	4.6	0.8	94.8	82.2	2.9	2.9	32.4	0.0	0.0	1.5	
	34 <b>.86</b> 35 69	10.62 10 88	605.0 500 Z	5.6	0.9	95.5 04 1	84.6	3.0	3.0	34.0	0.0	0.0	1.5	
	36.50	11.12	611.3	5.3	0.9	96.8	89_5	3.0	3.0	33.3 34_0	0.0	0.0	1.5	
	37.32	11.38	622.3	5.7	0.9	97.5	92.0	3.1	3.1	34.6	0.0	0.0	1.5	
	38.14	11.62	629.4	6.9	1.1	98.8	94.4	3.1	3.1	34.9	0.0	0.0	1.5	
	58.90 30 78	11.00	1620.1	10.4	1.5	100.9	96.9 00 7	5.6 6 5	5.5 4 7	74.1 113 /	0.0	0.0 120	5.U K n	
1 -	40.60	12.38	1658.7	30.6	1.8	105.0	101.8	6.6	6.3	116.2	30.0	32.0	6.0	
. 6	41.42	12.62	679.1	4.0	0.6	106.3	104.2	3.4	3.2	37.5	0.0	0.0	1.5	
19 <b>-1</b> -1	42.24	12.88	1033.6	18.8	1.8	107.7	106.7	5.2	4.9	65.5	0.0	, 0.0	3.0	
L.														

Depth (ft)	Depth (m) 13.12	AvgQt (kPa)	AvgFs (kPa)	AvgRf	E Chaor-					
	13.12		1	(%)	e.stress (kPa)	Hyd. Pr. (kPa)	N60 (blc	(N1)60 ws/ft)	Su (kPa)	Dr (%)
43.06		1223.9	15.3	1.2	109.7	109.1	4.9	4.6	80.4	30.(
43.88	13.38	2076.9	31.3	1.5	111.8	111.6	8.3	7.7	148.3	30.
44.70	13.62	1515.0	18.4	1.2	113.8	114.0	6.1	5.6	103.0	30.
45.52	13.88	1316.3	17.0	1.3	115.9	116.5	5.3	4.8	86.7	30.
46.34	14.12	1042.7	10.1	1.0	117.9	118.9	4.2	3.8	64.5	30.
47.16	14.38	918.0	4.7	0.5	120.0	121.4	3.7	3.3	54 1	30
47.98	14.62	1352.8	13.3	1.0	122.0	123.9	5.4	4.8	88.6	30
48.80	14.88	2521.5	16.1	0.6	124.1	126.3	8.4	7.4	0.0	30
49.62	15.12	1903.0	29.1	1.5	126.2	128.8	7.6	6.6	131.8	30
50.44	15.38	1300.6	11.1	0.9	128.3	131.2	5.2	4.5	83.3	30
51.26	15.62	1189.2	12.6	1.1	130.3	133.7	4.8	4.1	74.0	30.
52.08	15.88	1034.2	11.2	1.1	132.4	136.1	4.1	3.5	61.3	30.
52.90	16.12	1088.6	9.7	0.9	134.4	138.6	4.4	3.7	65.2	30.
53.72	16.38	1080.3	10.1	Ó.9	136.5	141.0	4.3	3.6	64.2	30.
54.54	16.62	1230.9	16.9	1.4	138.5	143.5	4.9	4.1	75.9	30.
55.36	16.88	1070.5	10.3	1.0	140.6	145.9	4.3	3.5	62.7	30.
56.18	17.12	1317.0	10.3	0.8	142.6	148.4	5.3	4.3	82.1	30.
57.00	17.38	1145.5	6.0	0.5	144.7	150.8	4.6	3.7	68.0	30.
57.82	17.62	1170.8	9.6	0.8	146.7	153.3	4.7	3.8	69.7	30.
58.64	17.88	1095.9	10.6	1.0	148.8	155.7	4.4	3.5	63.3	30.
59.46	18.12	1298.9	13.9	1.1	150.8	158.2	5.2	4.1	79.2	30.
60.28	18.38	1294.7	15.6	1.2	152.9	160.6	5.2	4.1	78.5	30.
61.10	18.62	1236.7	14.1	1.1	154.9	163.1	4.9	3.9	73.5	30.
61.93	18.88	1382.7	18.0	1.3	157.0	165.5	5.5	4.3	84.8	30.0
62.75	19.12	2085.8	25.2	1.2	159.0	168.0	8.3	6.5	140.7	30-
63.57	19.38	1289.7	8.2	0.6	161.1	170.4	5.2	4.0	76.7	30-0
64.39	19.62	1330.5	10.5	0.8	163.1	172.9	5.3	4.1	79.6	30-0
65.21	19.88	1468.7	16.3	1.1	165.1	175.4	5.9	4.5	90.3	30.0
66.03	20.12	1968.9	22.0	1.1	167.2	177.8	7.9	6.0	129.9	30.0

.

Depth	Depth	AvaOt	AvoFe		E Steers							
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	nya. Pr. (kPa)	- NOU (biou	(N1)00	SU (kPa)	0r (%)	Ph1 (dec )	OCR
						(KF@/		₩3//L) 	(KPd)	( <i>A)</i> 	(deg.)	(ratio)
43.06	13.12	1223.9	15.3	1.2	109.7	109.1	4.9	4.6	80.4	30.0	30.0	3.0
43.88	13.38	2076.9	31.3	1.5	111.8	111.6	8.3	7.7	148.3	30.0	32.0	6.0
44.70	13.62	1515.0	18.4	1.2	113.8	114.0	6.1	5.6	103.0	30.0	30.0	3.0
45.52	13.88	1316.3	17.0	1.3	115.9	116.5	5.3	4.8	86.7	30.0	30.0	3.0
40.54	14.12	1042.7	10.1	1.0	117.9	118.9	4.2	3.8	64.5	30.0	30.0	3.0
47.10	14.30	918.0	4./	0.5	120.0	121.4	3.7	3.3	54.1	30.0	30.0	1.5
47.90	14.02	2521 5	13.3	1.0	122.0	125.9	5.4	4.8	88.6	30.0	30.0	3.0
49.62	15 12	1903 0	20 1	1.5	124.1	120.3	0.4	1.4	474 0	30.0	32.0	1.0
50.44	15.38	1300.6	11.1	0.9	128 3	131 2	5.2	6.0	. 97.7	30.0	32.0	0.0
51.26	15.62	1189.2	12.6	1.1	130.3	133.7	4.8	4.5	74 0	30.0	30.0	3.0
52.08	15.88	1034.2	11.2	1.1	132.4	136.1	4.1	3.5	61.3	30.0	30.0	1.5
52.90	16.12	1088.6	9.7	0.9	134.4	138.6	4.4	3.7	65.2	30.0	30.0	1.5
53.72	16.38	1080.3	10.1	0.9	136.5	141.0	4.3	3.6	64.2	30.0	30.0	1.5
54.54	16.62	1230.9	16.9	1.4	138.5	143.5	4.9	4.1	75.9	30.0	30.0	3.0
55.30 54 19	10.00	10/0.5	10.3	1.0	140.6	145.9	4.3	3.5	62.7	30.0	30.0	1.5
57 00	17.12	1317.0	10.5	0.0	142.0	148.4	: 5.3	4.3	82.1	30.0	30.0	3.0
57 82	17 62	1145.5	0.0	0.5	144.7	150.8	4.6	5.7	68.0	30.0	30.0	1.5
58.64	17.88	1095 9	10.6	1 0	140.7	155.5	4.1	3.0	07./ 47.7	30.0	50.0	1.5
59.46	18.12	1298.9	13.9	1.1	150.8	158.2	5 2	2.3 6 1	70 2	30.0	30.0	1.5
60.28	18.38	1294.7	15.6	1.2	152.9	160.6	5.2	4.1	78 5	30.0	30.0	3.0
61.10	18.62	1236.7	14.1	1.1	154.9	163.1	4.9	3.9	73.5	30.0	30.0	1.5
61.93	18.88	1382.7	18.0	1.3	157.0	165.5	5.5	4.3	84.8	30.0	30.0	3.0
62.75	19.12	2085.8	25.2	1.2	159.0	168.0	8.3	6.5	140.7	30.0	30.0	3.0
63.57	19.38	1289.7	8.2	0.6	161.1	170.4	5.2	4.0	76.7	30.0	30.0	1.5
64.39	19.62	1330.5	10.5	0.8	163.1	172.9	5.3	4.1	79.6	30.0	30.0	1.5
65.21	19.88	1468.7	16.3	1.1	165.1	175.4	5.9	4.5	90.3	30.0	30.0	3.0
66 85	20.12	1968.9 751/ /	22.0	1.1	167.2	177.8	7.9	6.0	129.9	30.0	30.0	3.0
67 67	20.30	1000 6	35 0	1.9	171 7	180.3	14.1	10.6	253.2	30.0	32.0	6.0
68.49	20.88	3946 4	44 4	1.0	173 /	102.7	47.7	6.0	130.9	30.0	30.0	3.0
69.31	21.12	5209.3	73.4	1.4	175.4	187 6	17.4	9.0 17 9	0.0	32.1	34.0	1.0
70.13	21.38	6101.5	78.9	1.3	177.7	107.0	20 3	16.0	0.0	40.5	30.0	1.0
70.95	21.62	2330.6	36.7	1.6	179.9	192.5	03	6.8	156 7	30 0	30.0	1.0
71.77	21.88	1298.9	19.2	1.5	181.9	195.0	5.2	3.8	73.8	30.0	30.0	3.0
72.59	22.12	2209.9	39.7	1.8	183.9	197.4	8.8	6.4	146.3	30.0	30.0	3.0
73.41	22.38	3423.7	55.7	1.6	186.0	199.9	13.7	9.8	243.0	30.0	32.0	6.0
74.23	22.62	4468.6	78.4	1.8	188.1	202.3	14.9	10.6	0.0	35.1	34.0	1.0
75.05	22.88	10095.8	80.7	0.8	190.3	204.8	25.2	17.9	0.0	58.3	38.0	1.0
15.8/	23.12	3502.5	65.6	1.9	192.5	207.2	14.0	9.9	248.2	30.0	32.0	6.0
77 51	25.58	2/4/.6	58.2 45 5	1.4	194.6	209.7	11.0	7.7	187.5	30.0	30.0	3.0
78 33	23.02	4221.4	6/ /	1.2	190.7	212.1	14.1	9.8	0.0	32.9	34.0	1.0
79.15	24.12	1038 3	17 3	0.0	201 0	214.0	12.2	10.8	121.4	35.5	34.0	1.0
79.97	24.38	1701.3	30.5	1.8	203.0	210.5	/.0 / 2	2.4	102 2	30.0	30.0	3.0
80.79	24.62	2170.2	52.6	2.4	205.0	222.0	8.7	5.9	130.5	30.0	30.0	3.0
81.61	24.88	2824.3	62.3	2.2	207.1	224.4	11.3	7.7	191.4	30.0	30.0	3.0
82.43	25.12	3729.9	61.3	1.6	209.2	226.9	12.4	8.4	0.0	30.0	32.0	1.0
83.25	25.38	13258.7	142.9	1.1	211.4	229.3	33.1	22.3	0.0	64.6	40.0	1.0
84.07	25.62	13216.6	234.1	1.8	213.7	231.8	44.1	29.5	0.0	64.4	40.0	1.0
84.89	25.88	18746.6	219.3	1.2	215.9	234.2	46.9	31.2	0.0	74.3	42.0	1.0
85./1	20.12	2/106.2	215.4	0.8	218.3	236.7	54.2	35.9	0.0	84.7	42.0	1.0
00.JJ 87 35	20.30	2/140.0	203.4	1.0	220.7	239.1	54.3	35.8	0.0	84.6	42.0	1.0
88.17	26.88	24307.4	289.0	1.0	225.1	241.6	49.5	32.5	0.0	81.8	42.0	1.0
88.99	27.12	36583.2	221.4	0.6	228.0	246.5	40.0 61 0	30 5	0.0	01.1	42.0	1.0
89.81	27.38	35398.7	312.8	0.9	230.5	248.9	70.8	45.6	0.0	92.0	44.0	1.0
90.63	27.62	31702.6	308.1	1.0	232.9	251.4	63.4	40.7	0.0	88.2	44.0	1.0
91.45	27.88	32870.6	266.0	0.8	235.4	253.8	65.7	41.9	0.0	89.1	44.0	1.0
92.27	28.12	34187.0	309.9	0.9	237.8	256.3	68.4	43.4	0.0	90.1	44.0	1.0
93.09	28.38	35390.7	294.1	0.8	240.2	258.7	70.8	44.7	0.0	90.9	44.0	1.0
93.91	28.62	32933.1	273.2	0.8	242.6	261.2	65.9	41.4	0.0	88.7	44.0	1.0
94.73	28.88	15912.2	206.0	1.3	245.0	-263.6	39.8	24.9	0.0	67.7	40.0	1.0
95.55	29.12	3611.1	50.1	1.4	247.2	266.1	12.0	7.5	0.0	30.0	32.0	1.0
Y0.3/	27.50	3981.6 /947 5	00.1	1./	249.4	268.5	15.3	8.2	0.0	30.0	32.0	1.0
97.19 OR 01	27.02	4003.7	70.0 78 1	2.U 1 7	271.0	271.0	10.2	10.0	U.U 199 0	33.4	32.0	1.0
98.83	30.12	5637 9	79.4	1.4	255 A	275 0	18.8	11 5	00.0	30.0	30.0	3.U 1 0
											24.0	



•

2



. ....

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0820-5775 CPT File: KA06s35.COR

(City)	Depth	Depth	Avgût	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)
	<b>99.65</b> 100.47	30.38 30.62	17600.4 9256.8	202.6 262.2	1.2 2.8	258.0 260.2	278.4 280.8	44.0 37.0	26.8 22.5	0.0	69.9 51.4	40.0 36.0	1.0











.





Client: Sounding: Date: KLEINFELDER 06-SC-35 23-Jul-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wa	ve Velocity	Corres Depth I	ponding ncrement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
1.60	1.70					· ·
2.60	2.66	10.1	<b>≁ 95</b>	313	1.6 - 2.6	5.2 - 8.5
3.60	3.64	8.3	119	389	2.6 - 3.6	8.5 - 11.8
4.60	4.63	6.3	157	516	3.6 - 4.6	11.8 - 15.1
5.60	5.63	5.5	<b>+ 181</b>	593	4.6 ⁵ 1 5.6	15.1 - 18.4
6.60	6.62	5.7	175	573	5.6 - 6.6	18.4 - 21.7
7.60	7.62	6.8	147	481	6.6 - 7.6	21.7 - 24.9
8.60	8.62	8.7	115	376	7.6 - 8.6	24.9 - 28.2
9.60	9.62	8.2	122	399	8.6 - 9.6	28.2 - 31.5
10.60	10.61	7.6	<b>≁ 131</b>	431	9.6 - 10.6	31.5 - 34.8
11.60	11.61	7.9	126	415	10.6 - 11.6	34.8 - 38.1
12.60	12.61	6.6	151	497	11.6 - 12.6	38.1 - 41.3
13.60	13.61	5.4	185	607	12.6 - 13.6	41.3 - 44.6
14.60	14.61	5.6	178	585	13.6 - 14.6	44.6 - 47.9
15.60	15.61	5.5	<b>∗ 182</b>	596	14.6 - 15.6	47.9 - 51.2
16.60	16.61	5.1	196	643	15.6 - 16.6	51.2 - 54.5
17.60	17.61	5.6	178	586	16.6 - 17.6	54.5 - 57.7
18.60	18.61	6.1	164	538	17.6 - 18.6	57.7 - 61.0
19.60	19.61	5.8	172	<b>5</b> 65	18.6 - 19.6	61.0 - 64.3
20.60	20.61	5.3	× 189	619	19.6 - 20.6	64.3 - 67.6
21.60	21.61	5.0	200	656	20.6 - 21.6	67.6 - 70.9
22.60	22.61	5.1	196	643	21.6 - 22.6	70.9 - 74.1
23.60	23.61	5.3	189	619	22.6 - 23.6	74.1 - 77.4
24.60	24.61	4.8	208	683	23.6 - 24.6	77.4 - 80.7
25.60	25.61	4.2	<b>+ 238</b>	781	24.6 - 25.6	80.7 - 84.0
26.60	26.61	4.7	213	698	25.6 - 26.6	84.0 - 87.3
27.60	27.61	3.7	270	887	26.6 - 27.6	87.3 - 90.6
28.60	28.61	3.6	278	911	27.6 - 28.6	90.6 - 93.8
29.60	29.61	3.7	270	887	28.6 ^{27,/} 29.6	93.8 - 97.1
<b>.</b>						

			- ·								-			
			•											
•	ConeTec	: Inc (	PT Interpr	etation						Page:	1			enge te de
	Interp	etation (	Dutput - Re	lease 1.00	.07						÷."	an an ang Mananan		ан ай С
	Run No:	: 96-080 . 96-300	04-2150-512 0	1						· · ·		an fille Shi ka sa		en nege
· · ·	Client:	: Klein	felder							, e , .	.n	e e p	a series de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la	•
( and a	Project	t: 115 Se	ection 4	· · · · · · ·			1. a. 1. k.	1.11		•		4		- e
	Site:	115, 9	S4: SPRR R	of W, 06-S	iC-43		1 <b>4</b> 1					•.		
N.T.	Locatio	on: 500 S 10 T(	VIACUCT											
	CPT Dat	te: 96/18,	/07										•	
	CPT Tir	me: 09:12		•										
	CPT F1	Le: KAUOS	U43.CUK											• .
	Water	Table (m)	):	2.00	(ft):	6.6								
	Avera	ging Incr	ement (m):	0.25										
	SU NK	t usea: ethod :		Robertsor	and Can	mpanella, 1	983						· ·	
	Dr M	ethod :	_	Jamiolko	ski - Al	L Sands								
	Used I	Unit Weig	hts Assigne	ed to Soil	Zones									
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(bloi	(s/ft)	(kPa)	(%)	(deg.)	(ratio)	_
	0 41	0 12	9970.9	247.0	2.5	2.3	0.0	33.2	66.5	0.0	95.0	50.0	1.0	-
	1.23	0.38	12449.4	166.2	1.3	7.0	0.0	31.1	62.2	0.0	95.0	50.0	1.0	
	2.05	0.62	13196.2	179.8	1.4	11.8	0.0	33.0	66.0	0.0	95.0	50.0	1.0	
	2.8/	0.88	4346.1	79.9	1.8	20.9	0.0	14.5	29.0	0.0	65.8	46.0	1.0	
	4.51	1.38	5375.0	62.7	1.2	25.6	0.0	17.9	34.7	0.0	69.0	46.0	1.0	
	5.33	1.62	2591.1	33.4	1.3	30.1	0.0	10.4	18.5	204.9	45.8	42.0	10.0	
	6.15	1.88	862.1 923.7	34.3	3.3	34.8	1.2	6.2	9.8	70.8	0.0	0.0	6.0	
	7.79	2.38	1115.1	14.8	1.3	39.8	3.7	5.6	8.6	85.7	0.0	0.0	6.0	
	8.61	2.62	2816.2	22.0	0.8	41.9	· 6.1	9.4	14.2	0.0	43.4	40.0	1.0	•
	10.25	3.12	1081.5	19.4	1.8	46.3	÷ 11.0	5.4	7.8	81.9	0.0	0.0	6.0	
	11.07	3.38	921.4	14.2	1.5	48.4	13.5	4.6	6.5	68.8	0.0	0.0	6.0	
A	11.89	3.62	1828.1	19.1 18.4	1.0	50.4	15.9	7.5	10.1	140.9	50.0	<b>58.</b> 0	6.0 1.0	
6	13.53	4.12	4714.7	26.5	0.6	54.9	20.8	11.8	15.6	0.0	54.3	42.0	1.0	
$\mathcal{N}$	14.35	4.38	11102.2	24.2	0.2	57.3	23.3	22.2	28.7	0.0	78.3	44.0	1.0	
	15.17	4.62	10261.7	20.5	0.2	59.7	25.8	20.5	26.0	0.0	75.4	44.0 44.0	1.0	
	16.81	5.12	3127.9	37.2	1.2	64.4	30.7	10.4	12.7	0.0	40.3	38.0	1.0	
	17.63	5.38	656.5	13.1	2.0	66.5	33.1	4.4	5.3	44.6	0.0	0.0	3.0	
	18.45	5.62	563.9	17.2	5.0	68.5 70 4	35.6	5.6	6./ 4.7	50.8 27.3	0.0	0.0	3.0	
	20.09	6.12	572.7	12.8	2.2	72.4	40.5	3.8	4.4	36.8	0.0	0.0	3.0	
	20.92	6.38	593.3	13.3	2.2	74.5	42.9	4.0	4.5	38.1	0.0	0.0	3.0	
	21.74	6.62 A AR	512.6	5.7 10.2	1.8	(5.8 77.2	42.4	4.2	4.7	57.5	0.0	0.0	· 3.0	
	23.38	7.12	2700.4	39.2	1.5	79.2	50.3	10.8	11.9	205.7	33.1	36.0	6.0	
	24.20	7.38	855.3	17.2	2.0	81.3	52.7	4.3	4.6	57.7	0.0	0.0	3.0	
	25.02	7.82	2154.5	21.3	3.0	85.4	57.6	6.0 4.7	9.2 5.0	45.1	0.0	0.0	3.0	
	26.66	8.12	3447.1	80.3	2.3	87.4	60.1	13.8	14.4	264.0	38.7	38.0	6.0	
	27.48	8.38	1271.5	37.5	3.0	89.5	62.5	6.4	6.6	89.6	0.0	0.0	6.0	
	28.30	8.62	1415.5	25.0	1.4	91.5	67.4	7.1	4.4	100.4	0.0	0.0	6.0	
	29.94	9.12	918.8	9.8	1.1	95.6	69.9	4.6	4.6	60.3	0.0	0.0	3.0	
	30.76	9.38	730.0	10.8	1.5	97.7	72.3	3.7	3.6	44.8	0.0	0.0 34 0	1.5	
	31.50	9.88	912.9	24.8	2.7	101.7	77.3	6.1	5.9	58.7	0.0	0.0	3.0	
	33.22	10.12	694.5	13.4	1.9	103.8	79.7	3.5	3.3	40.9	0.0	0.0	1.5	
	34.04	10.38	1882.7	31.6	1.7	105.8	82.2	7.5	7.2	135.6 178 5	30.0	32.0 32.0	6.U 6 0	
	34.86 35.68	10.62	3297.0	54.U 69.6	2.1	107.9	87.1	13.2	12.3	248.0	34.1	36.0	6.0	
	36.50	11.12	2919.8	81.8	2.8	112.0	89.5	14.6	13.5	217.5	0.0	0.0	6.0	
	37.32	11.38	1105.3	10.3	0.9	114.0	92.0	4.4	4.1 र ว	71.9 54 2	30.0	50.0 30.0	3.U 1.5	
•	58.14 38.04	11.62	699.7	4.3	· 0.4	-117.4	·· 96.9	3.5	3.2	38.8	0.0	0.0	1.5	
	39.78	12.12	828.7	7.3	0.9	118.8	99.3	4.1	3.7	48.8	0.0	0.0	1.5	
6	40.60	12.38	780.3	4.0	0.5	120.2	101.8	3.9 z g	3.5 र र	44.7 42 2	0.0	0.0	1.5	
Y.	41.42	12.62	/52.1 1130 0	5.4 8.5	0.5	120.8	104.2	3.0 4.6	4.0	72.9	30.0	30.0	3.0	

a .....

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-5121 CPT File: KA06S043.COR

۰.

.

Conete Run No	CINC	CPT Interp 304-2150-51	retation 21						Page	): 2	••••		Apiseer≱.
CPT Fi	le: KA06	5043.COR			•							(1) (1) (1) (1) (1) (1) (1)	na kati 19 mai
Depth	Depth	AvoQt	Avafe		E 6+n				*				- 1 0:0
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	NGU (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR	ি শৈষৱে ইংক্টিি জন্ম শুক্ষাম্ব
43.06	13.12	1167.4	8.9	0.8	124.2	100 1	····· / 7						• 12 ⁺ •d
43.88	13.38	982.9	6.8	0.7	126.3	111.6	3.9	3.4	59.6	30.0	30.0	3.0	
44.70	13.62	866.5	8.0	0.9	128.3	114.0	4.3	3.7	49.9	0.0	0.0	1.5	
45.52	15.88	872.1	8.7	. 1.0	130.4	116.5	4.4	3.7	50.0	0.0	0.0	1.5	
40.34	14.12	270 7	11.8	1.3	132.4	118.9	4.4	3.7	50.3	0.0	0.0	1.5	
47.98	14.30	770.3 81/ 0	10.1	1.5	134.5	121.4	3.9	3.3	41.2	0.0	. 0.0	1.5	
48.80	14.88	847.7	11.8	1.4	138.5	123.9	4.1	3.4	44.4	0.0	0.0	1.5	14
49.62	15.12	881.5	16.2	1.8	· 140.6	128.5	4.2	3.5	40.0	0.0	0.0	1.5	•
50.44	15.38	1021.2	22.2	2.2	142.7	131.2	5.1	4.2	- 50 R	0.0	0.0	1.5	
51.26	15.62	2004.3	37.0	1.8	144.7	133.7	8.0	6.5	138.1	30.0	30.0	1.5	
52.08	15.88	2249.8	28.9	1.3	146.8	136.1	9.0	7.3	157.4	30.0	32.0	6.0	
53.72	16.38	2793.3	18 7	1.2	148.8	138.6	11.2	9.0	200.5	30.0	32.0	6.0	
54.54	16.62	2157.6	24.2	1.1	150.9	141.0	8.9	7.1	154.9	30.0	32.0	6.0	. e
55.36	16.88	1576.9	24.7	1.6	155.0	145.0	0.0 6 3	0.0	148.9	30.0	30.0	3.0	• •
56.18	17.12	1603.6	22.0	1.4	157.0	148.4	6.4	5.0	102.1	30.0	30.0	3.0	
57.00	17.38	2086.5	21.3	1.0	159.0	150.8	8.3	6.5	142.1	30.0	30.0	3.0	
57.82	17.62	1622.4	23.3	1.4	161.1	153.3	6.5	5.0	104.6	30.0	30.0	3.0	
59.46	17.00	0813.1	100.4	1.5	163.2	155.7	22.7	17.4	0.0	49.3	38.0	1.0	a sul
60.28	18.38	10833.8	216 4	2.0	102.4	158.2	39.7	30.2	0.0	73.3	42.0	1.0	
61.10	18.62	2564.0	54.8	2.1	169.8	160.0	30.1	27.5	0.0	62.2	40.0	1.0	
61.93	18.88	1621.4	19.5	1.2	171.8	165.5	6.5	1.1	1/8.5	30.0	32.0	6.0	•
62.75	19.12	2492.9	18.2	0.7	173.9	168.0	38.3	6.2	0.0	30.0	30.0	1.0	
65.57	19.38	2356.4	19.1	0.8	176.1	170.4	7.9	5.8	0.0	30.0	30.0	1.0	
65 21	10 88	0410.J. 15/35 5	155.5	2.4	178.2	172.9	25.7	18.8	485.2	46.3	38.0	6.0	
66.03	20 12	17377 8	322.0	2.1	180.3	175.4	51.5	37.5	.0.0	71.3	42.0	1.0	
66.85	20.38	24531.4	488.0	2.0	184 0	177.8	43.4	31.5	0.0	74.5	42.0	1.0	
67.67	20.62	31678.2	675.7	2.1	187.2	182 7	.70 2	44.1 54 7	0.0	84.2	44.0	1.0	
68.49	20.88	30645.6	727.1	2.4	189.4	185.2	102.2	72.6	0.0	91.5	44.0	1.0	
69.31	21.12	30914.4	767.0	2.5	191.6	187.6	103.0	72.9	0.0	90.2	44.U 44.D	1.0	
70.15	21.38	25434.5	568.3	2.2	193.7	190.1	84.8	59.6	0.0	84.6	44.0	1.0	
70.95	21.02	27230.0	437.2	1.6	196.0	192.5	68.1	47.6	0.0	86.4	44.0	1.0	
72.59	22.12	25389.4	203.2	1.0	198.3	195.0	51.9	36.1	0.0	84.8	44.0	1.0	
73.41	22.38	23113.4	171.7	0.7	200.7	197.4	63.5	43.9	0.0	84.0	44.0	1.0	
74.23	22.62	14698.9	90.0	0.6	205.5	202.3	29.4	20 1	0.0	01.1 49 0	42.0	1.0	
75.05	22.88	2541.0	46.6	1.8	207.7	204.8	10.2	6.9	170.3	30.0	30.0	1.0	
75.87	23.12	2374.3	16.6	0.7	209.8	207.2	7.9	5.3	0.0	30.0	30.0	1.0	
77 51	23.50	1/41.2	15.8	0.9	211.9	209.7	7.0	4.7	105.6	30.0	30.0	1.5	
78.33	23.02	2727 0	24.4 47 n	2.0	214.0	212.1	10.9	7.3	184.5	30.0	30.0	3.0	
79.15	24.12	2747.1	57 3	2.3	210.0	214.6	10.9	7.3	183.7	30.0	30.0	3.0	
79.97	24.38	2362.6	40.5	1.7	220.1	217.0	11.0	7.5	185.0	30.0	30.0	3.0	
80.79	24.62	2233.2	27.9	1.2	222.2	222.0	8.9	5.9	123.8	30.0	30.0	3.0	
81.61	24.88	3176.1	49.5	1.6	224.2	224.4	12.7	8.3	218.2	30.0	30.0	3.0	
82.45	25.12	8374.2	273.7	3.3	226.3	226.9	33.5	21.8	633.7	50.5	38.0	6.0	1
84.07	25.30	20300.9	04/.1 332 0	2.5	228.4	229.3	87.7	56.8	0.0	83.2	42.0	1.0	
84.89	25.88	2511.1	66.6	2.0	230.0	231.8	54.4	35.1	0.0	69.4	40.0	1.0	
85.71	26.12	7042.9	164.0	2.3	234.8	236.7	23 5	8.1 15.0	165.5	0.0	0.0	3.0	
86.53	26.38	3621.5	61.1	1.7	236.9	239.1	14.5	9.2	251 6	40.0	30.0	1.0	
87.35	26.62	1636.6	26.8	1.6	238.9	241.6	6.5	4.1	92.5	30.0	30.0	1.5	
88.17	20.88	2060.1	29.8	1.4	241.0	244.0	8.2	5.2	126.0	30.0	30.0	3.0	
80 81	27 38	2100.0	24.8	1.1	243.0	246.5	8.7	5.4	134.3	30.0	30.0	3.0	
90.63	27.50	200.7	24.1 40 7	1.2	245.1	248.9	9.7	6.1	0.0	30.0	30.0	1.0	
91.45	27.88	2897.6	102.5	2.3	241.2 240 3	201.4 257 p	11.9	7.4	198.6	30.0	30.0	3.0	
92.27	28.12	2242.4	63.3	2.8	251.3	256-3	14.5	7.U 6.Q	138 9	0.0	0.0	3.0	
93.09	28.38	2173.6	53.4	2.5	253.4	258.7	8.7	5.3	132.9	30.0	30.0	3.0	
93.91	28.62	2177.2	47.4	2.2	255.4	261.2	8.7	5.3	132.8	30.0	30.0	3.0	
94./3 OF FF	28.88	2916.8 ·	89.1	3.1	257.5	263.6	14.6	8.9	191.7	0.0	0.0	3.0	
77.77	29.12	003/.9 3104 E	100.1	2.1	259.6	266.1	28.8	17.5	0.0	49.4	36.0	1.0	
97.19	29.62	4081-9	67.3	1.0	201./	200.5	12.8	. /./	213.3	30.0	30.0	3.0	
98.01	29.88	2479.9	67.6	2.7	265.9	273.5	12.4	7.4	155.2	0.0	52.U 0 0	1.0	
98.83	30.12	2404.3	45.0	1.9	268.0	275.9	9.6	5.7	148.8	30.0	30.0	3.0	

٠

. . . . . .

÷.,

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-5121 CPT File: KA06S043.COR

										********			
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr - (%)	Phi (deg.)	OCR (ratio)
	00 45	30 38	2845.6	42.0	1.5	270.0	278.4	11.4	6.8	183.8	30.0	30.0	3.0
•	100 47	30.62	3181.5	59.3	1.9	272.1	280.8	12.7	7.6	210.3	30.0	30.0	3.0
	100.47	30.88	5523.0	142.1	2.6	274.1	283.3	22.1	13.1	397.3	35.8	<b>32.0</b>	6.0
	101-27	31 12	6276 8	155.5	2.5	276.2	285.7	25.1	14.8	457.2	39.4	34.0	6.0
	102.11	21 28	4226 4	102 3	2.4	278.2	288.2	16.9	9.9	292.8	30.0	32.0	6.0
	102.94	21.30	13120 7	376 8	2.9	280.3	290.6	43.8	25.6	0.0	60.3	38.0	1.0
	105.70	31.02	3807.7	134.9	3.5	282.4	293.1	19.0	11.1	258.6	Ò.O	0.0	3.0
	104.30	32 12	1907 4	35.5	1.9	284.5	295.5	7.6	4.4	106.2	30.0	30.0	1.5
	105.40	72 78	2086 6	49.8	.2.4	286.5	298.0	8.3	4.8	120.2	30.0	30.0	1.5
	100.22	72.50	4014 6	143 7	3.6	288.6	300.4	20.1	11.6	274.0	0.0	0.0	3.0
	107.04	32.02	13201 5	381.2	2.9	290.7	302.9	44.3	25.4	0.0	60.1	38.0	1.0
	109 49	33 12	14506 5	417.3	2.9	292.9	305.3	48.4	27.7	0.0	62.5	38.0	1.0
	100.00	33.12	24211.2	543.1	2.2	295.0	307.8	80.7	46.0	0.0	77.1	42.0	1.0
	110 32	33.50	28050 7	722.0	2.5	297.2	310.2	96.5	54.8	0.0	82.1	42.0	1.0
	111.14	33.88	22835.9	543.4	2.4	299.4	312.7	76.1	43.1	0.0	75.2	40.0	· 1.0

.

.





· · ·



Client: Sounding: Date:

06-SC-43 18-Jul-96

KLEINFELDER

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 028 (10 tonne) 0.20 m above tip

.

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wav	e Velocity	Corresponding Depth Increment					
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)				
1.55	1.65									
2.55	2.61	8.4	¥ 115	376	1.6 - 2.6	5.1 - 8.4				
3.55	3.59	8.0	123	403	2.6 - 3.6	8.4 - 11.6				
4.55	4.58	5.8	171	560	3.6 - 4.6	11.6 14.9				
5.55	5.58	6.6	+ 151	494	4.6 - 5.6	14.9 - 18.2				
6.55	6.57	11.0	91	297	5.6 - 6.6	18.2 - 21.5				
7.55	7.57	7.3	137	448	6.6 - 7.6	21.5 - 24.8				
8.55	8.57	6.5	153	504	7.6 - 8.6	24.8 - 28.1				
9.55	9.57	6.2	161	528	8.6 - 9.6	28.1 - 31.3				
10.55	10.56	5.9	* 169	555	9.6 - 10.6	31.3 - 34.6				
11.55	11.56	5.8	172	565	10.6 - 11.6	34.6 · 37.9				
12.55	12.56	7.1	141	462	11.6 - 12.6	37.9 41.2				
13.55	13.56	6.7	149	489	12.6 - 13.6	41.2 - 44.5				
14.55	14.56	6.8	147	482	13.6 14.6	44.5 - 47.7				
15.55	15.56	7.4	* 135	443	14.6 - 15.6	47.7 51.0				
16.55	16.56	5.7	175	575	15.6 - 16.6	51.0 - 54.3				
17.55	17.56	4.8	208	683	16.6 - 17.6	54.3 - 57.6				
18.55	18.56	4.5	222	729	17.6 - 18.6	57.6 - 60.9				
19.55	19.56	5.3	377	1237	17.6 - 19.6	57.6 - 64.1				
20.55	20.56	3.2	* 312	1025	19.6 - 20.6	64.1 - 67.4				
21.55	21.56	4.6	217	713	20.6 - 21.6	67.4 - 70.7				
22.55	22.56	3.9	256	841	21.6 · 22.6	70.7 - 74.0				
23.55	23.56	4.7	213	698	22.6 - 23.6	74.0 - 77.3				
24.55	24.56	4.9	204	669	23.6 · 24.6	77.3 - 80.5				
25.55	25.56	3.9	* 256	841	24.6 - 25.6	80.5 - 83.8				
26.55	26.56	4.7	213	698	25.6 - 26.6	83.8 - 87.1				
27.55	27.56	4.4	227	745	26.6 - 27.6	87.1 - 90.4				
28.55	28.56	4.3	233	763	27.6 - 28.6	90.4 - 93.7				
29.55	29.56	4.6	217	713	28.6 - 29.6	93.7 - 96.9				
30.55	30.56	4.0	⁺ 250	820	29.6 - 30.6	96.9 - 100.2				
31.55	31.55	3.9	256	841	30.6 31.6	100.2 - 103.5				
32.55	32.55	3.7	270	887	31.6 - 32.6	103.5 - 106.8				
33.55	33.55	3.8	263	863	32.6 - 33.6	106.8 - 110.1				

Cl

(C

			•											- <b>a</b> -	
		- 1	CDT Intern	·						Daga	. 1				
	Interp	retation	Output - R	elease 1.0	0.07					raye					
	Run No	: 96-08 • 96-30	04-2150-550 9	00										n an	
	Client	: Klein	felder								-	•			
{·	Projec	t: 115 S	ection 4	of U 06-	86-46		+ 2 ¹¹ (						·	÷.	
	Locati	on: 500 S	Viaduct	UI <b>W, UU</b> -	36-40					••••					
- <u>-</u>	Cone:	10 T	ON A 028									1			
	CPT Da	te: 96/18, me: 16:22	/0/												
	CPT Fi	le: KA06S	046.COR	• •										* ÷	
	Water	Table (m	······ ):	2.00	(ft):	<b>6.</b> 6								•	
	Avera	ging Incr	ement (m):	0.25									•		
	Su Nk Phi M	t used: ethod :		Robertso	n and Car	moanella. 19	983						•		
	Dr M	ethod :		Jamiolko	wski - Al	l Sands									
	Used	Unit Weig	hts Assigne	C TO SOIL	Zones										
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi (doc.)	OCR		
	(TT)	(m) 	(KP8)	(KP8)	(*)	(KPa)	(KP8)		WS/TC)	(KPa)	(*)	(aeg.)	(ratio)		
	0.41	0.12	8465.2	152.6	1.8	2.3	0.0	28.2	56.4	0.0	95.0	50.0	1.0		
	1.23	0.58	14074.2 5801.3	218.9	3.5	11.6	0.0	35.2 29.0	70.4 58.0	463.2	95.0	50.0	1.0		
	2.87	0.88	2568.5	53.6	2.1	16.1	0.0	10.3	20.5	204.2	54.5	44.0	10.0		
	3.69 4 51	1.12	1067.5	38.7	2.3	20.6	0.0	10.7	21.3	83.8 114 0	0.0	0.0	10.0		
	5.33	1.62	1636.1	25.7	1.6	29.5	0.0	6.5	11.8	128.5	32.9	40.0	10.0		
	6.15	1.88	1242.3	37.3	3.0	34.0	0.0	8.3	13.9	96.7	0.0	0.0	6.0		
	0.9/ 7 79	2.12	864.1	22.1	2.5	3/.5	1.2	5.8	9.5	68.4	0.0	0.0	6.0		
	8.61	2.62	938.2	18.2	1.9	41.4	6.1	4.7	7.1	71.3	0.0	0.0	6.0		
	9.43	2.88	1785.8	44.8	2.5	43.4	8.6	8.9	13.3	138.7	0.0	0.0	6.0		
	10.25	3.38	1338.3	22.8 17.8	1.6	42.5	11.0	0./ 5.7	9.7	102.5	0.0	0.0	6.0 6.0		
	11.89	3.62	2272.5	31.6	1.4	49.6	15.9	9.1	12.6	176.6	34.9	38.0	6.0		
Con N	12.71	3.88	6521.8	72.8	1.1	51.7	18.4	16.3	22.2	0.0	64.5	44.0	1.0		
	13.55	4.12	12250.8	181.0	1.5	54.0 56.3	20.8	30.6 33.7	40.8	0.0	81.9 84.1	46.0	1.0		
(	15.17	4.62	8561.4	107.8	1.3	58.6	25.8	21.4	27.4	0.0	70.5	44.0	1.0		
	15.99	4.88	905.6	27.2	3.0	60.8	28.2	6.0	7.6	65.3	0.0	0.0	6.0		
	17.63	5.38	829.3	7.0	0.9	64.9	33.1	4.1	5.0	58.5	0.0	0.0	3.0 3.0		
	18.45	5.62	1201.5	11.5	1.0	66.9	35.6	4.8	5.7	87.9	30.0	32.0	6.0		
	19.27	5.88	1189.7	22.0	1.9	69.0 71 0	38.0	5.9	7.0	86.6	0.0	0.0	6.0		
	20.92	6.38	1018.0	22.4	2.2	73.1	40.5	5.1	5.8	72.2	0.0	0.0	3.0		
	21.74	6.62	993.5	16.8	1.7	75.1	45.4	5.0	5.6	69.8	0.0	0.0	3.0		
	22.56	6.88 7 12	827.2	7.2	0.9	77.2	- 47.8	4.1	4.6	56.2 42 3	0.0	0.0	3.0		
	24.20	7.38	1355.4	21.5	1.6	79.9	52.7	5.4	5.9	97.8	30.0	32.0	6.0		
	25.02	7.62	3017.7	64.2	2.1	81.9	55.2	12.1	13.1	230.4	35.8	38.0	6.0		
	25.64	8.12	2903.6	31.9	1.1	86.1	57.0 60.1	0.0 9.7	10.2	97.1	34.0	36.0	1.0		
	27.48	8.38	840.4	7.5	0.9	88.2	62.5	4.2	4.4	55.2	0.0	0.0	3.0		
	28.30	8.62	2022.7	48.8 25 /	2.4	90.3	65.0	10.1	10.4	149.4	0.0	0.0	6.0		
	29.94	9.12	1320.5	8.9	0.7	94.4	69.9	5.3	5.3	92.5	30.0	30.0	3.0		
	30.76	9.38	1773.8	27.5	1.5	96.4	72.3	7.1	7.1	128.4	30.0	32.0	6.0		
	31.58	9.82	10/0.7	4.8	0.4	98.4	74.8 77.3	4.5	4.2	71.8	30.0	30.0 0.0	3.0		
	33.22	10.12	955.7	5.4	0.6	102.5	79.7	3.8	3.7	61.9	30.0	30.0	3.0		
	34.04	10.38	2980.3	87.1	2.9	104.6	82.2	14.9	14.3	223.5	0.0	0.0	6.0		
	34.86 35.68	10.62 10.88	969.2 3073-5	8.5 49.2	0.9	106.6 108.7	84.6 87.1	5.9 12.3	s.7 11.5	62.2 230.2	50.0 32.3	50.0 36.0	5.U 6.0		
	36.50	11.12	1751.5	40.4	2.3	110.7	89.5	8.8	8.1	124.1	0.0	0.0	6.0		
	37.32	11.38	2242.8	31.4	1.4	112.8	<b>92.</b> 0	9.0	8.3	163.0	30.0	32.0	6.0 6 0		
	58.14 38.96	11.88	3833.7	83.3	5.2 2.2	116.9	<del>74</del> .4 96.9	15.3	13.9	289.6	37.6	36.0	6.0	•	
	39.78	12.12	1294.9	12.8	1.0	118.9	99.3	5.2	4.6	86.1	30.0	30.0	3.0		
6	40.60	12.38	1075.2	6.9 E 4	0.6	121.0	101.8	4.3	3.8 7 4	68.Z	30.0	30.0	5.U 3.0		
	41.42	12.02	1110.2	7.6	0.0	125.0	104.2	4.4	3.9	70.3	30.0	30.0	3.0		

- **1** 

a di data
ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-5500 CPT File: KA06S046.COR

.

.

Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	i disk. Sort 20
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blow	s/ft)	(kPa)	(%)	(deg.)	(ratio)	n garth. Sirth
43.06	13.12	1118.7	7.6	0.7	127.1	109.1	4.5	3.9	70.6	30.0	30.0	3.0	
45.88	13.38	1160.2	11.4	1.0	131.2	111.0	4.4	3.8 4.0	73.2	30.0	30.0	3.0	
45.52	13.88	1332.5	12.7	. 1.0	133.3	116.5	5.3	4.5	86.6	30.0	30.0	3.0	
46.34	14.12	1108.8	6.1 6.9	0.6	135.3	118.9	4.4	3.7	68.4 68.8	30.0	30.0	3.0	
47.98	14.62	1188.2	9.0	0.8	139.4	123.9	4.8	3.9	74.0	30.0	30.0	3.0	
48.80	14.88	1313.5	12.1	0.9	141.4	126.3	5.3	4.3	83.7	30.0	30.0	3.0	
49.02 50.44	15.38	1288.8	8.3	0.6	145.5	131.2	5.2	4.2	81.0	30.0	30.0	3.0	
51.26	15.62	1552.2	14.5	0.9	147.6	133.7	6.2	5.0	101.7	30.0	30.0	3.0	
52.08 52.90	15.88	1316.2	13.1	1.0	149.6	136.1 138.6	5.3	4.2	82.4 81.6	30.0 30.0	30.0 30.0	3.0	
53.72	16.38	3802.9	66.2	1.7	153.7	141.0	15.2	12.0	280.7	33.4	34.0	6.0	÷.
54.54	16.62	3425.8	50.8	1.5	155.8	143.5	11.4	9.0	0.0	30.2	34.0	1.0	
56.18	17.12	3118.5	45.2	1.4	160.0	145.9	12.5	9.7	224.8	42.5 30.0	32.0	6.0	4 - 3 
57.00	17.38	6297.6	152.0	2.4	162.0	150.8	25.2	19.4	478.8	47.1	38.0	6.0	
57.82 58.64	17.62	3930.3 2116.0	65.0 35.7	1.7	164.2	153.3	13.1	10.0	0.0	33.4	34.0	1.0	
59.46	18.12	1585.3	18.2	1.1	168.3	158.2	6.3	4.8	100.7	30.0	30.0	3.0	
60.28	18.38	3040.5	34.6	1.1	170.4	160.6	10.1	7.6	0.0	30.0	32.0	1.0	• •
61.93	18.88	5742.5 6179.6	177.9	2.9	172.5	165.5	15.0	11.2	212.5	31.3 45.5	36.0	6.0 6 0	1 <b>T</b>
62.75	19.12	5212.6	138.9	2.7	176.6	168.0	20.9	15.4	389.4	40.4	36.0	6.0	
63.57	19.38	5934.7 1570 8	114.8	1.9	178.7	170.4	19.8	14.5	0.0	44.0	36.0	. 1.0	
65.21	19.88	1667.6	15.6	0.9	182.9	175.4	6.7	4.0	104.7	30.0	30.0	3.0	
66.03	20.12	2028.6	29.8	1.5	184.9	177.8	8.1	5.8	133.3	30.0	30.0	3.0	
66.85 67.67	20.38	9702.8 20579 3	225.4	2.3	187.1	180.3	32.3	23.1	0.0	57.4	<b>38.</b> 0	1.0	
68.49	20.88	21417.8	486.6	2.3	191.4	185.2	71.4	50.5	0.0	79.8	42.0	1.0	·
69.31	21.12	21058.5	495.6	2.4	193.6	187.6	70.2	49.4	0.0	79.2	42.0	1.0	
70.13	21.38	13950.0	482.4 551.8	4.0	195.7	190.1	68.7 69.8	48.1 48.5	0.0	78.4 67.0	42.0	1.0	
71.77	21.88	26826.4	442.4	1.6	200.3	195.0	67.1	46.4	0.0	85.6	44.0	1.0	
72.59	22.12	26169.2	456.0	1.7	202.6	197.4	65.4	45.0	0.0	84.7	44.0	1.0	
74.23	22.62	20774.9	347.5	1.7	204.7	202.3	51.9	35.3	0.0	77.8	42.0	1.0	
75.05	22.88	12269.3	316.3	2.6	209.4	204.8	40.9	27.7	0.0	62.5	40.0	1.0	
75.87	23.12	19909.1 19291 A	338.0 245.8	1.7	211.6	207.2	49.8	33.5	0.0	76.3	42.0	1.0	
77.51	23.62	5335.4	180.3	3.4	216.1	212.1	26.7	17.8	392.6	0.0	0.0	6.0	
78.33	23.88	2146.9	23.3	1.1	218.2	214.6	8.6	5.7	137.1	30.0	30.0	3.0	
79.15	24.12	2015.0	9.9	0.5	220.3	217.0	6./ 8.0	4.4	0.0	30.0	30.0	1.0 3.0	
80.79	24.62	2258.1	18.0	0.8	224.5	222.0	7.5	4.9	0.0	30.0	30.0	1.0	
81.61	24.88	2177.1	16.6	0.8	226.6	224.4	8.7	5.7	138.1	30.0	30.0	3.0	
83.25	25.38	1824.2	8.0	0.4	230.7	229.3	7.3	4.7	109.1	30.0	30.0	1.5	
84.07	25.62	2159.1	11.3	0.5	232.8	231.8	7.2	4.6	0.0	30.0	30.0	1.0	
84.89 85 71	25.88	3029.0 7486 9	257 5	1.4	234.9	234.2	12.1	7.7 10 0	204.8	30.0	30.0	3.0	
86.53	26.38	11493.8	411.8	3.6	239.0	239.1	46.0	29.1	881.3	58.8	38.0	6.0	
87.35	26.62	18605.8	512.5	2.8	241.1	241.6	62.0	39.1	0.0	72.5	40.0	1.0	
88.17 88.99	20.00	3517.7	61.3	3.0 1.7	243.2	244.0	17.7	11.1 8.8	244.3	30.0	0.0 32.0	6.0 3.0	
89.81	27.38	2514.1	32.5	1.3	247.3	248.9	10.1	6.3	161.4	30.0	30.0	3.0	
90.63	27.62	2186.3	20.1	0.9	249.4	251.4	8.7	5.4	134.8	30.0	30.0	3.0	
92.27	28.12	4036.7	107.9	2.7	253.5	256.3	16.1	9.9	282.2	30.0	32.0	6.0	
93.09	28.38	2477.8	48.5	2.0	255.5	258.7	9.9	6.1	157.1	30.0	30.0	3.0	
93.91 04 '73	28.62 28 88	1876.4	52.6 34_6	1.5	257.6	261.2	- 8.8 7.5	5.4 4.6	155.1	30.0	50.0 30.0	5.0	
95.55	29.12	1820.4	27.3	1.5	261.7	266.1	7.3	4.4	103.4	30.0	30.0	1.5	•
96.37	29.38	1767.6	25.1	1.4	263.7	268.5	7.1	4.3	98.8	30.0	30.0	1.5	
97.19 98 01	29.62 20 RA	1855.1	28.0 120.0	1.5	267_8	273.5	17.4	4.4	304.1	30.0	32.0	6.0	
98.83	30.12	3393.8	59.0	1.7	269.8	275.9	13.6	8.1	227.8	30.0	30.0	3.0	



a kataki



in the second second second second second second second second second second second second second second second

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-5500 CPT File: KA06S046.COR

C

Page: 3

Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(KPa)	(DlO	WS/TT) 	(KP8)	(%) 	(deg.)	(ratio)
00 65	30.38	2266.9	17.4	0.8	272.0	278.4	7.6	4.5	0.0	30.0	30.0	1.0
100 47	30.62	2335.4	24.8	1.1	274.1	280.8	9.3	5.5	142.4	30.0	30.0	3.0
101 20	30.88	2382.2	47.5	2.0	276.1	283.3	9.5	5.6	145.8	30.0	30.0	3.0
102 11	31 12	2683.5	40.5	1.5	278.2	285.7	10.7	6.3	1 <b>69</b> .6	30.0	30.0	3.0
102.71	31 38	2679.9	33.4	1.2	280.2	288.2	10.7	6.3	168.9	30.0	30.0	3.0
102.74	31 62	4946.7	120.4	2.4	282.3	290.6	19.8	11.5	349.9	32.2	32.0	6.0
103.70	31.88	5084.2	154.8	3.0	284.3	293.1	20.3	11.8	360.5	32.9	32.0	6.0
105 40	32 12	14447.6	358.1	2.5	286.4	295.5	48.2	27.9	0.0	62.7	38.0	1.0
105.40	32 38	23307.2	440.8	1.9	288.6	298.0	58.3	33.6	0.0	76.3	42.0	1.0
107.04	32 62	16084.4	425.2	2.6	290.9	300.4	53.6	30.8	0.0	65.6	40.0	1.0
107.86	32.88	9340.2	267.7	2.9	293.0	302.9	37.4	21.4	699.5	49.9	36.0	6.0
108-68	33.12	2508.5	39.8	1.6	295.0	305.3	10.0	5.7	152.7	30.0	30.0	3.0
109.50	33.38	2164.7	30.9	1.4	297.1	307.8	8.7	4.9	124.8	30.0	30.0	1.5
110.32	33.62	2915.9	70.2	2.4	<b>299.</b> 1	310.2	11.7	6.6	184.5	30.0	30.0	3.0
111.14	33.88	3099.9	80.7	2.6	301.2	312.7	12.4	7.0	198.9	30.0	30.0	.3.0
111.96	34.12	3156.3	67.0	2.1	303.2	315.1	12.6	7.1	203.0	30.0	30.0	3.0
112.78	34.38	3587.7	78.0	2.2	305.3	317.6	14.4	8.0	237.2	30.0	30.0	3.0
113.60	34.62	4108.8	104.6	2.5	307.3	320.1	16.4	9.2	278.5	30.0	30.0	3.0
114 42	34.88	25641.3	884.4	3.4	309.5	322.5	128.2	71.3	0.0	78.1	42.0	1.0
115.24	35,12	31024.0	1106.5	3.6	311.8	325.0	155.1	86.0	0.0	83.4	42.0	1.0
116.06	35.38	32756.7	777.6	2.4	314.0	327.4	109.2	60.3	0.0	84.9	42.0	1.0
116.88	35.62	28972.2	786.0	2.7	316.2	329.9	96.6	53.2	0.0	81.3	42.0	1.0
117.70	35.88	24583.6	747.5	3.0	318.4	332.3	122.9	67.4	0.0	76.5	40.0	1.0
118 52	36.12	23033.0	663.2	2.9	320.7	334.8	76.8	42.0	0.0	74.5	40.0	1.0







. ....

KLEINFELDER

06-SC-46

Client: Sounding: Date:

17-Jul-96 Beam & H

Offset (m): Cone: Geophone:

Source:

Beam & Hammer 0.56 AD 028 (10 tonne) 0.20 m above tip

Geophone Distance Last Time Shear Wave Velocity Corresponding Depth **Interval For Depth Increment** X-Over (m)(m)(ft/s) (ms) (m/s) (m) (ft) 1.65 1.74 2,65 2.71 8.1 391 ¥ 119 1.7 2.7 5.4 - 8.7 . 3.65 3.69 8.4 384 117 2.7 -3.7 8.7 - 12.0 4.65 4.68 5.6 581 177 3.7 12.0 - 15.3 . 4.7 5.65 5.68 8.6 379 116 4.7 -5.7 15.3 - 18.5 6.65 6.67 7.4 135 442 5.7 . 6.7 18.5 . 21.8 7.65 7.67 8.6 21.8 - 25.1 116 380 6.7 7.7 -8.65 8.67 6.7 149 489 7.7 8.7 25.1 --28.4 9.65 9.67 6.1 164 8.7 537 4 9.7 28.4 -31.7 11.65 11.66 11.7 ¥ 171 560 9.7 • 31.7 -11.7 38.2 13.65 13.66 13.9 144 472 11.7 - 13.7 38.2 -44.8 14.65 14.66 6.6 151 497 13.7 . 14.7 44.8 - 48.1 15.65 15.66 6.5 * 154 504 14.7 - 15.7 48.1 - 51.3 16.65 16.66 6.3 159 520 15.7 - 16.7 51.3 54.6 17.65 17.66 4.7 213 698 16.7 - 17.7 54.6 -57.9 19.65 19.66 9.3 215 705 17.7 - 19.7 57.9 . 64.5 20.65 20.66 5.2 **≁ 192** 631 19.7 - 20.7 64.5 -67.7 21.65 21.66 4.4 227 745 20.7 - 21.7 67.7 -71.0 22.65 22.66 3.7 270 886 21.7 -22.7 71.0 -74.3 23.65 23.66 4.1 244 800 22.7 -23.7 74.3 . 77.6 24.65 24.66 185 5.4 607 23.7 - 24.7 77.6 -80.9 25.65 25.66 5.2 ¥ 192 631 24.7 - 25.7 80.9 - 84.2 26.65 26.66 25.7 - 26.7 4.0 250 820 84.2 - 87.4 27.65 27.66 4.5 222 729 26.7 - 27.7 87.4 - 90.7 28.65 4.8 28.66 208 27.7 - 28.7 683 90.7 - 94.0 29.65 29.66 5.2 192 28.7 - 29.7 631 94.0 - 97.3 30.65 30.66 + 244 4.1 800 29.7 - 30.7 97.3 - 100.6 31.65 31.65 4.4 227 746 30.7 - 31.7 100.6 - 103.8 32.65 32.65 3.9 256 841 31.7 - 32.7 103.8 - 107.1 33.65 33.65 4.2 238 781 32.7 -33.7 107.1 - 110.4 34.65 34.65 3.7 270 887 33.7 . 34.7 110.4 - 113.7 35.65 + 270 35.65 3.7 34.7 - 35.7 113.7 - 117.0 887

														<u>^</u>
•						•				•				• 24
	ConeTe	ec Inc	Output - R	elease 1.0	0.07					Page		i di e		H4 - 33.24
	Run No	o: 96-09	13-0822-31	29								الي ميرين م	থিটে বিদ্যা বিদ্যালয় কর্মা	اند و مد اور فاهما
	Job No	o: 96-30	19 Malder	a a t		;	en en en en en en en en en en en en en e		,		А . ч	. A 45	14. gan	
	Proied	ct: 115 S	Section 4				· · ·			•	• t	14 M (		4.5 *
j	Site:	115,5	4:115,06-S	C-55				а Сх						an an an an an an an an an an an an an a
	Locati	ion: 500 S	Viaduct										anto en	- A (2
	CPT Da	ate: 96/02	2/08											
	CPT Ti	ime: 11:55		No. 19								. ·		. • .
	CPT F1	ILE: KAUDS	5055.COK											
	Water	r Table (π	1):	2.00	(ft)	: 6.6								
		aging Incr ct used:	ement (m):	0.25										
	Phi M	lethod :		Robertson	n and Ca	mpanella, 1	983						•	
	Dr N	lethod :	hte Åester	Jamiolko	nski - A	ll Sands								
		Unit weig	IILS ASSIGN		201165									
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf	E.Stress (kPa)	Hyd. Pr.	N60	(N1)60	Su (kPa)	Dr (7)	Phi (dec.)	OCR	
						( kr u /				(		(ueg.)	(ratio)	
	0.41	0.12 0 38	23153.2 10932 0	74.4	0.3 1 7	2.5 7 4	0.0	38.6	77.2 54 7	0.0	95.0 05 n	50.0	1.0	
	2.05	0.62	3832.8	98.6	2.6	12.0	0.0	15.3	30.7	305.7	70.2	46.0	10.0	
	2.87	0.88	761.2	15.2	2.0	16.5	0.0	3.8	7.6	59.6	0.0	0.0	6.0	
	4.51	1.38	479.4	3.8	0.8	21.0	0.0	2.4	4.7	36.4	0.0	0.0	6.U 6.D	
	5.33	1.62	703.9	12.0	1.7	28.6	0.0	3.5	6.4	54.0	0.0	0.0	6.0	
	6.15 6.97	1.88	792.8 1043.7	12.2	1.5	33.1 36.4	0.0	4.0	6.7	60.8 80 5	0.0	0.0	6.0	
	7.79	2.38	2988.2	30.4	1.0	38.5	3.7	10.0	15.7	0.0	46.3	40.0	1.0	
	8.61	2.62	3015.6	40.7	1.3	40.6	6.1	12.1	18.5	237.5	45.8	40.0	10.0	
	10.25	3.12	3738.0	75.3	2.5	42.7	11.0	15.0	20.5	268.9	48.7 50.6	42.0	10.0 10.0	
	11.07	3.38	3160.5	83.0	2.6	46.8	13.5	12.6	18.1	248.0	45.2	40.0	10.0	
·	11.89	3.82 3.88	7152.1	91.6 136.4	1.4	48.9	15.9 18.4	21.3 23.8	29.8 32.7	0.0	64.7 67 3	44.0 66 0	1.0	
4	13.53	4.12	9014.1	85.0	0.9	53.3	20.8	22.5	30.2	0.0	73.3	44.0	1.0	
	14.35	4.38	6252.1 4667 5	85.7 62 1	1.4	55.5	23.3	20.8	27.4	0.0	62.2	42.0	1.0	
	15.99	4.88	12159.0	85.6	0.7	<b>60.</b> 0	29.0	24.3	30.7	0.0	53.3 80.2	42.0	1.0	
	16.81	5.12	7197.5	81.8	1.1	62.3	30.7	18.0	22.3	0.0	64.6	42.0	1.0	
	17.03	5.62	633.4	<b>6.</b> 4 2.0	1.2	64.5 65.9	35.1	5.5	4.3 3.8	49.0	0.0	0.0	3.0	
	19.27	5.88	640.4	2.0	0.3	66.5	38.0	3.2	3.8	42.9	0.0	0.0	3.0	
	20.09	6.12	617.1 1874 2	2.3	0.4	67.2	40.5	3.1	3.7	40.8	0.0	0.0	3.0	
	21.74	6.62	1262.1	13.2	1.0	70.6	42.9	5.0	5.9	91.7	30.0	32.0	6.0	
	22.56	6.88	692.7	4.8	0.7	72.0	47.8	3.5	4.0	45.8	0.0	0.0	3.0	
	23.38	7.12	931.8	12.4	1.8	75.3 75.4	50.3 52.7	3.4	3.9 5.3	45.1	0.0	0.0	3.0	
	25.02	7.62	812.6	11.8	1.5	77.4	55.2	4.1	4.5	54.4	0.0	0.0	3.0	
	25.84	7.88	695.7 889.2	5.8	0.8	79.5 81.5	57.6	3.5	3.8	44.7 50 g	0.0	0.0	3.0	
	27.48	8.38	2757.5	47.3	1.7	83.6	62.5	11.0	11.8	208.9	32.9	36.0	6.0	
	28.30	8.62	2802.8	43.6	1.6	85.6	65.0	11.2	11.9	212.2	33.0	36.0	6.0	
	29.12	0.00 9.12	1767.4	13.1	2.4	87.7 89.7	67.4 69.9	4.8 7.1	5.1	65.1 128.6	30.0	0.0 32.0	3.0	
	30.76	9.38	1313.8	33.4	2.5	91.8	72.3	6.6	6.7	92.0	0.0	0.0	6.0	
	31.58	9.62 9.88	1541.0 018 0	21.8	1.4	93.8	74.8 77 3	6.2	6.2	109.8	30.0	32.0	6.0	
	33.22	10.12	1648.5	23.3	1.4	97.9	79.7	6.6	6.5	117.7	30.0	32.0	6.0	
	34.04	10.38	948.1 840.7	7.7	0.8	100.0	82.2	3.8	3.7	61.3	30.0	30.0	3.0	. •
	35.68	10.88	760.7	2.7	0.4	102.0	87.1	4.2 3.8	4.1 3.7	52.5 45.6	0.0	0.0	3.U 1.5	
	36.50	11.12	757.2	4.4	0.6	104.7	89.5	3.8	3.6	45.0	0.0	0.0	1.5	
	37.32 38 14	11.38	1098.5	14.4 17.6	1.3	106.8 108.8	92.0 94 4	5.5 4 0	5.2	72.0	0.0	0.0	3.0 	
	38.96	11.88	704.7	2.8	0.4	110.2	96.9	3.5	3.3	39.8	0.0	0.0	1.5	
	39.78	12.12	681.8	2.0	0.3	110.9	99.3	3.4	3.2	37.7	0.0	0.0	1.5	
	40.00 41.42	12.50	904.0	2.1 3.4	U.S 0.4	111.5	101.8	4.U 3.6	5.1 3.3	47.U 54.9	0.0 30.0	U.U 30.0	1.5	
	42.24	12.88	761.6	2.7	0.3	114.3	106.7	3.8	3.5	43.3	0.0	0.0	1.5	

•

C

	-	-
4	ſ.	٦.
	4	-3
Ы	111	
- 11	14	<b>y</b> -
	V.	

ConeTo Run No CPT F	ec Inc o: 96-0 ile: KA06	CPT Interp 913-0822-31 \$055.COR	pretation 29		•	•		<i>.</i>	Pag	e: 2 947 - 444	ал. Ал., са	• •	4 ( = 121) 23 # 3 # 3 2 # 2 # 3 #	
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (bi)	(N1)60 ows/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	1.4 64. 1	
43.06	13.12	778.2	3.3	0.4	114.9	109.1	3.9	····· 3 6			•••••			ł
43.88	13.38	698.1	2.8	0.4	115.6	111.6	3.5	3.2	37.7	0.0	0.0	1.5		
44.70	13.62	647.8	2.0	0.3	116.3	114.0	3.2	2.9	33.4	0.0	0.0	1.5		·
42.22	13.68	659.3 9/7 P	2.6	0.4	116.9	116.5	3.3	3.0	34.1	0.0	0.0	1.5	• • • •	
40.34	14.12	043.0 703.8	4.8	0.0	118.3	118.9	3.4	3.0	48.5	30.0	30.0	1.5		
47.98	14.62	834.5	2.5	0.3	120 3	121.4	- 4.0	3.6	44.2	0.0	. 0.0	1.5		•
48.80	14.88	899.0	4.0	0.4	121.7	126.3	4.2	3./	4/.2 52 1	30.0	0.0	1.5		
49.62	15.12	1306.9	12.6	1.0	123.7	128.8	5.2	4.6	84.4	30.0	30.0	1.5		
50.44	15.38	1051.7	6.2	0.6	125.8	131.2	4.2	3.7	63.6	30.0	30.0	3.0		
52.08	15.88	072.5	3.0	0.3	127.8	133.7	3.5	3.0	48.9	30.0	30.0	1.5		
52.90	16.12	968.3	5.3	0.6	131 0	130.1	5.7	3.2	53.1	30.0	30.0	1.5	-	
53.72	16.38	893.4	4.3	0.5	134.0	141.0	3.6	3.3	22.8 40.5	30.0	30.0	1.5	18-14-14-14-14-14-14-14-14-14-14-14-14-14-	
54.54	16.62	966.6	6.1	0.6	136.0	143.5	3.9	3.2	55.0	30.0	30.0	1.5		
55.36	16.88	827.7	4.2	0.5	138.1	145.9	3.3	2.8	43.5	30.0	30.0	1.5		
57 00	17.12	817.0	4.9	0.6	140.1	148.4	3.3	2.7	42.3	30.0	30.0	1.5		
57.82	17.62	936 5	4.0	1.0	142.2	150.8	3.3	2.7	42.8	30.0	30.0	1.5		
58.64	17.88	7237.7	90.1	1.2	144.2	155 7	4./	5.8	51.1	0.0	0.0	1.5	2	
59.46	18.12	3332.3	83.4	2.5	148.6	158.2	13.3	14.0	242 0	52.5	38.0	1.0		
60.28	18.38	3927.1	62.1	1.6	150.7	160.6	13.1	10.4	0.0	34.6	34.0	0.0		
61.10 61.07	18.62	9508.4	103.5	1.1	152.9	163.1	23.8	18.8	0.0	59.7	40.0	1.0		
62.75	10.00	4198.5 5010 2	63.3	1.5	155.1	165.5	14.0	11.0	0.0	36.1	34.0	1.0		
63.57	19.38	2995.1	39.5	1.3	157.5	168.0	20.0	15.6	374.8	41.0	36.0	6.0		
64.39	19.62	1464.7	5.1	0.3	161.3	172.9	5.9	9.3 4 5	213.2	30.0	32.0	. 6.0		
65.21	19.88	1442.4	6.9	0.5	163.4	175.4	5.8	4.4	88.3	30.0	30.0	3.0	•	
66.03	20.12	2484.5	33.8	1.4	165.4	177.8	9.9	7.6	171.3	30.0	32.0	5.0		
67.67	20.30	3423.2 7037 6	52.5	1.5	167.6	180.3	11.4	8.6	0.0	30.0	32.0	1.0		
68.49	20.88	2070.4	38 6	1.7	169.7	182.7	23.5	17.6	0.0	49.6	38.0	1.0		
69.31	21.12	3804.4	35.5	0.9	173.9	185.2	12 7	6.2	137.1	30.0	30.0	3.0		(
70.13	21.38	2119.0	13.0	0.6	176.1	190.1	7.1	<b>9.</b> 4 5.2	0.0	51.6	34.0	1.0		4
70.95	21.62	3296.9	46.9	1.4	178.3	192.5	11.0	8.1	0.0	30.0	30.0	1.0		
72 50	21.88	1995.5	11.2	0.6	180.5	195.0	6.7	4.8	0.0	30.0	30.0	1.0		
73.41	22.38	2032.3	30 4	0.9	182.6	197.4	6.8	4.9	104.9	30.0	30.0	3.0		
74.23	22.62	1604.9	2.3	0.1	184.8	202.3	5 7	2.9 7 9	131.8	30.0	30.0	3.0		
75.05	22.88	1562.8	2.0	0.1	188.9	204.8	5.2	3.7	0.0	30.0	30.0	1.0		
75.87	23.12	1612.7	7.8	0.5	191.0	207.2	6.5	4.6	97.2	30.0	30.0	3.0		
77 51	23.50	1437.9	9.3	0.6	193.1	209.7	5.8	4.1	82.8	30.0	30.0	1.5		
78.33	23.88	1258 0	2.0	0.2	195.1	212.1	4.9	3.5	66.1	30.0	30.0	1.5		
79.15	24.12	1511.2	5.5	0.4	197.2	214.0	5.0	5.5	67.8	30.0	30.0	1.5		
79.97	24.38	1506.1	3.2	0.2	201.3	219.5	6.0	4.2	5/.0 86 9	30.0	30.0	1.5		
80.79	24.62	2552.2	21.7	0.9	203.4	222.0	8.5	5.8	0.0	30.0	30.0	1.5		
87.61	24.88	2281.1	15.4	0.7	205.5	224.4	7.6	5.2	0.0	30.0	30.0	1.0		
83.25	25.38	1503 4	10 7	1.4	207.6	226.9	6.5	4.4	95.0	30.0	30.0	1.5		
84.07	25.62	1636.0	4.2	0.3	209.7	229.5	6.0	4.1	85.2	30.0	30.0	1.5		
84.89	25.88	1580.7	3.5	0.2	213.8	234.2	-6.3	4.2	90.6	30.0	30.0	1.5		
85.71	26.12	1460.8	3.0	0.2	215.8	236.7	-5.8	3.9	80.7	30.0	30.0	1.5		
00.00 97 75	26.38	1639.6	7.4	0.5	217.9	239.1	6.6	4.3	94.6	30.0	30.0	1.5		
88.17	20.02	1371.5	11.2	0.5	220.0	241.6	7.5	4.9	0.0	30.0	30.0	1.0		
88.99	27.12	1273.7	2.4	0.2	224.1	244.0	2.2 5 1	5.0	12.4	30.0	30.0	1.5		
89.81	27.38	1372.0	2.7	0.2	226.2	248.9	5.5	3.5	04.2 71 8	30.0	30.0	1.5		
90.63	27.62	1795.9	5.9	0.3	228.3	251.4	6.0	3.9	0.0	30.0	30.0	1.0		
91.45 02 27	27.88	4929.5	78.0	1.6	230.5	253.8	16.4	10.6	0.0	35.0	34.0	1.0		
93.00	20.12	2122.4	20.4	0.9	232.6	256.3	8.6	5.5	133.1	30.0	30.0	3.0		
93.91	28.62	1770.9	8.3	0.5	234.0 236 7	208.7	5.2	5.3	64.0	30.0	30.0	1.5		
94.73	28.88	1436.1	2.0	. 0.1	238.7	263.6	5.7	4.5 3_6 ·	74 7	30.U 30 n	30.0 30.0	1.5	•	
95.55	29.12	1561.0	17.6	1.1	240.8	266.1	6.2	3.9	84.3	30.0	30.0	1.5	• •	
96.37	29.38	8304.4	372.5	4.5	243.1	268.5	23.7	14.9	0.0	49.2	36.0	1.0		6
91.19	27.02 20 88	/186.9 6730 0	201.3	<b>3.9</b>	245.5	271.0	35.9	22.4	533.6	0.0	0.0	6.0		l
98.83	30.12	3096.9	84.5	2.7	247.5	275.9	12.4	10.8	497.5 205 7	45.0	34.0	6.0 3 0		)
										30.0		J.U		

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0822-3129 CPT File: KA06S055.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	1614.9	11.8	0.7	251.6	278.4	6.5	4.0	86.8	30.0	30.0	1.5
100.47	30.62	1574.1	6.8	0.4	253.7	280.8	6.3	3.9	83.2	30.0	30.0	1.5
101.29	30.88	1619.2	8.9	0.6	255.7	283.3	6.5	4.0	86.4	30.0	30.0	1.5
102.11	31.12	1460.7	7.4	0.5	257.8	285.7	5.8	3.6	73.4	30.0	30.0	1.5
102.94	31.38	1499.9	11.6	0.8	259.8	288.2	6.0	3.6	76.2	30.0	30.0	1.5
103.76	31.62	1531.8	10.4	0.7	261.9	290.6	6.1	3.7	78.3	30.0	30.0	1.5
104.58	31.88	1986.7	13.4	0.7	263.9	293.1	7.9	4.8	114.4	30.0	30.0	1.5
105.40	32.12	2323.0	23.1	1.0	266.0	295.5	9.3	5.6	140.9	30.0	30.0	3.0
106.22	32.38	2263.3	25,9	1.1	268.0	298.0	9.1	5.4	135.8	30.0	30.0	3.0
107.04	32.62	2568.3	40.7	1.6	270.1	300.4	10.3	6.1	159.8	30.0	30.0	3.0
107.86	32.88	2208.6	33.8	1.5	272.1	302.9	8.8	5.2	130.7	30.0	30.0	1.5
108.68	33.12	2037.0	26.7	1.3	274.2	305.3	8.1	4.8	116.6	30.0	30.0	1.5
109.50	33.38	2354.2	27.2	1.2	276.2	307.8	9.4	5.5	141.6	30.0	30.0	3.0
110.32	33.62	2774.0	39.0	1.4	278.3	310.2	11.1	6.5	174.8	30.0	30.0	3.0





· · ·



Client: Sounding: Date: KLEINFELDER 06-SC-55 2-Aug-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

**Shear Wave Velocity** Corresponding Geophone Distance Last Time **Depth Increment** Depth Interval For X-Over (ft) (m/s) (ft/s) (m) (m) (ms) (m) . 1.00 1.15 2.0 3.3 2.00 2.08 8.4 4 111 366 1.0 --6.6 2.0 -3.0 6.6 -9.8 615 3.00 3.05 5.2 187 3.0 4.0 15 648 4.0 9.8 - 13.1 4.00 5.0 197 4.04 5.0 13.1 - 16.4 5.00 5.03 4.8 ¥ 207 678 16.4 - 19.7 7.9 126 413 5.0 -6.0 6.00 6.03 430 6.0 7.0 19.7 -23.0 7.00 7.02 7.6 131 -461 7.0 -8.0 23.0 - 26.2 140 8.00 8.02 7.1 26.2 - 29.5 8.0 9.0 9.00 9.02 6.0 166 546 -29.5 - 32.8 10.02 5.8 ¥ 171 561 9.0 - 10.0 10.00 32.8 -10.0 - 11.0 36.1 143 468 11.00 11.01 7.0 11.0 - 12.0 36.1 - 39.4 12.01 164 537 12.00 6.1 12.0 - 13.0 39.4 - 42.7 13.00 13.01 6.9 145 475 13.0 - 14.0 42.7 - 45.9 462 14.00 14.01 7.1 141 15.00 15.01 7.4 * 135 443 14.0 - 15.0 45.9 - 49.2 15.0 - 16.0 49.2 - 52.5 529 16.00 16.01 6.2 161 16.0 - 17.0 52.5 - 55.8 17.00 17.01 6.7 149 489 17.0 - 18.0 55.8 - 59.1 18.00 18.01 5.3 189 619 208 683 18.0 - 19.0 59.1 - 62.3 19.00 19.01 4.8 19.0 - 20.0 62.3 - 65.6 20.00 20.01 4.7 + 213 698 65.6 - 68.9 21.00 21.01 4.5 222 729 20.0 - 21.0 21.0 - 22.0 68.9 - 72.2 22.00 22.01 5.5 182 596 22.0 - 23.0 72.2 - 75.5 23.00 23.01 179 586 5.6 23.0 - 24.0 75.5 - 78.7 24.00 185 607 24.01 5.4 * 189 24.0 - 25.0 78.7 - 82.0 25.00 619 25.01 5.3 25.0 - 26.0 82.0 - 85.3 26.00 26.01 5.9 169 556 27.00 26.0 - 27.0 85.3 - 88.6 27.01 6.0 167 547 27.0 - 28.0 88.6 - 91.9 28.00 28.01 5.0 200 656 28.0 - 29.0 91.9 - 95.1 29.00 29.01 4.7 213 698 * 222 729 29.0 - 30.0 95.1 - 98.4 30.00 30.01 4.5 200 656 30.0 - 31.0 98.4 - 101.7 31.00 31.01 5.0 101.7 - 105.0 31.0 - 32.0 222 729 32.00 32.00 4.5



•	ConeTec	inc (	CPT Interp Output - R	retation	0.07	•				Page	: 1		· ·** · .	- ÷-*.
	Run No:	96-08	04-2148-52	68									···	
	Job No:	96-30	9											
	Client:	Klein	felder	-11 · · ·	. •						. <b>5</b>	40		· .
	Project	:: 115 S	ection 4		•									
À	Site:	115, 9	s4: 500 s,	06-SC-60										
	Locatio	on: 500 S	Viaduct											
•	Cone:	20 T	DN A 080											•
	CPT Dat	te: 96/24,	/04										•	
	CPT Tim	ne: 12:40		· · · · ·										
	CPT Fil	e: KAO6S	060.COR								-			•
														• •
	Water	Table (m)		2.00	(11):	6.6								
	Averag	ng Incre	ement (m):	12 50										
		thod .		Poperteo	n and Cam	nanaila 1	083						•	
	Dr Me	thod :		Jamiolko	wski - Al	l Sands	/05							
	Used L	Init Weigh	hts Assign	ed to Soil	Zones									
	Depth (ft)	Depth (m)	Avgût (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 #s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
	0.41	0.12	<b>346.6</b>	2.4	0.7	1.6	0.0	1.7	3.5	27.6	0.0	0.0	10.0	•
	1.23	0.38	449.2	· 4.9	1.1	4.7	0.0	2.2	4.5	35.6	0.0	0.0	10.0	
	2.05	0.62	1120.5	24.3	2.2	8.5	0.0	5.6	11.2	89.0	0.0	0.0	10.0	
	2.87	0.88	537.4	20.7	3.8	12.9	0.0	5.4	10.7	42.0	0.0	0.0	6.0	
	3.69	1.12	783.7	15.0	1.9	17.4	0.0	5.9	7.8	61.5	0.0	0.0	6.0	
	4.51	1.58	529.2	12.0	2.9	21.8	. 0.0	2.3	10.0	40.0	0.0	0.0	6.0	
	5.33	1.02	410.2	10.7	4.5	20.2	0.0	4.1	1.0	30.7	0.0	0.0	0.0	
	6 97	2.12	217.5	15.9	7.3	33.7	1.2	2.2	3.7	14.6	0.0	0.0	15	
	7.79	2.38	1733.8	15.1	0.9	35.7	3.7	6.9	11.4	135.6	31.8	38.0	6.0	
	8.61	2.62	.726.8	19.0	2.6	37.7	6.1	4.8	7.7	54.6	0.0	0.0	6.0	
	9.43	2.88	627.0	31.7	5.1	39.7	8.6	6.3	9.7	46.3	0.0	0.0	6.0	
	10.25	3.12	589.6	24.7	4.2	41.7	11.0	5.9	8.9	43.0	0.0	0.0	6.0	
	11.07	3.38	480.2	20.5	4.3	43.6	13.5	4.8	7.1	33.9	0.0	0.0	3.0	
	11.89	3.62	563.2	26.3	4.7	45.5	15.9	5.6	8.2	40.1	0.0	0.0	3.0	
1º Car	12.71	3.88	1882.8	27.6	1.5	47.5	18.4	7.5	10.7	145.4	30.1	38.0	6.0	
	13.53	4.12	1539.0	44.4	2.9	49.5	20.8	7.7	10.7	117.5	0.0	0.0	6.0	
	14.35	4.58	2200.4	/0.0	5.1	51.6	23.3	11.5	15.4	1/4.5	0.0	0.0	6.0	
6.6	15.17	4.02	1309.3	102.2	2.0	JJ.0 55 5	22.0	10.1	20.2	379 /	5/ 7	42.0	10.0	
~.	16.81	5 12	3682 3	00.3	2.1	57.6	30.7	16.7	10 0	287 5	46 5	42.0	10.0	
	17.63	5.38	2384.1	89.5	3.8	59.6	33.1	15.9	20.1	183.3	0.0	0.0	6.0	
	18.45	5.62	4359.6	51.2	1.2	61.8	35.6	14.5	18.1	0.0	50.4	40.0	1.0	
	19.27	5.88	2981.7	50.6	1.7	63.9	38.0	11.9	14.6	230.4	39.0	38.0	6.0	
	20.09	6.12	1231.4	25.9	2.1	65.9	40.5	6.2	7.4	90.0	0.0	0.0	6.0	
	20.92	6.38	1434.4	29.9	2.1	68.0	42.9	7.2	8.5	105.9	0.0	0.0	6.0	
	21.74	6.62	1255.1	32.9	2.6	70.0	45.4	6.3	7.3	91.2	0.0	0.0	6.0	
	22.56	6.88	808.5	27.8	5.4	72.0	47.8	8.1	9.3	55.1	0.0	0.0	5.0	
	23.38	7.12	1142.1	47.5	4.2	75.9	50.3	11.4	13.0	01.4	0.0	0.0	0.0	
	24.20	7.50	045 3	30 8	4.2	77.8	55 2	0.5	10.5	65.0	0.0	0.0	3 0	
	25.02	7 88	1813 0	64.8	3.6	79.7	57.6	12 1	13.2	134.1	0.0	0.0	6.0	
	26.66	8,12	1208.7	37.4	3.1	81.8	60.1	8.1	8.7	85.3	0.0	0.0	6.0	
	27.48	8.38	1626.7	36.9	2.3	83.8	62.5	8.1	8.7	118.4	0.0	0.0	6.0	
	28.30	8.62	648.4	10.9	1.7	85.9	65.0	3.2	3.4	39.8	0.0	0.0	1.5	
	29.12	8.88	1092.4	22.4	2.0	87.9	67.4	5.5	5.7	75.0	0.0	0.0	3.0	
	29.94	9.12	1066.9	22.1	2.1	<b>90.</b> 0	69.9	5.3	5.5	72.6	0.0	0.0	3.0	
	30.76	9.38	943.3	18.7	2.0	92.0	72.3	4.7	4.8	62.3	0.0	0.0	3.0	
	31.58	9.62	1682.8	39.5	2.5	94.1	74.8	8.4	8.5	121.1	0.0	0.0	0.0	
	32.40	9.88	631.9	13.0	4.0	90.1	70.7	4.2	4.2	20./ /1 7	0.0	0.0	4.5	
	55.22	10.12	677.2 500 0	12.9	1.0	90.2	/¥./ 82 2	3.7	2.7	41./ 77 7	0.0	0.0	1.5	
	34.04	10.30	599.0	0.1	1.4	100.2	96.C 91 4	3.0	2.7	33.3	0.0	0.0	1.5	
	34.00 35 AR	10.02	731 4	14.0	1.9	104 3	87.1	3.7	3.5	43.2	0.0	0.0	1.5	
	36.50	11_12	635.9	13.4	2.1	106.4	89.5	4.2	4.0	35.2	0.0	0.0	1.5	
	37.32	11.38	1551.7	28.7	1.8	108.4	92.0	6.2	5.8	108.1	30.0	32.0	3.0	
	38.14	11.62	547.5	8.3	1.5	110.5	94.4	3.6	3.4	27.4	0.0	0.0	1.0	
•	38.96	11.88	692.8	11.2	1.6	112.5	96:9	3.5	3.2	38.7	0.0	. 0.0	1.5	
	39.78	12.12	756.8	10.8	1.4	114.5	99.3	3.8	3.5	43.4	0.0	0.0	1.5	
1	40.60	12.38	619.3	5.8	0.9	115.9	101.8	3.1	Z.8	32.1	0.0	0.0	1.5	
	41.42	12.62	644.2	6.8	1.1	117.3	104.2	5.2	2.9	33.ð 74 4	0.0	0.0	1.5	
· ·	42.24	12.88	622.5	7.9	1.2	117.3	100.7	د.د	٤.7		0.0	5.5		

ConeTec	Inc CPT Interpretation
Run No:	96-0804-2148-5268
CPT File	: KA06S060.COR

ConeTe	c Inc (	CPT Interp	retation						Page	2			18.	
Run No	: 96-08	04-2148-526	58		• .				• •		1 - 1 		7.45	
CPI F1	16: KAU05											*******	A. Steel	
Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Şu	Dr	Phi	OCR	1.0110	
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)		
43.06	13.12	639.9	7.2	1.1	121.4	109.1	3.2	2.8	32.8	0.0	0.0	1.5		•
43.88	13.38	633.0	6.1	1.0	123.4	111.6	3.2	2.8	31.8	0.0	0.0	1.5		
44.70	13.62	723.2	8.9	1.2	125.5	114.0	3.6	3.2	38.7	0.0	0.0	1.5		
45.52	13.88	830.0	10.5	1.3	127.5	116.5	4.2	3.6	46.9	0.0	0.0	1.5		
40.34	14.12	8/0.9	9.1 7 0	1.U n o	129.0	118.9	4.4 7 9	3.1	49.8	0.0	0.0	1.5		
47.98	14.62	915.2	16.8	1.8	133.6	123.9	4.6	3.9	52.6	0.0	0.0	1.5		
48.80	14.88	1055.2	16.8	1.6	135.7	126.3	5.3	4.4	63.5	0.0	0.0	1.5		
49.62	15.12	1009.2	13.6	. 1,4	• 137.7	128.8	5.0	4.2	59.4	0.0	0.0	1.5	· •	
50.44	15.58	1009.6	9.8	1.0	139.8	131.2	4.0	3.5	59.1	30.0	30.0	1.5		
52.08	15.88	1101.9	20.1	1.8	141.0	136.1	5.5	3.4 4.5	44.2 65.8	0.0	0.0	1.5		
52.90	16.12	1035.3	14.3	1.4	145.9	138.6	5.2	4.2	60.1	0.0	0.0	1.5		
53.72	16.38	871.6	11.0	1.3	148.0	141.0	4.4	3.5	46.6	0.0	0.0	1.5		
54.54	16.62	829.4	10.9	1.3	150.0	143.5	4.1	3.3	42.9	0.0	0.0	1.5	•	
56 18	10,00	0/0.2	10.7	1.2	152.1	143.9	4.4	3.5	40.4 48.4	0.0	0.0	1.5		
57.00	17.38	856.6	11.6	1.4	156.2	150.8	4.3	3.4	44.0	0.0	0.0	1.5		
57.82	17.62	851.2	14.6	1.7	158.2	153.3	4.3	3.3	43.2	0.0	0.0	1.5		
58.64	17.88	1453.9	47.7	3.3	160.3	155.7	9.7	7.5	91.0	0.0	0.0	3.0		
59.46	18.12	1811.0	65.4 184 1	3.0	102.3	158.2	12.1	9.5	119.2	0.0	0.0 79 0	3.0		
61.10	18.62	16380.8	355.5	2.2	166.5	163.1	54.6	41.4	4//.1 0.0	40.9	42.0	1.0		
61.93	18.88	18608.1	458.2	2.5	168.6	165.5	62.0	46.7	0.0	77.6	42.0	1.0		
62.75	19.12	17531.6	428.5	2.4	170.8	168.0	58.4	43.8	0.0	75.7	42.0	1.0		
63.57	19.38	18085.8	391.3	2.2	173.0	170.4	60.3	44.9	0.0	76.4	42.0	. 1.0		
64.39	10 88	12206 7	264.3	2.0	177.5	172.9	48.8	30.0	0.0	78.4 45 0	42.0	1.0		
66.03	20.12	8593.2	184.4	2.1	179.6	177.8	28.6	20.9	0.0	54.5	38.0	1.0		
66.85	20.38	19269.7	255.2	1.3	181.9	180.3	48.2	35.0	0.0	77.5	42.0	1.0		
67.67	20.62	21977.6	190.6	0.9	184.2	182.7	44.0	31.7	0.0	81.1	42.0	1.0		
68.49 40 31	20.88	23394.2	2/9.3	1.2	186.6	185.2	46.8	33.5	0.0	82.7	42.0	1.0		
70.13	21.38	21636.7	407.8	1.9	191.3	190.1	54.1	33.3	0.0	70.3 80 1	42.0	1.0		
70.95	21.62	16159.9	292.0	1.8	193.6	192.5	40.4	28.4	0.0	71.6	42.0	1.0		
71.77	21.88	3264.5	109.7	3.4	195.8	195.0	16.3	11.4	229.9	0.0	0.0	6.0		
72.59	22.12	1549.4	15.4	1.0	197.8	197.4	6.2	4.3	92.3	30.0	30.0	1.5		
74 23	22.50	1632 8	37.6	23	201 0	202 3	0.U 8 2	4.1 5.6	07.9 08 3	20.0	30.0	1.5		
75.05	22.88	1270.5	18.2	1.4	204.0	204.8	5.1	3.5	68.9	30.0	30.0	1.5		
75.87	23.12	1201.5	13.1	1.1	206.0	207.2	4.8	3.3	63.1	30.0	30.0	1.5		
76.69	23.38	1153.2	12.3	1.1	208.1	209.7	4.6	3.1	58.8	30.0	30.0	1.5		
79 77	23.02	11/0.3	18.0	1.5	210.1	212.1	5.9	4.0	59.8	0.0	0.0	1.5		
70.33	25.00	1295.6	20.6	1.4	212.2	214.0	6.0	4.0	60.0	30.0	50.0	1.5		
79.97	24.38	2191.4	41.2	1.9	216.3	219.5	8.8	5.8	140.5	30.0	30.0	3.0		
80.79	24.62	1689.5	61.0	3.6	218.3	222.0	11.3	7.5	99.9	0.0	0.0	1.5		
81.61	24.88	1432.6	30.2	2.1	220.3	224.4	7.2	4.7	79.0	0.0	0.0	1.5		
82.43 83 25	25.12	1523 0	19.2	13	222.4	220.9	4.7	<b>3.</b> 1 4 0	20.2	30.0	30.0	1.5		
84.07	25.62	1335.1	22.1	1.7	226.5	231.8	6.7	4.3	70.1	0.0	0.0	1.5		
84.89	25.88	1323.7	17.7	1.3	228.5	234.2	5.3	3.4	68.9	30.0	30.0	1.5		
85.71	26.12	1396.9	18.6	1.3	230.6	236.7	5.6	3.6.	74.4	30.0	30.0	1.5		
86.53	26.38	1499.4	20.0	1.5	232.6	239.1	6.0	3.8	82.2	30.0	30.0	1.5		
88.17	26.88	1418.6	20.6	1.5	236.7	241.8	5.7	3.6	75.0	30.0	30.0	1.5		
88.99	27.12	1455.8	20.6	1.4	238.8	246.5	5.8	3.7	77.6	30.0	30.0	1.5	•	
89.81	27.38	1587.7	39.9	2.5	240.8	248.9	7.9	5.0	87.8	0.0	0.0	1.5		
90.63	27.62	1303.1	27.8	2.1	242.9	251.4	6.5	4.1	64.7	0.0	0.0	1.5		
91.45 02 27	27.00 28 12	10//.2	41.5 36 2	2.8 25	244.9 247 n	255.8 256 3	8.4 7 7	5.2	75 O	0.0	0.0	1.5		
93.09	28.38	1803.3	56.1	3.1	249.0	258.7	9.0	5.6	103.6	0.0	0.0	1.5		
93.91	28.62	1575.7	46.7	3.0	251.1	261.2	7.9	4.9	85.1	0.0	0.0	1.5		
94.73	28.88	1479.1	29.7	.2.0	· 253.1	263.6	7.4	4.5	77.0	0.0	0.0	1.5	•	
95.55	29.12	1545.2	23.9	1.5	255.2	266.1	6.2	3.8	81.9	50.0	30.0	1.5		
90.5/ 07 10	27.30 20 42	2310.9 0100 5	32.3 331 4	2.1	251.2	200.5	36.8	22.4	693.5	51.2	36.0	6.0		
98.01	29.88	7191.0	304.4	4.2	261.3	273.5	36.0	21.8	532.5	0.0	0.0	6.0		
98.83	30.12	2189.4	97.4	4.4	263.3	275.9	21.9	13.2	132.0	0.0	0.0	3.0		



. .....

Û

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2148-5268 CPT File: KA06S060.COR

						*********							
	Depth	Depth	AvgQt	AvgFs (kPa)	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr ·	Phi (dec.)	OCR
	(11)	(107	(KFG)	(Krd)		(KFG)	(KPd)		WS/IL)	(KFd)	(*)	(deg.)	(ratio)
/	99.65	30.38	1760.0	51.7	2.9	265.3	278.4	8.8	5.3	97.3	0.0	0.0	1.5

1.

Page: 3







Client: Sounding: Date: KLEINFELDER 06-SC-60 24-Apr-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 080 (20 tonne) 0.20 m above tip

.

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wa	ve Velocity	Corresp Depth Ir	onding Icrement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
0.40	0.60					
1.40	1.51	74	* • • •	262		
2.40	2.46	7.4	126	303	0.4 - 1.4	1.3 4.6
3 40	3.45	9.6	115	413		4.6 - 7.9
4.40	4 44	4.3	222	764	2.4 · 3.4	7.9 • 11.2
5 40	5.43	<b>4</b> .3	233	627	3.4 - 4.4	
6.40	6 4 2	4.6	216	710	4.4 5.4 5.4 6.4	
7.40	7 4 2	5.6	179	594		17.7 - 21.0
8 40	8.42	5.0	170	564		21.0 - 24.3
940	9.42	5.6	1/2	504	7.4 - 8.4	24.3 · 27.6
10.40	10.42	6.2	150	512		27.0 - 30.8
11 40	11 41	6.2	÷101	520	9.4 10.4	30.8 · 34.1
12 40	12 41	0.0	160	540		34.1 - 37.4
13.40	13 41	0.0	151	497	11.4 · 12.4	37.4 - 40.7
14 40	14 41	0.5	154	504	12.4 - 13.4	40.7 - 44.0
15 40	15.41	7.0	143	408		44.0 - 47.2
16.40	16.41	6.4	+ 154	504	14.4 - 15.4	47.2 - 50.5
17.40	17.41	6.9	147	102	10.4 - 10.4	50.5 · 53.8
18 40	18.41	7.4	125	402	17.4 - 17.4	53.8 - 57.1
19.40	10.41	7.4	135	443	17.4 - 18.4	57.1 - 60.4
20.40	20.41	4.0	250	820	18.4 - 19.4	60.4 - 63.6
20.40	20.41	4.0	* 250	820	19.4 - 20.4	63.6 - 66.9
21.40	21.41	4.4	227	745	20.4 - 21.4	66.9 - 70.2
22.40	22.41	4.4 E 0	172	/45	21.4 - 22.4	70.2 · 73.5
24 40	23.41	5.0	172	505	22.4 - 23.4	73.5 76.8
25 40	25.41	5.4	100	5007	23.4 - 24.4	76.8 - 80.1
26.40	26.41	5.0	<i>∓</i> 179 300	566	24.4 - 25.4	80.1 - 83.3
27 40	27.41	5.0	156	510	25.4 · 26.4	83.3 - 86.6
28.40	27.41	0.4 5.4	100	513	20.4 · 27.4	86.6 - 89.9
29 40	20.41	5.4 £ A	100.	607	27.4 - 28.4	89.9 93.2
30.40	30.41	5.4 3.9	100 ¥- 262	007	28.4 - 29.4	93.2 96.5
		0.0	~ 203	000	25.4 - 30.4	90.0 - 99./

(interesting

														1.
. ·	•		•			•								
	Coneïe Interp	c inc retation	CPT Interpr Output - Re	retation elease 1.0	0.07					Page	: 1		5-1	ar ia a Sigri
	Run No	: 96-08	04-2150-570	99										
6	Client	: %0-30	felder									•		
K	Projec	t: 115 S	ection 4		55-64		1.5				•			
	Locati	on: 400 S	Viaduct	07 <b>₩,</b> 00-	30-04									
	Cone: CPT Da	10 Ti te: 96/17	ON A 028 /07										•	
	CPT Ti	me: 11:10	044 000	•										. • .
		LE: KAUOS	004.LUK											
	Water Avera	Table (m ging Incr	): ement (m):	2.00 0.25	(ft):	6.6								
	Su Nk	t used:		12.50	n and Com		097						•	
		ethod :		Jamiolko	wski - Al	l Sancis	703							
	Used	Unit Weig	hts Assigne	ed to Soil	Zones									
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 (s/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR	
			4075 /		4 5				4/ 7	4// 7				
	1.23	0.12	1955.8	20.7	1.1	2.2 6.8	0.0	7.3 7.8	14.7	140.7	73.1 59.1	50.0 46.0	10.0 10.0	
	2.05	0.62	3540.9 4634.6	38.6 67.7	1.1	11.3	0.0	11.8 15.4	23.6	0.0	68.7 71.6	46.0	1.0	
	3.69	1.12	2327.3	71.5	3.1	20.5	0.0	11.6	23.3	184.5	0.0	0.0	10.0	
	4.51	1.38	1737.8 1641.3	54.1 49.7	3.1 3.0	25.0 29.5	0.0	8.7 8.2	17.0 14.8	137.0 128 9	0.0	0.0	10.0	
	6.15	1.88	1888.2	45.2	2.4	34.0	0.0	9.4	15.8	148.3	0.0	0.0	10.0	
	6.97 7.79	2.12	1438.9 4898.5	29.2 50.2	2.0	37.3 39.4	1.2	7.2	11.5 25.5	112.0 0.0	0.0	0.0 42.0	6.0 1 0	
	8.61	2.62	2717.3	52.3	1.9	41.5	6.1	10.9	16.5	213.6	42.5	40.0	10.0	
	9.43	2.88	1613.7 5182.6	57.4 63.9	1.2	43.5 45.7	8.6 11.0	8.1 17.3	12.0 25.0	124.9 0.0	0.0 59.7	0_0 42.0	6.0 1.0	
	11.07	3.38	9076.5	80.2	0.9	47.9	13.5	22.7	32.1	0.0	75.1	44.0	1.0	
6.3	12.71	3.88	1947.9	49.4	2.5	52.1	18.4	9.7	13.2	150.2	43.9	40.0	6.0	
X	13.53	4.12	3081.4	55.0 55.5	1.8	54.2 56 3	20.8	12.3	16.4	240.5	42.3	40.0	10.0	
( <u>]</u>	15.17	4.62	11628.7	123.5	1.1	58.5	25.8	29.1	37.2	0.0	79.3	46.0	1.0	
	15.99 16.81	<b>4.88</b> 5.12	7671.4 856.1	102.5 28.7	1.3	60.8 62.9	28.2 30.7	19.2 8.6	24.1 10.6	0.0 61.0	66.8 0.0	44.0	1.0	
	17.63	5.38	239.7	2.5	1.1	64.2	33.1	1.2	1.5	11.4	0.0	0.0	1.0	
	18.45 19.27	5.62 5.88	291.2 287.4	3.2 3.4	1.1	64.9 65.5	35.6	1.5	1.8 1.7	15.3	0.0	0.0	1.0	
	20.09	6.12	324.1	3.3	1.0	66.2	40.5	1.6	1.9	17.4	0.0	0.0	1.5	
	20.92	6.62	363.9 1196.9	30.1	2.1	67.5 69.5	42.9 45.4	5.6 6.0	4.3 7.0	20.3 86.6	0.0	0.0	1.5	
	22.56	6.88	743.2	20.1	2.7	71.6	47.8	5.0	5.7	49.9	0.0	0.0	3.0	
	24.20	7.38	640.7	17.0	2.7	75.5	52.7	4.3	4.8	45.2	0.0	0.0	3.0	
	25.02	7.62	648.5 479.5	18.2 14.4	2.8 3.0	.77.6 79.6	55.2 57.6	4.3	4.8	41.3 27.4	0.0	0.0	3.0	
	26.66	8.12	396.7	5.3	1.3	80.9	60.1	2.0	2.2	20.5	0.0	0.0	1.5	
	27.48	8.38 8.62	1127.8 1355.5	27.2	2.4	82.2 84.3	62.5 65.0	5.6	6.1	78.6 96.5	0.0	0.0	3.0 6.0	
	29.12	8.88	2814.3	43.0	1.5	86.3	67.4	11.3	11.9	212.8	33.0	36.0	6.0	
	29.94 30.76	9.12 9.38	766.5 1083.1	15.3 19.4	2.0 1.8	88.4 90.4	69.9 72.3	3.8 5.4	4.0 5.6	48.7 73.6	0.0	0.0	3.0 3.0	
	31.58	9.62	2830.6	102.6	3.6	92.4	74.8	14.2	14.4	213.1	0.0	0.0	6.0	
	33.22	10.12	707.3	5.0	0.7	94.5 95.9	79.7	3.5	3.5	42.5	0.0	0.0	1.5	
	34.04 34 BA	10.38	987.1 932 1	12.1	1.2	97.2	82.2	4.9	4.9	64.6 59 9	0.0	0.0	<b>3.0</b>	
	35.68	10.88	687.5	13.4	2.0	101.3	87.1	3.4	3.3	39.9	0.0	0.0	1.5	
	36.50	11.12 11 38	720.1 1505 1	12.4 34 0	1.7 2 3	103.4 105 4	89.5 92 ∩	3.6	3.5 7.2	42.2	0.0 0.0	0.0 0.0	1,5 3.0	
	38.14	11.62	624.5	11.3	1.8	107.5	94.4	4.2	3.9	33.8	0.0	.0.0	1.5	
	38.96 39 78	11.88 12.12	2745.1 1395.3	62.1 24.5	2.3 1.8	109.5 111.5	96.9 99.3	11.0 7.0	10.3 6.5	203.1 94.8	30.0 0.0	34.0 0.0	6.0 3.0	
$\hat{\mathbf{C}}$	40.60	12.38	976.4	17.6	1.8	113.6	101.8	4.9	4.5	60.9	0.0	0.0	3.0	
	41.42 42.24	12.62 12.88	2861.6 1001.9	90.2 17.2	3.2 1.7	115.6 117.7	104.2 106.7	14.3 5.0	13.0	211.3 62.2	0.0 0.0	0.0	3.0	

Cone	eTec 🛛	Inc	CPT	Interpret	ation
Run	No:	96-08	304-2	2150-5709	
	Film.	. WADE	041	000	

ConeTe Run No CPT Fi	ec Inc b: 96-04 ile: KA065	CPT Interp 804-2150-57 8064.COR	retation 09		• .		· .		Page	: 2		10 - 10 10 - <b>908</b> 00	
Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su .	Dr	Phi	OCR	ands Single Single
(11)	(m)	(Kra)	(KPa)	(%)	(KPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio) 🗟	2×9
43.06	13.12	685.7	5.3	0.8	119.1	109.1	3.4	3.1	36.6	0.0	0.0	1 5	
43.88	13.38	830.4	8.5	1.0	120.4	111.6	4.2	3.7	47.9	0.0	0.0	1.5	
44.70	13.62	715.4	8.0	1.1	122.5	114.0	3.6	3.2	38.3	0.0	0.0	1.5	
45.52	13.88	801.5	11.0	1.4	124.5	116.5	4.0	3.5	44.8	0.0	0.0	1.5	
40.34	14.12	821.4	11.7	1.4	126.6	118.9	4.1	3.6	46.1	0.0	0.0	1.5	
47.10	14.30	700.1 815.8	10 9	.1.3	128.6	121.4	3.8	3.3	41.3	0.0	0.0	1.5	
48.80	14.88	798.3	11 0	1.5	130.6	123.9	4.1	3.5	44.9	0.0	0.0	1.5	
49.62	15.12	827.6	16.6	2.0	132.7	120.3	4.0	3.4	45.1	0.0	0.0	1.5	
50.44	15.38	736.8	8.7	1.2	136.8	131.2	3.7		47.1	0.0	0.0	1.5	
51.26	15.62	744.4	9.8	1.3	138.8	133.7	3.7	3.1	37.8	0.0	0.0	1.5	
52.08	15.88	770.4	11.2	1.4	140.9	136.1	3.9	3.2	39.5	0.0	0.0	1.5	
52.90	16.12	759.7	11.1	1.5	142.9	138.6	3.8	3.1	38.3	0.0	0.0	1.5	
55.72	16.38	810.7	14.1	1.7	145.0	141.0	4.1	3.3	42.0	0.0	0.0	1.5	
55 34	16.02	769 0	9.0	1.2	147.0	143.5	4.1	3.3	42.6	0.0	0.0	1.5	
56 18	17 12	1203 7	25 6	2.0	149.1	145.9	3.8	3.1	37.8	0.0	0.0	1.5	
57.00	17.38	3964 9	66 0	2.0	121.1	148.4	6.5	5.1	79.5	0.0	0.0	3.0	
57.82	17.62	2802.7	48.3	1.7	155 3	150.0	11.2	10.4	100 5	54.6	34.0	1.0	
58.64	17.88	3362.3	57.9	1.7	157.4	155.7	13.4	10.5	243 0	30.0	32.0	6.0	
59.46	18.12	2069.6	31.1	1.5	159.4	158.2	8.3	6.4	140.2	30.0	30.0	3.0	
60.28	18.38	3105.1	36.4	1.2	161.5	160.6	10.4	8.0	0.0	30.0	32.0	1.0	
61.10	18.62	1582.8	25.4	1.6	163.7	163.1	6.3	4.8	100.5	30.0	30.0	3.0	
61.93	18.88	2693.0	45.8	1.7	165.7	165.5	10.8	8.2	188.9	30.0	32.0	6.0	
62./5	19.12	1669.1	18.5	1.1	167.8	168.0	6.7	5.0	106.7	30.0	30.0	3.0	
63.3/ 6/ 30	10 42	20/3.1	04.8	2.3	169.8	170.4	11.5	8.6	202.6	30.0	32.0	· 6.0	
65 21	10 88	1412.4 6866 6	157.0	2.1	1/1.9	172.9	24.7	18.4	0.0	50.9	38.0	1.0	
66.03	20.12	7877 0	136.7	2.4	174.0	1/5.4	27.5	20.4	521.4	48.6	38.0	6.0	
66.85	20.38	1341.7	8.6	0.6	178.2	177.0	20.3	19.4	U.U 79.7	52.3	38.0	1.0	
67.67	20.62	1509.3	22.4	1.5	180.3	182 7	6.0	<b>3.9</b>	/0./	30.0	50.0	1.5	
68.49	20.88	4155.2	59.9	1.4	182.4	185.2	13.0	10 0	71.7	30.0	30.0	3.0	
69.31	21.12	10615.2	222.1	2.1	184.6	187.6	35.4	25.5	0.0	60.2	40 0	1.0	
70.13	21.38	15687.1	355.7	2.3	186.7	190.1	52.3	37.4	0.0	71.2	42.0	1.0	
70.95	21.62	23970.1	511.3	2.1	189.0	192.5	59.9	42.7	0.0	83.2	44.0	1.0	
71.77	21.88	20211.9	519.7	2.6	191.2	195.0	67.4	47.7	0.0	78.2	42.0	1.0	
73 41	22.12	27744.1	288 5	2.1	193.4	197.4	69.4	48.8	0.0	87.1	44.0	1.0	
74.23	22.50	12188 4	162 2	1.1	193.0	199.9	.51.5	35.9	0.0	84.6	44.0	1.0	
75.05	22.88	1543.7	15 1	1.2	200.2	202.3	- 30.5	21.2	0.0	63.1	40.0	1.0	
75.87	23.12	1330.1	13.2	1.0	200.5	204.0	0.2 5 7	4.3	77 4	30.0	30.0	1.5	
76.69	23.38	1353.9	15.2	1.1	204.4	209.7	5.4	3.7	75.0	30.0	30.0	1.5	
77.51	23.62	1462.1	16.6	1.1	206.5	212.1	5.8	4.0	83.5	30.0	30.0	1.5	
78.33	23.88	2720.1	29.6	1.1	208.6	214.6	9.1	6.1	0.0	30.0	30.0	1.0	
79.15	24.12	2305.9	40.5	1.8	210.7	217.0	9.2	6.2	150.3	30.0	30.0	3.0	
79.97	24.38	1700.5	20.1	1.2	212.8	219.5	6.8	4.6	101.5	30.0	30.0	1.5	
0U./9 91 41	24.02	1445.4	22.8	1.6	214.8	222.0	5.8	3.9	80.7	30.0	30.0	1.5	
82 /3	24.00	1003.4	22.4	1.5	216.8	224.4	6.7	4.4	97.8	30.0	30.0	1.5	
83 25	25 38	1870 3	27 7	1.5	210.9	220.9	5.8	3.8	79.6	30.0	30.0	1.5	
84.07	25.62	2064 9	33 0	1.5	220.9	229.3	(.)	4.9	113.6	30.0	30.0	3.0	
84.89	25.88	1842.2	33.6	1.8	225.0	231.0	7 /	2.4	120.0	30.0	30.0	3.0	
85.71	26.12	1741.9	22.8	1.3	227.1	236.7	7.0	4.5	102.3	30.0	30.0	1.7	
86.53	26.38	1903.1	24.3	1.3	229.1	239.1	7.6	4.9	114.8	30.0	30.0	3.0	
87.35	26.62	1461.2	18.7	1.3	231.2	241.6	5.8	3.8	79.1	30.0	30.0	1.5	
88.17	26.88	3394.8	47.2	1.4	233.3	244.0	11.3	7.3	0.0	30.0	32.0	1.0	
88.99	27.12	7704.4	245.1	3.2	235.4	246.5	30.8	19.7	577.8	47.5	36.0	6.0	·
89.81 00.77	27.58	12512.2	402.8	3.3	237.4	248.9	49.2	31.3	946.1	60.8	38.0	6.0	
90.05 01 /5	27.02	11207.0	258.4 67 9	5.0	239.5	251.4	44.8	28.3	857.3	58.0	38.0	6.0	
02 27	28 12	2003 0	20 5	2.3	241.5	255.8	8.5	5.3	129.7	30.0	30.0	3.0	
93 00	28 38	1850 1	27.3	1.2	243.0 2/5 4	270.5	<b>6.</b> 0	5.0	120.3	50.0	30.0	1.5	
93.91	28,62	1903.6	28.5	1.5	243.0	250.7	7.4	4.0	111 4	30.0	30.0	1.5	
94 73	28.88	1737.0	30.0	1:.7	249 7	263 .4	7.0 A A	4.7	07 0	30.0	30.0	1.5	
95.55	29.12	2296.7	35.0	1.5	251.8	266.1	9.2	5.7	142.3	30.0	30.0	3.0	
96.37	29.38	6938.4	153.7	2.2	253.9	268.5	23.1	14.2	0.0	43.4	34_0	1.0	
97.19	29.62	3650.9	70.4	1.9	. 256.0	271.0	14.6	8.9	249.9	30.0	30.0	3.0	
98.01	29.88	2614.9	55.1	2.1	258.0	273.5	10.5	6.4	166.7	30.0	30.0	3.0	
98.83	30.12	2600.9	47.2	1.8	260 1	275 0	10 4	63	165 2	30.0	30.0	30	

•

*

Ű

E HISTAT

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-5709 CPT File: KA06S064.COR

٠

.

						· · · · · · · · ·	•		i da server	West of the			
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
99.65	30.38	2555.2	46.3	1.8	262.1	278.4	10.2	6.2	161.2	30.0	30.0	3.0	
100.47	30.62	2574.3	51.9	2.0	264.2	280.8	10.3	6.2	162.3	30.0	30.0	3.0	
101.29	30.88	2741.7	67.8	2.5	266.2	283.3	11.0	6.6	175.4	30.0	30.0	3.0	
102.11	31.12	4681.3	54.8	1.2	268.3	285.7	15.6	9.3	0.0	31.4	32.0	1.0	
102.94	31.38	13659.4	430.7	3.2	270.5	288.2	54.6	32.5	1048.1	62.0	38.0	6.0	
103.76	31.62	12276.4	355.4	2.9	272.5	290.6	49.1	29.1	937.1	58.8	38.0	6.0	
104.58	31.88	2268.0	69.7	3.1	274.6	293.1	11.3	6.7	136.0	0.0	0.0	1.5	
105.40	32.12	2271.4	. 41.7	1.8	276.6	295.5	9.1	5.3	135.9	30.0	30.0	1.5	
106.22	32.38	2337.7	37.0	1.6	278.6	298.0	9.4	5.5	140.9	30.0	30.0	3.0	
107.04	32.62	3500.9	68.1	1.9	280.7	300.4	14.0	8.2	233.6	30.0	30.0	3.0	
107.86	32.88	7559.6	282.6	3.7	282.7	302.9	37.8	22.0	557.9	0.0	0.0	6.0	
108.68	33.12	21787.7	470.8	2.2	284.9	305.3	72.6	42.1	0.0	74.6	40.0	1.0	
109.50	33.38	6309.6	144.0	2.3	287.0	307.8	25.2	14.6	457.2	39.0	34.0	6.0	
110.32	33.62	3359.3	76.3	2.3	289.0	310.2	13.4	7.7	220.8	30.0	30.0	3.0	
111.14	33.88	8416.2	279.6	3.3	291.1	312.7	33.7	19.3	625.0	47.0	36.0	6.0	
111.96	34.12	15159.9	495.8	3.3	293.1	315.1	60.6	34.7	1164.1	63.8	38.0	6.0	
112.78	34.38	17912.1	634.3	3.5	295.3	317.6	89.6	51.0	0.0	68.5	40.0	1.0	
113.60	34.62	14300.8	603.4	4.2	297.8	320.1	40.9	23.2	0.0	61.9	38.0	1.0	
114.42	34.88	5078.8	192.6	3.8	300.1	322.5	25.4	14.3	356.5	0.0	0.0	6.0	
115.24	35.12	2409.3	68.7	2.9	302.2	325.0	12.0	6.8	142.6	0.0	0.0	1.5	
116.06	35.38	4616.5	144.6	3.1	304.2	327.4	23.1	13.0	318.8	0.0	0.0	6.0	
116.88	35.62	2801.1	48.9	1.7	306.3	329.9	11.2	6.3	173.2	30.0	30.0	3.0	
117.70	35.88	4879.8	152.2	3.1	308.3	332.3	19.5	10.9	339.1	30.6	32.0	6.0	
118.52	36.12	11064.3	253.8	2.3	310.4	334.8	36.9	20.5	0.0	53.9	36.0	1.0	
119.34	36.38	12292.2	410.2	3.3	312.5	337.2	49.2	27.2	931.4	56.9	38.0	6.0	
120.16	36.62	21882.8	609.8	2.8	314.6	339.7	72.9	40.2	0.0	73.3	40.0	1.0	
120.98	36.88	24251.1	646.3	2.7	316.8	342.1	<b>80</b> .8	44.4	0.0	76.1	40.0	1.0	
121.80	37.12	29772.0	642.2	2.2	319.0	344.6	74.4	40.8	0.0	81.9	42.0	1.0	



Å



# Page:

3

÷.



. .





Client: Sounding: Date:

Source: Offset (m): Cone: Geophone: *KLEINFELDER* 06-SC-64 17-Jul-96

Beam & Hammer 0.56 AD 028 (10 tonne) 0.20 m above tip

.

Geophone	Distance	Last Time	Shear Way	ve Velocity	Correst	ondina
Depth		Interval For		· · · · · · · · · · · · · · · · · · ·	Depth in	crement
		X-Over				
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
1.55	1.65	1				
2.55	2.61	5.0	¥ 193	632	1.6 - 2.6	5.1 - 8.4
3.55	3.59	5.6	176	576	2.6 3.6	8.4 11.6
4.55	4.58	5.4	183	602	3.6 • 4.6	11.6 - 14.9
5.55	5.58	6.2	<b>₩ 160</b>	526	4.6 - 5.6	14.9 - 18.2
6.55	6.57	10.2	98	320	5.6 - 6.6	18.2 - 21.5
7.55	7.57	8.4	119	389	6.6 - 7.6	21.5 24.8
8.55	8.57	7.8	128	420	7.6 - 8.6	24.8 · 28.1
9.55	9.57	6.5	154	504	8.6 9.6	28.1 31.3
10.55	10.56	5.7	¥ 175	575	9.6 - 10.6	31.3 . 34.6
11.55	11.56	5.6	178	585	10.6 - 11.6	34.6 37.9
12.55	12.56	5.9	169	555	11.6 12.6	37.9 - 41.2
13.55	13.56	5.7	175	575	12.6 - 13.6	41.2 - 44.5
14.55	14.56	6.8	147	482	13.6 - 14.6	44.5 - 47.7
15.55	15.56	7.0	+ 143	468	14.6 - 15.6	47.7 - 51.0
16.55	16.56	6.8	147	482	15.6 - 16.6	51.0 - 54.3
17.55	17.56	6.4	156	512	16.6 - 17.6	54.3 - 57.6
18.55	18.56	5.0	200	656	17.6 - 18.6	57.6 . 60.9
19.55	19.56	5.0	200	656	18.6 - 19.6	60.9 - 64.1
20.55	20.56	4.5	+ 222	729	19.6 - 20.6	64.1 - 67.4
21.55	21.56	4.5	222	729	20.6 - 21.6	67.4 . 70.7
22.55	22.56	4.1	244	800	21.6 - 22.6	70.7 - 74.0
23.55	23.56	5.1	196	643	22.6 - 23.6	74.0 - 77.3
24.55	24.56	5.5	182	596	23.6 - 24.6	77.3 - 80.5
25.55	25.56	5.2	* 192	631	24.6 - 25.6	80.5 - 83.8
26.55	26.56	4.9	204	669	25.6 - 26.6	83.8 87.1
27.55	27.56	4.2	238	781	26.6 - 27.6	87.1 - 90.4
28.55	28.56	4.9	204	669	27.6 - 28.6	90.4 - 93.7
29.55	29.56	4.6	217	713	28.6 - 29.6	93.7 - 96.9
_30.55	30.56	4.6	* 217	713	29.6 - 30.6	96.9 - 100.2
31.55	31.55	4.1	244	800	30.6 · 31.6	100.2 · 103.5
32.55	32.55	4.3	233	763	31.6 - 32.6	103.5 - 106.8
33.55	33.55	3.6	278	911	32.6 - 33.6	106.8 - 110.1
34.55	34.55	3.5	286	937	33.6 - 34.6	110.1 - 113.4
35.55	35.55	4.0	* 250	820	34.6 - 35.6	113.4 116.6
36.55	36.55	3.6	278	911	35.6 - 36.6	116.6 - 119.9

C

•	ConeT	ec Inc	CPT Interp	retation		•				Page	- i		
		pretation	Output - R	elease 1.0	0.07		×			i age			
	Job Ne	o: 96-01	/13*0024*41 )9	40									
1	Clien	t: Kleir	nfelder								1	• •	
	Projec	ct: 115 S	Section 4		*		1-4-1	2	1.1		÷.,		12 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -
A	Site:	115,s	4: 115,06-	SC-66			in a start a						
k.	Locati	10n: 400 S	ON A 0/1										
	Cone:	20 1 100 06/30	UN A U41										•
	CPT Ti	ime: 11:57	, , , ,	*									
	CPT Fi	ile: KA06S	066.COR	•									
	Water	· Table (m		2.00	••••••••••••••••••••••••••••••••••••••	6.6							
	Avera	aging Incr	ement (m):	0.25									
	Su Nk	t used:		12.50	•		6 . ·						•
	Phi M	lethod :		Robertso	n and Camp	panella, 1	983		•				•
	Used	Unit Weig	hts Assign	ed to Soil	Zones	Sands							
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	 Dr	Phi	OCR
	(11)	(m)	(KPa)	(KPa)	(%)	(kPa)	(kPa)	blo)	ws/ft) 	(kPa)	(%)	(deg.)	(ratio)
	0.41	0.12	18263.2 2743 1	61.8	0.3	2.4	0.0	36.5	73.1	0.0	95.0	50.0	1.0
	2.05	0.62	858.4	21.8	2.5	11 6	0.0	13.7	21.4	218.9	0.0	0.0	10.0
	2.87	0.88	898.0	16.0	1.8	16.1	0.0	4.5	9.0	70.5	0.0	0.0	10.0
	3.69	1.12	1271.2	22.1	1.7	20.6	0.0	6.4	12.7	100.0	0.0	0.0	10.0
	4.51	1.38	1334.0	28.1	2.1	25.1	0.0	6.7	13.0	104.7	0.0	0.0	10.0
	2.33	1.02	1399.4	28.4	2.0	29.6	0.0	7.0	12.6	109.6	0.0	0.0	6.0
	6.97	2.12	1733.4	42.9	2.5	34.1 37 4	0.0	8.4	14.1	131.6	0.0	0.0	6.0
	7.79	2.38	3933.2	46.8	1.2	39.5	3.7	13.1	20.4	0.0	0.0 57.8	0.0 (2.0	6.0
	8.61	2.62	3605.6	57.0	1.6	41.7	6.1	12.0	18.2	0.0	50.6	42.0	1.0
	9.43	2.88	1651.5	29.9	1.8	43.8	8.6	6.6	9.8	127.9	30.0	38.0	6.0
	11.07	3.12	2009.1 5711 5	39.5	1.4	45.8	11.0	11.6	16.7	226.6	42.9	40.0	10.0
	11.89	3.62	7374.4	48.7	0.0	48.U 50 3	15.5	14.3	20.2	0.0	61.7	42.0	1.0
1. 2	12.71	3.88	3020.7	54.0	1.8	52.5	15.9	10.4	22.4	236 0	68.4	44.0	1.0
(.	13.53	4.12	1018.6	17.1	1.7	54.5	20.8	5.1	6.7	75.5	42.2	40.0	10.0
	14.35	4.38	2539.9	23.8	0.9	56.6	23.3	8.5	11.0	0.0	36.1	38.0	1.0
( <u>)</u>	15.17	4.62	6266.2	39.2	0.6	58.9	25.8	15.7	20.0	0.0	61.5	42.0	1.0
	16.81	4.00	1022.4 572.8	3/./ 78	2.0	61.0	28.2	7.4	9.3	141.1	30.0	36.0	6.0
	17.63	5.38	463.1	4.9	1.1	64.5	30.7	2.9	3.5	38.3	0.0	0.0	3.0
	18.45	5.62	432.7	5.2	1.2	65.1	35.6	2.2	2.6	26.6	0.0	0.0	1.5
	19.27	5.88	471.5	4.1	0.9	65.8	38.0	2.4	2.8	29.4	0.0	0.0	1.5
	20.09	6.12	432.4	3.1	0.7	66.5	40.5	2.2	2.6	26.0	0.0	0.0	1.5
	21.74	6.62	996.7	11 0	. U./	6/.8 40.0	42.9	3.7	4.3	64.3	30.0	30.0	3.0
	22.56	6.88	768.4	22.9	3.0	71 9	43.4 47 8	5.0	5.0	70.5	0.0	0.0	, 6.0
	23.38	7.12	812.3	26.5	3.3	73.9	50.3	8.1	9.2	55 0	0.0	0.0	3.0
	24.20	7.38	745.2	17.7	2.4	75.9	52.7	5.0	5.6	49.3	0.0	0.0	3.0
	25.02	7.62	696.2	12.8	1.8	77.9	55.2	3.5	3.9	45.0	0.0	0.0	3.0
	25.04	7.00 8 12	232.8 851 5	8.0	1.5	80.0	57.6	3.6	3.9	31.6	0.0	0.0	1.5
	27.48	8.38	1601.9	20.0	1.5	8/ 1	6U.1 47 5	4.5	4.6	56.7	0.0	0.0	3.0
	28.30	8.62	1239.4	18.3	1.5	86.1	65.0	6.2	6.5	87 1	50.0	32.0	6.U 4.0
	29.12	8.88	2420.6	32.3	1.3	88.2	67.4	9.7	10.1	181.2	30.0	36.0	6.0
	29.94	9.12	692.7	2.8	0.4	89.5	69.9	3.5	3.6	42.7	0.0	0.0	1.5
	30.70	9.58	14/0.2	17.6	1.2	90.9	72.3	5.9	6.0	104.6	30.0	32.0	6.0
	32.40	9.88	1851.3	31.8	1.7	92.9	74.8	9.0	9.1	166.7	30.0	34.0	6.0
	33.22	10.12	789.0	3.7	0.5	96.4	79.7	7.4	7.4	134.5	30.0	32.0	6.U 7.0
	34.04	10.38	1806.1	22.9	1.3	97.7	82.2	7.2	7.2	130.1	30.0	32.0	6.0
	34.86	10.62	937.0	7.9	0.8	99.8	84.6	3.7	3.7	60.2	30.0	30.0	3.0
	35.68	10.88	919.5	10.6	1.2	101.8	87.1	4.6	4.5	58.4	0.0	0.0	3.0
	30.3U	11.12	0/1.1	<b>5.</b> 7	0.7	103.9	89.5	3.5	3.3	54.2	30.0	30.0	3.0
	38.14	11.50	877.4	7.5	1./ n o	102.9	92.0 0/ /	1.1	1.4	159.0	30.0	32.0	6.0
	· 38.96	11.88	2012.4	40.7	2.0	110.0	96.9	8.0	7.5	144.4	30.0	0.0 3/2 ∩	
	39.78	12.12	1586.3	17.8	1.1	112.0	99.3	6.3	5.9	110.0	30.0	30.0	3.0
1	40.60	12.38	1038.5	14.0	1.3	114.1	101.8	5.2	4.8	65.8	0.0	0.0	3.0
	41.42	12.62	2974.5	55.1	1.9	116.1	104.2	11.9	10.8	220.3	30.4	34.0	6.0
	46.24	14.00	1444.0	د. ۲۵	1.7	118.2	106 /	6 1	5 5	80.0	n <b>n</b>		3 11

ConeTe Run No CPT Fi	c Inc ( : 96-09 le: KA06S(	CPT Interpr 13-0824-414 066.COR	etation 6						Page	: 2		an an Ar An Ar	1000 - 100 1000 - 2010 1000 - 400 1000 - 400	n in staff Storage (*
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	1031) 404	6
43.06	13.12	811.5	3.8	0.5	120.2	109.1	3.2	2.9	46.6	30.0	30.0	1.5	- <b>Pasi</b> a 	ų,
43.88	13.38	815.5	4.7	0.6	122.3	111.6	3.3	2.9	46.5	30.0	30.0	1.5	. 19 <b>1</b> 7 - 1	· -
44.70	13.62	769.1	2.1	0.3	123.6	114.0	3.8	3.4	42.5	0.0	0.0	1.5		
45.52	14.12	829.5	4.0	0.5	127.1	118.9	3.3	2.9	46.7	30.0	30.0	1.5		÷.,
47.16	14.38	941.9	5.4	0.6	129.1	121.4	3.8	3.2	55.3	30.0	30.0	1.5	÷ .	
47.98	14.62	849.8	2.2	0.3	130.5	123.9	4.2	3.6	47.6	0.0	0.0	1.5	1,104	
48.80	14.88	877.1	6.8	0.8	131.8	126.3	3.5	3.0	49.5	30.0	30.0	1.5	e de la composición de la composición de la composición de la composición de la composición de la composición d La composición de la c	
47.02	15.38	1051.1	4.0	0.5	135.9	131 2	3.0 4 2	3.0	62.7	30.0	30.0	1.5	•	
51.26	15.62	994.8	3.6	0.4	138.0	133.7	4.0	3.3	57.9	30.0	30.0	1.5	:	
52.08	15.88	1012.4	5.0	0.5	140.0	136.1	4.0	3.3	58.9	30.0	30.0	1.5	1.1	
52.90	16.12	938.3	4./	0.5	142.1	138.6	3.8	3.1	52.6	30.0	30.0	1.5	. 1 a.	
54.54	16.62	994.6	6.3	0.6	144.1	143.5	4.0	3.0	56.4	30.0	30.0	1.5	•	
55.36	16.88	1016.8	7.3	0.7	148.2	145.9	4.1	3.3	57.8	30.0	30.0	1.5		
56.18	17.12	958.0	6.7	0.7	150.2	148.4	3.8	3.1	52.7	30.0	30.0	1.5		
57.00	17.58	1174.5 2127 7	14.5	1.2	152.3	150.8	4.7	3.7	69.7 145.4	30.0	30.0	1.5		
58.64	17.88	1891.6	38.1	2.0	156.4	155.7	7.6	5.9	126.4	30.0	30.0	3.0		
59.46	18.12	1502.9	18.6	1.2	158.4	158.2	6.0	4.7	94.9	30.0	30.0	3.0		
60.28	18.38	1277.0	6.8	0.5	160.5	160.6	5.1	3.9	76.5	30.0	30.0	1.5		
61.93	18.88	2002.0 4322.2	50.7 47.8	1.2	164.6	165.1	10.2	7.8 11 0	1/8.2	30.0	32.0	6.0		
62.75	19.12	1532.1	18.6	1.2	166.8	168.0	6.1	4.6	95.8	30.0	30.0	3.0		
63.57	19.38	1518.5	12.2	0.8	168.8	170.4	6.1	4.6	94.3	30.0	30.0	3.0		
64.39	19.62	1557.6	12.5	0.8	170.8	172.9	6.2	4.7	97.1	30.0	30.0	3.0		•
66.03	20.12	2704.9	10.2	U.7 1.6	175.0	175.4	9.5	6.9 10.5	256.6	30.0	32.0	1.0		
66.85	20.38	3979.4	64.0	1.6	177.2	180.3	13.3	9.8	0.0	32.7	34.0	1.0		
67.67	20.62	1316.6	18.8	1.4	179.3	182.7	5.3	3.8	76.4	30.0	30.0	1.5	4	
68.49 40 31	20.88	2035.4	16.2	0.8	181.3	185.2	8.1	5.9	133.5	30.0	30.0	3.0		
70.13	21.38	3590.2	61.5	1.7	185.4	190.1	14.4	10.3	257.2	30.0	32.0	5.0		
70.95	21.62	3347.4	27.1	0.8	187.5	192.5	11.2	8.0	0.0	30.0	32.0	1.0		
71.77	21.88	1901.2	6.1	0.3	189.7	195.0	6.3	4.5	0.0	30.0	30.0	1.0		1
72.59	22.12	1206.2	2.1 2.0	0.2	191.8	197.4	4.8	3.4	65.4 49 5	30.0	30.0	1.5		
74.23	22.62	622.8	2.0	0.3	195.2	202.3	3.1	2.2	18.0	0.0	0.0	0.8		
75.05	22.88	1267.0	6.6	0.5	196.6	204.8	5.1	3.5	69.2	30.0	30.0	1.5		
75.87	23.12	1237.7	6.7	0.5	198.6	207.2	5.0	3.4	66.5	30.0	30.0	1.5		
77.51	23.62	1132.3	4.8	0.4	200.7	209.7	4.4	3.0	57 4	30.0	30.0	1.5		
78.33	23.88	1111.5	5.1	0.5	204.8	214.6	4.4	3.0	55.4	30.0	30.0	1.5		
79.15	24.12	1126.4	13.2	1.2	206.8	217.0	4.5	3.1	56.2	30.0	30.0	1.5		
79.97 80.79	24.58	15/2.2	20.0	1.6	208.9	219.5	6.3	4.3	91.5 85 7	30.0	30.0	1.5		
81.61	24.88	620.8	27.4	4.4	212.9	224.4	6.2	4.2	14.7	0.0	0.0	0.8		•
82.43	25.12	633.1	35.0	5.5	214.8	226.9	6.3	4.2	15.3	0.0	0.0	0.8		
83.25	25.38	432.4	25.4	5.9	216.8	229.3	4.3	2.9	0.1	0.0	0.0	0.8		
84.89	25.88	563.8	2.9	0.5	218.7	234.2	2.4	1.0	2.4 8.9	0.0	0.0	0.8		
85.71	26.12	374.9	3.1	0.8	219.4	236.7	1.9	1.2	0.1	0.0	0.0	0.8		
86.53	26.38	423.1	5.6	1.3	220.1	239.1	2.1	1.4	0.1	0.0	0.0	0.8		
87.35	26.88	787.2	12.0	1.0	221.4	241.6 244 N	5.4 3 0	2.2	3.6 25.6	0.0	0.0	0.8		
88.99	27.12	1504.2	11.9	0.8	225.5	246.5	6.0	3.9	82.6	30.0	30.0	1.5		
89.81	27.38	2204.2	9.4	0.4	227.6	248.9	7.3	4.8	0.0	30.0	30.0	1.0		
90.63 91.45	27.62 27 88	2054.0 3430 4	23.1	1.1	229.7	251.4	8.2	5.3	125.8	30.0	30.0	3.0		
92.27	28.12	2019.8	29.3	1.5	234.0	256.3	8.1	5.2	122.4	30.0	30.0	3.0		
93.09	28.38	1875.5	26.5	1.4	236.0	258.7	7.5	4.8	110.5	30.0	30.0	1.5		
93.91	28.62	1452.0	10.9	0.7	238.1	261.2	5.8	3.7	76.2	30.0	30.0	1.5		
94.73	20.00	1048 N	10.6	U./ 0.8	240.1 242 2	205.0	0.U 7 8	3.8 4.9	115.2	30.0	· 50.0	1.5		••
96.37	29.38	3224.7	29.3	0.9	244.3	268.5	10.7	6.7	0.0	30.0	30.0	1.0		E.
97.19	29.62	4372.4	60.4	1.4	246.4	271.0	14.6	9.1	0.0	30.6	32.0	1.0		
98.01	29.88	8790.0	143.5	1.6	248.6	273.5	29.3	18.2	0.0 1/0 4	50.5	36.0	1.0 7.0		E.
98.83	50.12	2370.4	<b>33.</b> 1	2.3	230.1	213.9	7.0	3.9	147.0	10.0	30.0	3.0		

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0824-4146 CPT File: KA06S066.COR

S.	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
	99.65	30.38	1846.1	23.7	1.3	252.8	278.4	7.4	4.5	105.2	30.0	30.0	1.5
	100.47	30.62	4040.2	80.1	2.0	254.8	280.8	16.2	9.9	280.4	30.0	32.0	6.0
	101.29	30.88	<b>39</b> 45.0	69.6	1.8	256.9	283.3	13.2	8.0	0.0	30.0	32.0	1.0
	102.11	31.12	3938.2	121.8	3.1	259.0	285.7	19.7	12.0	271.5	0.0	0.0	6.0
	102.94	31.38	<b>29</b> 69.2	46.6	1.6	261.1	288.2	11.9	7.2	193.6	30.0	30.0	3.0
	103.76	31.62	2652.7	28.7	1.1	263.2	290.6	8.8	5.3	0.0	30.0	30.0	1.0
	104.58	31.88	5664.6	86.2	1.5	265.4	293.1	18.9	11.3	0.0	37.0	34.0	1 0
	105.40	32.12	3121.2	62.6	2.0	267.5	295.5	12.5	7.5	204.7	30.0	30.0	3.0
	106.22	32.38	7410.8	138.0	1.9	269.6	298.0	24.7	14.7	0.0	44.5	36.0	5.0 † 0
	107.04	32.62	3761.4	88.1	2.3	271.7	300.4	15.0	8.9	255.1	30.0	30.0	3.0
	107.86	32.88	2280.3	36.2	1.6	273.7	302.9	9.1	5.4	136.3	30.0	30.0	15

.











Client: Sounding: Date: KLEINFELDER 06-SC-66 30-Jul-96

Source: Offset (m): Cone: Geophone:

6

Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wa	ve Velocity	Corresponding Depth Increment					
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)				
0.70	0.90									
1.70	1.79	6.5	<i>→</i> 139	454	0.7 - 1.7	23 - 56				
2.70	2.76	7.1	136	447	17.27	56 . 89				
3.70	3.74	6.9	143	468	27 - 37	8.9 . 121				
4.70	4.73	6.0	165	542	3.7 - 4.7	12.1 - 15.4				
5.70	5.73	7.6	¥ 131	429	4.7 - 5.7	15.4 - 18.7				
6.70	6.72	9.4	106	348	5.7 - 6.7	18.7 - 22.0				
7.70	7.72	8.1	123	404	6.7 - 7.7	22.0 - 25.3				
8.70	8.72	7.2	139	455	7.7 - 8.7	25.3 - 28.5				
9.70	9.72	7.1	141	461	8.7 - 9.7	28.5 - 31.8				
10.70	10.71	6.2	<b>↓ 161</b>	528	9.7 - 10.7	31.8 - 35.1				
11.70	11.71	5.7	175	575	10.7 - 11.7	35.1 - 38.4				
12.70	12.71	5.6	178	585	11.7 - 12.7	38.4 - 41.7				
13.70	13.71	5.6	178	585	12.7 - 13.7	41.7 - 44.9				
14.70	14.71	4.8	208	683	13.7 - 14.7	44.9 - 48.2				
15.70	15.71	5.7	* 175	575	14.7 - 15.7	48.2 - 51.5				
16.70	16.71	6.5	154	504	15.7 - 16.7	51.5 - 54.8				
17.70	17.71	6.0	167	547	16.7 - 17.7	54.8 - 58.1				
18.70	18.71	7.0	143	468	17.7 - 18.7	58.1 - 61.4				
19.70	19.71	6.5	154	505	18.7 - 19.7	61.4 - 64.6				
20.70	20.71	5.5	* 182	596	19.7 - 20.7	64.6 - 67.9				
21.70	21.71	4.5	222	729	20.7 - 21.7	67.9 - 71.2				
22.70	22.71	4.0	250	820	21.7 - 22.7	71.2 - 74.5				
23.70	23.71	6.7	149	490	22.7 - 23.7	74.5 - 77.8				
24.70	24.71	4.8	208	683	23.7 - 24.7	77.8 - 81.0				
25.70	25.71	7.0	🐳 143	469	24.7 - 25.7	81.0 - 84.3				
26.70	26.71	6.0	167	547	25.7 - 26.7	84.3 - 87.6				
27.70	27.71	4.0	250	820	26.7 - 27.7	87.6 - 90.9				
28.70	28.71	5.5	182	596	27.7 - 28.7	90.9 - 94.2				
29.70	29.71	4.5	222	729	28.7 - 29.7	94.2 - 97.4				
<u> </u>	30.71	5.0	<u>~_20</u> 0	656	29.7 - 30.7	97.4 - 100.7				
31.70	31.70	3.7	270	887	30.7 - 31.7	100.7 - 104.0				
32.70	32.70	3.5	286	937	31.7 - 32.7	104.0 - 107.3				
33.70	33.70	4.0	250	820	32.7 - 33.7	107.3 - 110.6				
34.70	34.70	4.1	244	800	33.7 - 34.7	110.6 - 113.8				






Client: Sounding: Date: KLEINFELDER 06-SC-69 30-Jul-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wa	ve Velocity	Corresponding Depth Increment					
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)				
0.75	0.94				· ·					
1.75	1.84	8.9	· 102	334	0.8 - 1.8	2.5 - 5.7				
2.75	2.81	9.6	101	331	1.8 - 2.8	5.7 - 9.0				
3.75	3.79	7.0	141	462	2.8 - 3.8	9.0 - 12.3				
4.75	4.78	5.9	168	551	3.8 - 4.8	12.3 - 15.6				
5.75	5.78	6.3	i ★ 158	518	4.8 5.3 5.8	15.6 - 18.9				
6.75	6.77	6.5	153	503	5.8 - 6.8	18.9 - 22.1				
7.75	7.77	8.4	119	389	6.8 - 7.8	22.1 - 25.4				
8.75	8.77	8.5	117	385	7.8 - 8.8	25.4 - 28.7				
9.75	9.77	7.2	139	455	8.8 - 9.8	28.7 - 32.0				
10.75	10.76	6.3	<i>-</i> ≁ 158	520	9.8 - 10.8	32.0 - 35.3				
11.75	11.76	5.3	188	618	10.8 - 11.8	35.3 - 38.5				
12.75	12.76	5.6	178	585	11.8 - 12.8	38.5 - 41.8				
13.75	13.76	5.1	196	643	12.8 - 13.8	41.8 - 45.1				
14.75	14.76	6.8	147	482	13.8 - 14.8	45.1 - 48.4				
15.75	15.76	6.7	<b>∞ 149</b>	489	14.8 - 15.8	48.4 - 51.7				
16.75	16.76	6.4	156	512	15.8 - 16.8	51.7 - 55.0				
17.75	17.76	7.2	139	455	16.8 - 17.8	55.0 - 58.2				
18.75	18.76	5.1	196	643	17.8 - 18.8	58.2 - 61.5				
19.75	19.76	5.2	192	631	18.8 - 19.8	61.5 - 64.8				
20.75	20.76	4.2	· 238	781	19.8 - 20.8	64.8 - 68.1				
21.75	21.76	4.4	227	745	20.8 - 21.8	68.1 - 71.4				
22.75	22.76	5.0	200	656	21.8 - 22.8	71.4 - 74.6				
23.75	23.76	4.0	250	820	22.8 - 23.8	74.6 - 77.9				
24.75	24.76	6.6	151	497	23.8 - 24.8	77.9 - 81.2				
25.75	25.76	5.5	ິ 182໋	596	24.8 - 25.8	81.2 - 84.5				
26.75	26.76	5.1	196	643	25.8 - 26.8	84.5 - 87.8				
27.75	27.76	5.3	189	619	26.8 - 27.8	87.8 - 91.0				
28.75	28.76	5.2	192	631	27.8 - 28.8	91.0 - 94.3				
29.75	29.76	4.6	217	713	28.8 - 29.8	94.3 - 97.6				
30.75	30.76	4.4	+ 227	746	29.8 - 30.8	97.6 - 100.9				
31.75	31.75	5.7	175	575	30.8 - 31.8	100.9 - 104.2				
32.75	32.75	5.0	200	656	31.8 - 32.8	104.2 - 107.4				

			•			•						-	· •.	
	ConeTe	c Inc	CPT Interp	retation			,			Page	: 1		· · · ·	tina eta.
	Interp	retation	Output - R	elease 1.0 47	0.07									াৰ গোৰন্ত মান
	KUN NO	- 90-05	13-0828-14	13										र है। 
6	JOD NO Client	· YO-JU	iy felder									• •		
1	Projec	+ 115 C	ection 4						· .					e Ngangana
EL	Site:	115.5	4:115.06-S	C-77										e e e e e e e e e e e e e e e e e e e
	Locati	on: 400 S	Viaduct					÷.,						
	Cone:	20 T	ON A 041	×					•					
	CPT Da	te: 96/29	/07	-										
	CPT Ti	me: 16:11		• •										
	CPT Fi	le: KAO6S	077.COR											
			· · · · · · · · · · · · · · · · · · ·											-
	Water	Iable (m	():	2.00	(11):	6.6								•
	Su Mic	t used:	emeric (my.	12 50	•								•	
	Phi M	ethod :		Robertso	n and Car	moanella. 1	983						· ·	
	Dr M	ethod :		Jamiolko	WSKI - Al	l Sands								
	Used (	Unit Weig	hts Assigne	ed to Soil	Zones									
	Depth	Denth	Ave0+	Avele	ÂvaD4	E \$*****		N60			 n -			-
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blow	(mijou Ws/ft)	SU (kPe)	0r (%)	Phi (dec.)	OCR	
	*******					·····					····	(ucy.)	(18110)	-
	0.41	0.12	22147.6	21.7	0.1	2.5	0.0	36.9	73.8	0.0	95.0	50.0	1.0	
	1.23	0.38	3541.0	3.0	0.1	7.4	0.0	8.9	17.7	0.0	74.9	48.0	1.0	
	2.05	0.62	2504.5	2.1	0.1	12.1	0.0	7.7	15.4	0.0	55.5	44.0	1.0	
	3.40	1.12	1228 7	י.ע ג 20	1.0	10.9	0.0	2.U 2 1	4.0	50.6	0.0	0.0	6.0	
	4.51	1.38	7100.1	54.0	0.8	24 4	0.0	17.8	12.3	<b>90.</b> /	0.0	0.0	10.0	
	5.33	1.62	1408.4	35.3	2.5	29.0	0.0	7.0	12.8	110 3	11.1	40.0	1.0	
	6.15	1.88	779.6	16.4	2.1	33.5	0.0	3.9	6.6	59.7	0.0	0.0	0.0	
	6.97	2.12	649.0	10.5	1.6	36.8	1.2	3.2	5.2	48.9	0.0	0.0	6.0	
	7.79	2.38	633.6	9.9	1.6	38.8	3.7	3.2	5.0	47.3	0.0	0.0	6.0	
	8.61	2.62	516.8	5.0	1.0	40.2	6.1	2.6	4.0	37.6	0.0	0.0	3.0	
	9.43	2.88	499.9	4.U 0.4	0.8	40.9	8.6	2.5	3.8	36.0	0.0	0.0	3.0	
	11.07	3.38	608.1	<b>9.</b> 0	1.3	42.2	17.5	3.0	<b>3.</b> /	40.9	0.0	0.0	3.0	
~ >	11.89	3.62	653.5	10.5	1.6	46.3	15.9	3.3	4.7	44.0	0.0	0.0	3.U 4 0	
( Star	12.71	3.88	652.0	13.7	2.1	48.4	18.4	4.3	6.1	46.8	0.0	0.0	3.0	
1	13.53	4.12	769.8	10.9	1.4	50.4	20.8	3.8	5.3	55.9	0.0	0.0	6.0	
	14.35	4.38	600.9	6.4	1.1	52.5	23.3	3.0	4.1	42.0	0.0	0.0	3.0	
	15.17	4.62	602.9	9.7	1.6	54.5	25.8	3.0	4.0	41.8	0.0	0.0	3.0	
	12.99	4.00	2324.0	33.7	1.4	56.5	28.2	9.3	12.1	179.2	33.6	38.0	6.0	
	17.63	5.38	1418.8	24.2	1.7	6.6	30.7	7.9 5.7	7 1	104.0	U.U 70.0	U.U 7/ 0	6.0	
	18.45	5.62	4166.3	70.8	1.7	62.8	35.6	13.0	17.2	0.0	20.0 48 Q	24.0	1.0	
	19.27	5.88	4278.6	96.1	2.2	64.9	38.0	17.1	20.8	334.1	49.1	40.0	10.0	
	20.09	6.12	2723.5	89.5	3.3	66.9	40.5	13.6	16.3	209.3	0.0	0.0	6.0	
	20.92	6.38	3232.4	31.6	1.0	69.0	42.9	10.8	12.7	0.0	40.2	38.0	1.0	
	21.74	0.02	3223.8	20.8	0.6	71.2	45.4	10.7	12.5	0.0	39.7	38.0	1.0	
	22.30	7 12	2077 1	14.4 28 1	1.1	75.5 75 7	47.8 50.7	5.3	<b>6.</b> 1	96.9	30.0	32.0	6.0	
	24.20	7.38	995.0	11.3	1.1	77.4	50.5 52 7	5.0	y.4 5.5	100.1	0.02	36.0	6.U 7. n	
	25.02	7.62	1007.5	19.6	1.9	79.4	55.2	5.0	5.5	69.8	0.0	0.0	3.0	
	25.84	7.88	1859.7	26.2	1.4	81.5	57.6	7.4	8.1	137.6	30.0	34.0	6.0	
	26.66	8.12	2533.7	37.8	1.5	83.5	60.1	10.1	10.9	191.2	30.5	36.0	6.0	
	27.48	8.38	1158.5	20.3	1.7	85.6	62.5	5.8	6.1	80.8	0.0	0.0	3.0	
	20.50	ö.62	9/0.2	25.2	2.6	87.6	65.0	4.9	5.1	65.4	0.0	0.0	3.0	
	20.04	0.00	1303 1	20.4 26 7	2.0	07./ 01 7	67.4 40 0	).) ∡ ⊑	5.7	/5.6 01 7	0.0	0.0	3.0	
	30.76	9.38	4364.8	18.4	0.4	93.9	72.3	10.9	11.0	0.0	44.4	38.0	5.0	
	31.58	9.62	11706.3	91.1	0.8	96.3	74.8	23.4	23.4	0.0	72.3	42.0	1.0	
	32.40	9.88	8171.4	75.9	0.9	98.6	77.3	20.4	20.1	0.0	61.7	42.0	1.0	
	33.22	10.12	8384.2	80.2	1.0	100.9	79.7	21.0	20.4	0.0	62.1	42.0	1.0	
	54.04	10.38	2196.6	12.0	0.5	103.2	82.2	7.3	7.1	0.0	30.0	34.0	1.0	
	34.00 35 60	10.02	1412.1	9.1 46 2	· 0./	105.5	84.6 97 1	5.7	5.4	98.0	50.0	50.0	5.0	
	36.50	11, 12	6131.3	95 5	2.4 1 A	107.5	07.1 80 5	20 4	9.1 10 1	130.3	52 0	0.0	0.U 1 n	
	37.32	11.38	2199.3	50.8	2.3	111_5	92.0	8.8	8.2	159.7	30.0	32.0	6.0	
	38.14	11.62	1364.2	15.9	1.2	113.6	94.4	5.5	5.0	92.5	30.0	30.0	3.0	
-	38.96	11.88	2791.7	35.4	1.3	115.6	96.9	11.2	10.2	206.3	30.0	34.0	6.0	•
	39.78	12.12	1094.5	16.1	1.5	117.7	99.3	5.5	4.9	70.2	0.0	0.0	3.0	
1	40.60	12.38	1166.7	14.1	1.2	119.7	101.8	4.7	4.2	75.6	30.0	30.0	3.0	
	41.42	12.62	838.7	2.5	0.3	121.1	104.2	4.2	3.7	49.1 /e f	0.0	0.0	1.5	
	42.24	12.00	ں ددہ	2.U	u.2	121.0	100./	4.2	3./	40.7	U.U	0.0		

a Rocardon de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de Constantes de ConeTec Inc. - CPT Interpretation Run No: 96-0913-0828-1413 CPT File: KA06S077.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
43.06	13.12	877.0	9.6	1.1	123.1	109.1	4.4	3.9	51.6	0.0	0.0	1.5
43.88	13.38	1050.8	9.8	0.9	125.2	111.6	4.2	3.7	65.1	30.0	30.0	3,0
44.70	15.62	1084./	10.5	1.1	127.2	114.0	6.7	5.8	115.5	30.0	30.0	3.0
42.26	12.00	032.Y	3.3	U.4	129.3	116.5	3.3	2.9	47.0	30.0	30.0	1.5
40.34	14.12	047 5	3.0	0.J 6 0	130.0	118.9	3.9	3.5	42.6	0.0	0.0	1.5
47.10	14.30	903.3	2.0	0.8	132.0	121.4	3.9	5.5	56.8	30.0	-30.0	1.5
47.90	14.82	843.2 864 0	3.0	0.3	133.5	123.9	4.2	3.0	40.9	70.0	70.0	1.5
49.62	15.12	822.0	4.2	0.5	134.7	120.5	3.5	2.9	40.2	30.0	30.0	1.5
50.44	15.38	885.1	3.5	0.4	138.8	131.2	3.5	2.0	49.5	30.0	30.0	1.2
51.26	15.62	810.3	3.5	0.4	140.2	133.7	4.1	3.3	42.9	0.0	0.0	1.5
52.08	15.88	1021.9	5.4	0.5	141.5	136.1	4.1	3.4	59.5	30.0	30.0	1.5
52.90	16.12	1018.9	6.5	0.6	143.6	138.6	4.1	3.3	58.9	30.0	30.0	1.5
53.72	16.38	1171.5	10.0	0.9	145.6	141.0	4.7	3.8	70.8	30.0	30.0	1.5
54.54	16.62	950.0	2.2	0.2	147.7	143.5	3.8	3.1	52.7	30.0	30.0	1.5
55.36	16.88	1152.4	3.8	0.3	149.7	145.9	4.6	3.7	68.5	30.0	30.0	1.5
56.18	17.12	1076.7	9.9	0.9	151.7	148.4	4.3	3.4	62.1	30.0	30.0	1.5
57.00	17.38	1053.2	5.0	0.5	153.8	150.8	4.2	3.3	59.9	30.0	30.0	1.5
57.82	17.62	1102.1	5.4	0.5	155.8	153.3	4.4	3.5	63.4	30.0	30.0	1.5
30.04 50 //	18 12	070 /	4.3 K K	U.4 A 4	157.9	155.7	4.0	3.2	55.9	30.0	30.0	1.5
60.28	18 38	1203 1	0.9	0.0 1 A	162 0	120.2	3.7	5.0	77.9	30.0	50.0	1.5
61,10	18.62	1180.8	7.1	A.0	162.0	160.0	J.C 6 9	4.U 7.∡	//.D	30.0	30.0	1.5
61.93	18.88	1075.6	5.7	0.5	164.1	165.1	4.0 4 7	J.0 7 7	60 E	30.0	30.0	1.5
62.75	19.12	1014.9	6.6	0.6	168.1	168.0	4.1	3.5	54 3	30.0	30.0	1.5
63.57	19.38	1116.7	7.5	0.7	170.2	170.4	4.5	3.4	62 1	30.0	30.0	. 1 5
64.39	19.62	1123.7	7.8	0.7	172.2	172.9	4.5	3.4	62.3	30.0	30.0	1.5
65.21	19.88	1120.8	8.3	0.7	174.3	175.4	4.5	3.3	61.7	30.0	30.0	1.5
66.03	20.12	1121.7	8.6	0.8	176.3	177.8	4.5	3.3	61.4	30.0	30.0	1.5
<b>66.8</b> 5	20.38	1517.6	29.1	1.9	178.4	180.3	7.6	5.6	92.7	0.0	0.0	3.0
67.67	20.62	2491.7	116.6	4.7	180.4	182.7	24.9	18.2	170.3	0.0	0.0	3.0
68.49	20.88	<b>9367.6</b>	129.8	1.4	182.5	185.2	23.4	17.0	0.0	56.8	38.0	1.0
69.31	21.12	9515.8	139.3	1.5	184.8	187.6	23.8	17.1	0.0	57.1	38.0	1.0
70.13	21.38	3182.7	67.8	2.1	186.9	190.1	12.7	9.1	224.5	30.0	32.0	6.0
70.95	21.62	7721.6	132.4	1.7	189.0	192.5	25.7	18.3	0.0	50.7	38.0	1.0
71.77	21.88	15211.4	207.2	1.4	191.3	195.0	38.0	26.9	0.0	70.0	42.0	1.0
72.39	22.12	18509.5	82.3	0.4	193.6	197.4	37.0	26.0	0.0	75.5	42.0	1.0
76 23	22.50	26582 /	112.2	0.7	190.1	199.9	34.0	24.2	0.0	/3.3	42.0	1.0
75 05	22.02	35852 8	111 6	0.4	190.0	202.3	44.3	30.8	0.0	85.5	44.0	1.0
75.87	23.12	15086.7	86 1	0.5	207.1	204.0	77.0	20.7	0.0	<b>73.7</b>	44.0	1.0
76.69	23.38	4796.1	58.0	1.2	205.9	207.2	16 0	10 9	0.0	35.0	40.0	1.0
77.51	23.62	8479.8	129.6	1.5	208.0	212 1	28 3	10.7	0.0	52 0	39.0	1.0
78.33	23.88	2231.7	24.3	1.1	210.2	214.6	8.9	6.0	144.6	30.0	30.0	3.0
79.15	24.12	1701.7	2.5	0.1	212.3	217.0	5.7	3.8	0 0	30.0	30.0	1.0
79.97	24.38	2811.0	12.4	0.4	214.4	219.5	9.4	6.3	0.0	30.0	30.0	1.0
80.79	24.62	2658.6	21.7	0.8	216.6	222.0	8.9	5.9	0.0	30.0	30.0	1.0
81.61	24.88	2312.2	16.7	0.7	218.8	224.4	7.7	5.1	0.0	30.0	30.0	1.0
82.43	25.12	2708.5	37.2	1.4	220.9	226.9	10.8	7.1	180.9	30.0	30.0	3.0
83.25	25.38	2290.8	63.3	2.8	222.9	229.3	11.5	7.5	147.1	0.0	0.0	3.0
84.07	25.62	2655.2	51.4	1.9	225.0	231.8	10.6	6.9	175.9	30.0	30.0	3.0
84.89	25.88	2161.6	24.8	1.1	227.0	234.2	8.6	5.6	136.0	30.0	30.0	3.0
00./1 04 F7	20.12	2005.5	25.5	1.2	229.1	236.7	8.3	5.4	129.6	30.0	30.0	3.0
00.33	20.30	1009.9	22.9	1.2	251.1	239.1	7.5	4.8	112.0	30.0	30.0	1.5
88 17	20.02	1705 1	9.3 7 7	0.5	233.2	241.6	1.2	4.6	105.8	30.0	30.0	1.5
88 00	27 12	2375 4	18 3	0.4	237.2	244.U 266 E	0.0	4.4 E 0	Y0.1	30.0	30.0	1.5
80 81	27 38	3471 8	55 0	1 4	230 /	240.7	17.0	0 0 0 0	0.0	30.0	30.0	1.0
00 67	27 62	3237 2	26 R	0.0	237.4	240.7	13.9	0.0	، م م	30.0	32.0	5.0
91.45	27.88	2454.2	22.7	0.0	241.0	271.4	10.0	0.0	0.0	30.0	30.0	1.0
92.27	28, 12	2024.1	5.0	0.2	245.9	256 3	6.7	4.2	0.0	30.0	30.0	1.0
93.09	28.38	1836.6	16.5	0.9	248.0	258.7	7.3	4.6	106-4	30.0	30.0	1 5
93.91	28.62	1800.6	6.4	0.4	250.1	261.2	6.0	3.7	0.0	30.0	30.0	1.0
94.73	28.88	1802.2	4.0	0.2	252.3	263.6	6.0	3.7	0.0	30.0	30.0	1.0
95.55	29.12	2215.3	10.4	0.5	254.5	266.1	7.4	4.5	0.0	30.0	30.0	1.0
96.37	29.38	2131.7	13.9	0.7	256.6	268.5	7.1	4.3	0.0	30.0	30.0	1.0
97.19	29.62	1779.8	5.6	0.3	258.8	271.0	5.9	3.6	0.0	30.0	<b>30</b> .0	1.0
98.01	29.88	1606.6	4.5	0.3	260.9	273.5	6.4	3.9	85.8	30.0	30.0	1.5
98.83	30.12	1665.9	5.8	0.3	263.0	275.9	6.7	4.0	90.2	30.0	30.0	1.5



Page: 2





and a standard as a

Cone	Tec I	nc CPT Interpretat	ion
Run	No:	96-0913-0828-1413	
CPT	File:	KA06S077.COR	

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	1816.2	13.8	0.8	265.0	278.4	7.3	4.4	101.8	30.0	30.0	••••••• 1 5
100.47	30.62	2271.3	23.9	1.1	267.1	280.8	9.1	5.4	137.9	30.0	30.0	3.0
101.29	30.88	2877.5	49.4	1.7	269.1	283.3	11.5	6.9	186.0	30.0	30.0	3.0
102.11	31.12	6115.4	72.1	1.2	271.2	285.7	20.4	12.1	0.0	38.9	34.0	1.0
102.94	31.38	2438.4	37.5	1.5	273.3	288.2	9.8	5.8	150.2	30.0	30.0	3.0
103.76	31.62	5761.8	52.2	0.9	275.5	290.6	14.4	8.5	0.0	36.9	34 0	1.0
104.58	31.88	6384.8	113.6	1.8	277.7	293.1	21.3	12.5	0.0	39.8	34.0	1.0
105.40	32.12	13567.3	271.9	2.0	279.9	295.5	45.2	26.5	0.0	61.3	38.0	1.0
106.22	32.38	14485.9	177.1	· 1.2	282.1	298.0	36.2	21.1	0.0	63.0	38.0	1.0
107.04	32.62	5024.3	107.9	2.1	284.3	300.4	20.1	11.7	355.2	32.6	32 0	4.0
107.86	32.88	2195.2	14.2	0.6	286.4	302.9	7.3	4.2	0.0	30.0	30.0	1.0
108.68	33.12	2144.9	13.4	0.6	288.6	305.3	7.1	4.1	0.0	30.0	30.0	1 0
109.50	33.38	1918.6	9.9	0.5	290.7	307.8	7.7	4.4	105.6	30.0	30.0	1 5
110.32	33.62	1900.8	5.2	0.3	292.8	310.2	6.3	3.6	0.0	30.0	30.0	1 0
111.14	33.88	1769.0	2.7	0.2	295.0	312.7	5.9	3.4	0.0	30.0	30.0	1 0
111.96	34.12	1797.0	2.3	0.1	297.2	315.1	6.0	3.4	0.0	30.0	30.0	1 0
112.78	34.38	1842.1	2.1	0.1	299.3	317.6	6.1	3.5	0.0	30.0	30.0	1.0
113.60	34.62	2163.6	15.7	0.7	301.4	320.1	8.7	4.9	123.4	30.0	30.0	1.5
114.42	34.88	2443.9	15.7	0.6	303.6	322.5	8.1	4.6	0.0	30.0	30.0	1.0
115.24	35.12	2285.8	16.0	0.7	305.7	325.0	7.6	4.3	0.0	30.0	30.0	1.0
116.06	35.38	2223.3	28.5	1.3	307.8	327.4	8.9	5.0	127.0	30.0	30.0	1.5
116.88	35.62	2328.8	40.4	1.7	309.9	329.9	9.3	5.2	135.1	30.0	30.0	1.5
117.70	35.88	2302.2	28.5	1.2	311.9	332.3	9.2	5.1	132.6	30.0	30.0	1.5
118.52	36.12	2973.6	41.7	1.4	314.0	334.8	11.9	6.6	186.0	30.0	30.0	3.0
119.54	56.58	4341.2	84.2	1.9	316.0	337.2	17.4	9.6	295.0	30.0	30.0	3.0
120.16	36.62	3645.1	88.3	2.4	318.1	339.7	14.6	8.0	239.0	30.0	30.0	3.0
120.98	36.88	2903.2	53.4	1.8	320.1	342.1	11.6	6.4	179.3	30.0	30.0	3.0
121.80	37.12	3632.9	80.5	2.2	322.2	344.6	14.5	7.9	237.3	30.0	30.0	3.0
122.62	37.38	5773.2	173.8	3.0	324.2	347.0	23.1	12.6	408.2	34.7	32.0	6.0

Page:

3







. . .....

Client: Sounding: Date: KLEINFELDER 06-SC-77 29-Jul-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For	Shear Wa	ve Velocity	Corres Depth I	ponding ncrement
(m)	(m)	X-Over (ms)	(m/s)	(ff/c)	(m)	(#)
(111)	(///	(1113)	(1143)	(103)	("")	(11)
1 05	2.02	-				
2.95	3.00	88	v 111	363	20 2 30	BA 07
3.95	3 99	84	117	385	2.0 - 3.0	0.7 - 9.7
4.95	4 98	70	¥ 126	A12	40 4 50	12.0 16.2
5.95	5.98	5.5	181	593	50 - 60	16.2 - 10.2
6.95	6.00	57	175	573	60 - 70	19.5 - 22.8
7.95	7.97	54	185	606	70 - 80	22.8 26.1
8.95	8.97	48	208	682	80 - 90	26.1 - 29.4
9.95	9.97	4.9	¥ 204	668	9.0 - 10.0	294 326
10.95	10.96	5.8	172	565	10.0 - 11.0	326 359
11.95	11.96	54	185	607	110 - 120	35.9 - 39.2
12.95	12.96	60	166	546	120 - 130	39.2 42.5
13.95	13.96	56	178	585	130 - 140	425 458
14.95	14.96	5.3	<b>⊬</b> 189	619	14.0 - 15.0	45.8 - 49.0
15.95	15.96	6.3	159	520	15.0 - 16.0	49.0 - 52.3
16.95	16.96	6.7	149	489	16.0 - 17.0	52.3 - 55.6
17.95	17.96	6.4	156	512	17.0 - 18.0	55.6 - 58.9
18.95	18.96	5.9	169	556	18.0 - 19.0	58.9 - 62.2
19.95	19.96	5.8	* 172	565	19.0 - 20.0	62.2 - 65.5
20.95	20.96	5.9	169	556	20.0 - 21.0	65.5 - 68.7
21.95	21.96	6.4	156	512	21.0 - 22.0	68.7 - 72.0
22.95	22.96	6.7	149	490	22.0 - 23.0	72.0 - 75.3
23.95	<b>23.96</b>	4.5	222	729	23.0 - 24.0	75.3 - 78.6
24.95	24.96	4.2	<b>∀ 238</b>	781	24.0 - 25.0	78.6 - 81.9
25.95	25.96	5.2	192	631	25.0 - 26.0	81.9 - 85.1
26.95	26.96	5.1	196	643	26.0 - 27.0	85.1 - 88.4
27.95	<b>27.96</b>	5.0	200	656	27.0 - 28.0	88.4 - 91.7
28.95	<b>28.9</b> 6	4.8	208	683	28.0 - 29.0	91.7 - 95.0
29.95	29.96	5.5	‴⁻182	596	29.0 - 30.0	95.0 - 98.3
<u></u> 30.95	30.96	4.5	222	729	30.0 - 31.0	98.3 - 101.5
31.95	31.95	5.0	200	656	31.0 - 32.0	101.5 - 104.8
32.95	32.95	5.1	196	643	32.0 - 33.0	104.8 - 108.1
33.95	33.95	4.5	222	729	33.0 - 34.0	108.1 - 111.4
34.95	34.95	5.0	* 200	656	34.0 - 35.0	111.4 - 114.7
35.95	35 95	1 51 1	106	643	1350 . 360	11147.1179

# Ċ

			. · ·											
•						•								
	Interp	c inc. retation	Output - R	retation elease 1.0	0.07					Page	: 1 \;	· · · ·	an the second second second second second second second second second second second second second second second	3 - 1945) 68 - 1946 - 1
	Job No	: 96-08 : 96-30	304-2149-10: )9	<b></b>				•					ارونې د د کې د د مېکو د د کې د	n Burga National La Carlos de Carlos
C	Client Proiec	: Klein t: 115 S	nfelder Section 4	n e					. *	•	2	en ja Sala. La	38 × 2	4
k	Site:	115,	s4: 200 s,	06-SC-104			. *	an said An	•			+ /5.2 • • • • •	د آروای رابط م	1. 전 <b>호</b> 역 41. 1991 - 14 1 1 1
( )	Locati Cone:	on: WB 18 20 T	ion rimp "On A Ad 081	1										•
	CPT Da	te: 96/06	/05					,					•	
	CPT Fi	le: KAO6S	, 104.COR	Ne de la composition Ne de la composition de la composition de la composition de la composition de la composition de la composition Ne de la composition de la composition de la composition de la composition de la composition de la composition de									•	• .
	Water	Table (m	):	2.00	(ft):	6.6								
	Su Nk	t used:	ement (m):	12.50	•								•	
	Phi Mo Dr Mo	ethod : ethod :		Robertsor Jamiolkow	n and Can vski - Al	npanella, 19 Il Sands	83						. •	
	Used I	Unit Weig	hts Assigne	ed to Soil	Zones									
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
	0.41 1.23	0.12	2154.5 4494.3	14.8	0.7	2.3	0.0	7.2	14.4 30.0	0.0	77.3	50.0	1.0	
	2.05	0.62	6194.4	101.7	1.6	11.6	0.0	20.6	41.3	0.0	84.5	48.0	1.0	
	3.69	1.12	1077.0	38.9	3.6	20.6	0.0	10.8	21.5	84.5	0.0	0.0	10.0 10.0	
	4.51 5.33	1.38	385.0 747.3	9.0 2.0	2.3	24.9 28.7	0.0	3.9 3.7	7.5 6.8	28.8 57.5	0.0	0.0	6.0	
	6.15 6.97	<b>1.88</b> 2.12	1116.6 2309.3	2.2	0.2	32.5 35.8	0.0	4.5	7.7	86.7	30.0	36.0	6.0	
	7.79	2.38	3550.3	30.9	0.9	38.0	3.7	11.8	18.8	0.0	51.5	40.0	1.0	
	8.01 9.43	2.88	3398.0	27.3	1.1 0.8	40.2 42.4	6.1 8.6	12.1 11.3	18.6 17.0	0.0 0.0	51.2 48.6	42.0 42.0	1.0	•
	10.25 11.07	3.12 3.38	7623.6 9939.1	51.0 57.5	0.7 0.6	44.6 46.9	11.0	19.1 24 8	27.9	0.0	71.1	44.0	1.0	
	11.89	3.62	10914.5	58.3	0.5	49.2	15.9	21.8	30.4	0.0	79.9	46.0	1.0	
E.	13.53	4.12	8327.0	34.5	0.5	51.7	18.4 20.8	20.9 20.8	28.5 27.7	0.0 0.0	78.0 70.9	46.0 44.0	1.0	
	14.35 15.17	4.38 4.62	11410.9 13889.1	57.4 131.2	0.5 0.9	56.4 58.8	23.3 25.8	22.8 27.8	29.7 35.5	0.0	79.3 84 3	46.0	1.0	
N. S.	15.99 16.81	4.88 5.12	16370.4 20405 0	120.7	0.7	61.2	28.2	32.7	40.9	0.0	88.4	46.0	1.0	
	17.63	5.38	19595.1	118.3	0.6	66.1	33.1	39.2	47.2	0.0	94.2 92.5	46.0	1.0	
	18.45	5.88	10358.2	157.3	1.0	68.5 70.9	35.6 38.0	32.7 29.4	38.7 34.2	0.0 0.0	86.8 76.9	46.0 44.0	1.0 1.0	
	20.09	6.12 6.38	16266.0	130.3	0.8	73.2	40.5	32.5	37.2	0.0	85.7	46.0	1.0	
	21.74	6.62	15671.0	147.5	0.9	78.1	45.4	31.3	34.7	0.0	83.7	46.0 46.0	1.0	
	22.56 23.38	6.88 7.12	13647.3 9780.5	152.3	1.1	80.4 82.7	47.8 50.3	34.1 24.5	37.2 26.3	0.0 0.0	79.3 69.4	44.0 42.0	1.0 1.0	
	24.20 25.02	7.38 7.62	3746.0 216.6	78.0 15.2	2.1 7.0	84.9 86.9	52.7	15.0	15.9	288.7	41.5	38.0	6.0	
	25.84	7.88	240.4	8.8	3.6	88.8	57.6	2.4	2.5	7.5	0.0	0.0	0.8	
	27.48	8.38	715.6	22.8	3.2	92.6	62.5	2.4 7.2	2.5 7.3	7.5 44.8	0.0	0.0	0.8	
	28.30 29.12	8.62 8.88	806.3 1456.5	25.4 34.8	3.1 2.4	94.6 96.7	65.0 67.4	5.4 7.3	5.4 7.2	51.7 103.4	0.0	0.0	3.0 6.0	
	29.94	9.12 9.38	862.6 914 6	15.1	1.8	98.7	69.9	4.3	4.2	55.5	0.0	0.0	3.0	
	31.58	9.62	1694.5	44.9	2.6	102.7	74.8	8.5	8.2	121.4	0.0	0.0	5.U 6.U	
	32.40 33.22	9.88	716.3	9.5 18.1	2.0	104.7	77.3 <b>79.</b> 7	3.2 4.8	3.0 4.5	23.4 42.4	0.0 0.0	0.0 0.0	1.0 · 1.5	
	34.04 34.86	10.38 10.62	651.6 440.7	23.4	3.6 3 0	108.8 110 7	82.2 84.4	6.5	6.1	36.9	0.0	0.0	1.5	
	35.68	10.88	535.8	21.6	4.0	112.6	87.1	5.4	4.9	26.9	0.0	0.0	1.0	
	36.50	11.38	755.0	43.9	2.0 5.8	114.6	89.5 92.0	7.5	14.5 6.8	501.4 43.7	38.9 0.0	56.0 0.0	6.0 1.5	
	38.14 38.96	11.62 11.88	909.1 700.3	32.3 18.0	3.6 2.6	118.5	94.4 96.9	9.1 4.7	8.2 4:2	55.7 38-6	0.0 0.0	0.0	1.5 1.5	
	39.78	12.12	2106.1	60.3	2.9	122.5	99.3	10.5	9.3	150.7	0.0	0.0	6.0	
6	40.60 41.42	12.58	2159.2	60.5	2.8	124.0	101.8	o.o 10.8	5.8 9.4	87.2 154.3	0.0	0.0	6.0	
	42.24	12.88	1269.1	51.7	4.1	128.6	106.7	12.7	11.0	82.7	0.0	0.0	3.0	

6 **4** 15

Cone	eTec	Inc CPT Interpretation
Run	No:	96-0804-2149-1059
	- 2 A -	

.

		÷
		77
	1	19 19
2		1.1

ConeTe Run No CPT Fi	c Inc ( : 96-08) le: KA065	CPT Interpr 04-2149-105 104.COR	retation 59		•				Page:	2	a en sen sen sen sen sen sen sen sen sen		erte dit Grand Ota dita Madit
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 Is/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	trof (3)
43.06	13.12	337.5	11.9	3.5	130.6	109.1	3.4	2.9	7.8	0.0	0.0	0.8	r sayrs Starf
43.88	13.38	332.1	11.7	3.5	132.5	111.6	3.3	2.8	7.0	0.0	0.0	0.8	5°8**
44.70 45.52	13.82	453.3	13.2	2.9	134.4	114.0	5.0	4.2	16.0	0.0	0.0	1.0	a star e s
46.34	14.12	418.5	12.1	2.9	138.2	118.9	4.2	3.5	12.9	0.0	0.0	0.8	•
47.16	14.38	440.7	17.1	3.9	140.2	121.4	- 4.4	3.6	14.3	0.0	0.0	1.0	
47.98	14.62	442.2	13.6	3.1	142.1	123.9	4.4	3.6	14.1	0.0	0.0	0.8	
48.80	14.88	453.2	12.9	2.8	144.0	126.3	4.5	5.1	14.6	0.0	0.0	1.0	•
49.02	15.38	500.3	17.9	3.6	143.9	131.2	4.5	4.0	17.7	0.0	0.0	1.0	· •
51.26	15.62	469.1	14.3	3.0	149.8	133.7	4.7	3.8	14.9	0.0	0.0	0.8	•
52.08	15.88	516.4	13.9	2.7	151.7	136.1	5.2	4.1	18.3	0.0	0.0	1.0	
52.90	16.12	628.4	27.2	2.6	153.7	138.6	4.2	3.3	26.9	0.0	0.0	1.0	* +
56 56	16.62	2623.1	68.0	2.9	157.8	141.0	10.5	4.2	185.7	30.0	32.0	6.0	
55.36	16.88	8811.0	194.7	2.2	159.9	145.9	- 29.4	22.7	0.0	56.9	40.0	1.0	
56.18	17.12	7084.0	197.4	2.8	162.0	148.4	28.3	21.8	541.9	50.5	38.0	6.0	
57.00	17.38	2907.2	106.4	3.7	164.0	150.8	14.5	11.1	207.4	0.0	0.0	6.0	-
58 64	17.02	3427.1 2321.6	70.3	3.3	168.1	155.7	11.6	15.0	248.0 159.8	0.0	0.0	6.U 3.0	
59.46	18.12	3407.0	84.1	2.5	170.2	158.2	13.6	10.2	246.3	30.0	32.0	6.0	
60.28	18.38	3699.2	143.7	3.9	172.2	160.6	18.5	13.8	269.3	0.0	0.0	6.0	
61.10	18.62	11026.2	268.2	2.4	174.3	163.1	36.8	27.2	0.0	62.1	40.0	1.0	
61.93	18.88	3986.7	142.9	3.6	176.5	165.5	· 19.9	14.7	291.6	0.0	0.0	6.0	· ·
63.57	19.38	14832.0	352.5	2.4	180.6	170.4	49.4	36.0	432.2	70.1	30.0 42.0	1.0	
64.39	19.62	6173.2	213.1	3.5	182.7	172.9	30.9	22.3	465.4	0.0	0.0	6.0	
65.21	19.88	1300.7	47.5	3.7	184.8	175.4	- 8.7	6.2	75.2	0.0	0.0	1.5	1.5
66.03	20.12	1095.3	33.9	3.1	186.8	177.8	7.3	5.2	58.5	0.0	0.0	1.5	
67 67	20.30	5870 5	163 6	28	100.9	180.3	23 5	0./ 16.6	82.8 430 8	42 7	36.0	1.5	
68.49	20.88	11640.6	279.2	2.4	193.0	185.2	38.8	27.3	0.0	62.2	40.0	1.0	
69.31	21.12	6861.7	191.8	2.8	195.1	187.6	27.4	19.2	518.3	46.9	36.0	6.0	
70.13	21.38	3240.6	131.7	4.1	197.2	190.1	21.6	15.1	228.3	0.0	0.0	6.0	
70.95	21.62	1984.5	51.5	2.6	199.2	192.5	3.9.9 2.4.7	6.9	127.4	0.0	0.0	3.0	
72.59	22.12	1272.1	32.9	2.5	201.3	195.0	6.4	4.5	69.7	0.0	0.0	1.5	
73.41	22.38	1335.7	33.4	2.5	205.4	199.9	6.7	4.6	74.4	0.0	0.0	1.5	
74.23	22.62	1233.2	31.1	2.5	207.4	202.3	6.2	4.2	65.9	0.0	0.0	1.5	•
75.05	22.88	1140.0	24.9	2.2	209.5	204.8	5.7	3.9	58.1	0.0	0.0	1.5	
75.07	23.12	1045.2	21.0	2.1	211.5	207.2	5.2	3.5	20.1 71 5	0.0	0.0	1.0	
77.51	23.62	1328.3	37.0	2.8	215.6	212.1	6.6	4.4	72.0	0.0	0.0	1.5	
78.33	23.88	1792.9	43.7	2.4	217.7	214.6	· 9.0	5.9	108.9	0.0	0.0	3.0	
79.15	24.12	1734.5	32.8	1.9	219.7	217.0	× 6.9	4.6	103.8	30.0	30.0	1.5	
19.91 80 70	24.58	1809.9	45.5	2.5	221.8	219.5	9.0	5.9	109.5	0.0	0.0 38 0	1.5	
81.61	24.88	5607.8	119.5	2.1	226.0	224.4	18.7	12.2	0.0	39.0	34.0	1.0	
82.43	25.12	6458.5	151.3	2.3	228.1	226.9	25.8	16.7	480.3	42.9	36.0	6.0	
83.25	25.38	4256.1	137.6	3.2	230.2	229.3	21.3	13.7	303.7	0.0	0.0	6.0	
84.07	25.62	14828.9	354.8	2.4	232.3	231.8	49.4	31.7	0.0	66.5	40.0	1.0	
85.71	25.00	8012.4	184.0	2.2	234.5	236.7	26.7	17.0	0.0	48.6	40.0	1.0	
86.53	26.38	2706.9	58.2	2.2	238.8	239.1	10.8	6.9	178.3	30.0	30.0	3.0	
87.35	26.62	5259.2	209.2	4.0	240.8	241.6	26.3	16.6	382.1	0.0	0.0	6.0	
88.17	26.88	4764.8	172.5	3.6	242.9	244.0	23.8	15.0	342.2	0.0	0.0	6.0	
80.77 80 81	27.12	4754.0 6853.8	213.1	3.9	244.Y 746 Q	240.7 268 0	23.0	17.1	508 A	43 5	36.0	6.0	
90.63	27.62	5477.8	192.2	3.5	249.0	251.4	27.4	17.0	398.2	0.0	0.0	6.0	
91.45	27.88	2116.3	70.0	3.3	251.0	253.8	10.6	6.5	128.9	0.0	0.0	3.0	
92.27	28.12	1598.4	29.3	1.8	253.1	256.3	6.4	3.9	87.1	30.0	30.0	1.5	
93.U9 03 01	20.30	1773.1	42.3	3.4	257.2	200.7	- 11_8	4.9 7.2	100.4	0.0	0.0	1.5	
94.73	28.88	2045.4	73.6	3.6	259.2	263.6	13.6	8.3	121.8	.0.0	0.0	1.5	
95.55	29.12	3243.0	124.0	3.8	261.3	266.1	16.2	9.8	217.3	0.0	0.0	3.0	
96.37	29.38	1889.1	77.1	4.1	263.3	268.5	18.9	11.4	108.6	0.0	0.0	1.5	
97.19 08.01	29.02 20 88	1019./ 1545 Q	7U.J 48 7	3.7 7 1	202.2	271.0	7.7	4.6	80_4	0.0	0.0	1.5	
98.83	30.12	1949.4	58.6	3.0	269.3	275.9	9.7	5.8	112.3	0.0	0.0	1.5	

.





	ConeTe Run No CPT Fi	c inc 1 : 96-08 le: KA06S	CPT Interp 04-2149-10 104.COR	retation 59			н 			Page	: 3		•
7.,	Denth	Depth	AvaQt	AvoEs	AvaRf	F Stress	Hvd Pr	NAO	(N1)60	Su	Dr	- Dhi	000

.

	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blow	#s/ft)	(kPa)	(%)	(deg.)	(ratio)
C	99.65	30.38	3818.6	138.3	3.6	271.4	278.4	19.1	11.3	261.5	0.0	0.0	3.0





्रि







Client: Sounding: Date:

Source: Offset (m): Cone: Geophone: *KLEINFELDER 06-SC-104 6-May-96* 

Beam & Hammer 0.56 AD 081 (20 tonne) 0.20 m above tip

Geophone Distance Last Time Shear Wave Velocity Corresponding Depth **Interval For Depth Increment** X-Over (m) (m)(ms) (m/s) (ft/s) (m)(ft) 1.20 1.32 2.40 2.46 8.5 ¥ 134 440 1.2 2.4 3.9 - 7.9 • 3.40 3.45 6.1 161 528 2.4 • 3.4 7.9 - 11.2 4.40 4.44 5.4 183 601 3.4 11.2 - 14.4 4.4 4.4 4.9 5.40 5.43 5.4 + 184 604 5.4 14.4 - 17.7 6.40 6.42 5.2 191 628 54 17.7 - 21.0 • 6.4 8.40 8.42 12.0 166 545 6.4 . 8.4 21.0 - 27.6 9.40 9.42 6.8 147 482 8.4 - 9.4 27.6 - 30.8 10.40 10.42 5.4 + 185 607 9.4 - 10.4 30.8 34.1 11.40 11.41 5.6 178 585 10.4 - 11.4 34.1 -37.4 12.40 12.41 5.2 192 11.4 - 12.4 37.4 -630 40.7 13.40 13.41 5.8 172 12.4 - 13.4 565 40.7 - 44.0 14.40 14.41 6.3 159 520 13.4 - 14.4 44.0 - 47.2 15.40 15.41 6.7 149 489 14.4 - 15.4 -47.2 - 50.5 16.40 16.41 6.6 151 497 15.4 - 16.4 50.5 - 53.8 17.40 17.41 5.5 182 596 16.4 - 17.4 53.8 - 57.1 18.40 18.41 4.6 217 713 17.4 - 18.4 57.1 - 60.4 19.40 19.41 4.5 222 729 18.4 - 19.4 60.4 -63.6 20.40 20.41 4.6 + 217 713 19.4 -20.4 63.6 -66.9 21.40 21.41 4.8 208 683 20.4 -21.4 66.9 -70.2 22.40 22.41 4.8 208 683 21.4 -22.4 70.2 -73.5 23.40 23.41 5.0 200 656 22.4 -23.4 73.5 -76.8 24.40 24.41 5.2 192 631 23.4 -24.4 76.8 -80.1 25.40 25.41 4.8 ¥ 208 683 24.4 . 25.4 80.1 - 83.3 26.40 26.41 3.4 294 965 25.4 - 26.4 83.3 86.6 27.40 27.41 4.3 233 763 26.4 . 27.4 86.6 - 89.9 28.40 28.41 217 4.6 713 27.4 - 28.4 89.9 - 93.2 29.40 29.41 4.7 213 698 28.4 - 29.4 93.2 - 96.5 30.40 30.41 ¥ 200 5.0 656 29.4 - 30.4 96.5 - 99.7

. •	ConeTe Inters	ec Inc pretation	CPT Interpr Output - Re	retation elease 1.(	0.07	•				Page	:: 1		
C	Job No Client Projec Site:	b: 96-30 b: 96-30 t: Klein ct: 115 S 115,S	nfelder Section 4 S4:115,06-SC	:- 106	•		ی ( ۳ م ا			- & .			
	Cone: CPT Da CPT Ti CPT Fi	20 1 hte: 96/29 me: 08:16 le: KA065	TON A 041 2/07 106.COR									• •	
	Water Avera Su Nk Phi M Dr M Used	Table (m ging Incr t used: ethod : ethod : Unit Weig	): ement (m): hts Assigne	2.00 0.25 12.50 Robertso Jamiolko d to Soil	(ft): n and Can wski - Al Zones	5.6 Mpanella, 1 I Sands	983			••••••			
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 Ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
	0.41	0.12	26766.9	265.4	1.0	2.4	 Ø.0	53.5	107.1	0.0	<b>05</b> 0	50 0	
	1.23	0.38	10139.3	165.5	1.6	7.2	0.0	33.8	67.6	0.0	<b>95.</b> 0	50.0	1.0
	2.87	0.88	1369.3	5.5	0.4	16.2	0.0	6.8 5.5	13.6	135.4 108.2	47.3	44.0 42 0	10.0
	3.69 4.51	1.12	1107.9 2206 3	6.7 7 3	0.6	20.8	0.0	4.4	8.9	87.0	30.0	38.0	10.0
	5.33	1.62	2974.1	3.8	0.1	29.9	0.0	7.4 9.9	14.3	0.0	43.6 49.8	42.0	1.0
	6.15 6.97	1.88	3390.7 4684 7	3.4 18 0	0.1	34.6	0.0	8.5	14.1	0.0	51.5	42.0	1.0
	7.79	2.38	5046.3	17.2	0.3	40.4	3.7	12.6	18.6	0.0	59.4	42.0	1.0
	8.61 9.43	2.62	5867.8	25.7	0.4	42.7	6.1	14.7	22.0	0.0	64.2	44.0	1.0
	10.25	3.12	10573.6	48.2	0.4	47.5	8.6	20.8	30.3 30.0	0.0	79.8 79.5	46.0 46.0	1.0
	11.07 11.89	3.38	12268.0 9254 4	49.2	0.4	49.9	13.5	24.5	34.0	0.0	83.1	46.0	1.0
C.S.	12.71	3.88	2856.3	10.9	0.2	54.7	15.9 18.4	18.5 9.5	25.0 12.6	0.0	74.3	44.0	1.0
	13.53	4.12	688.2	3.2	0.5	56.1	20.8	3.4	4.5	48.9	0.0	0.0	3.0
	15.17	4.62	700.8	6.4	0.5	57.5 59.6	23.3 25.8	7.5	9.7	0.0	32.6	38.0	1.0
Sect	15.99	4.88	575.1	2.0	0.3	61.0	28.2	2.9	3.6	38.9	0.0	0.0	3.0
	17.63	5.38	949.8	2.0	0.4	61.7 63.0	30.7 33.1	2.2	2.8	28.3 68 3	0.0	0.0	1.5
	18.45	5.62	1036.9	3.9	0.4	65.1	35.6	4.1	5.0	74.9	30.0	32.0	6.0
	20.09	5.00 6.12	2002.2 849.9	2.0	0.1	67.2 68.6	38.0 40.5	8.9	10.7	0.0	35.3	38.0	1,0
	20.92	6.38	502.6	2.0	0.4	69.3	42.9	2.5	3.0	31.2	0.0	0.0	1.5
	22.56	6.88	536.7	2.0 %	0.3	69.9 70.6	45.4 47.8	3.1	3.6	40.2	0.0	0.0	3.0
	23.38	7.12	926.6	4.3	0.5	72.0	50.3	3.7	4.3	64.3	30.0	30.0	1.5 3.0
	25.02	7.58	733.6 856.1	2.8	0.4	73.3 74.0	52.7 55 2	3.7	4.2	48.6	0.0	0.0	3.0
	25.84	7.88	459.0	2.5	0.6	74.7	57.6	2.3	2.6	26.1	0.0	0.0	1.5
	27.48	8.38	603.0	28.0	1.2	76.0 77.4	60.1 62.5	9.2	10.3	173.2	30.0	36.0	6.0
	28.30	8.62	2047.2	5.4	0.3	78.8	65.0	6.8	7.5	0.0	30.0	<b>34.</b> 0	1.0
	29.12	9.12	1145.3 949.3	6.5 3.4	0.6	80.9 83.0	67.4 69 9	4.6 3 8	5.0	79.8	30.0	30.0	- 3.0
	30.76	9.38	714.9	2.3	0.3	84.3	72.3	3.6	3.8	44.7	0.0	0.0	3.0
	32.40	9.88	608.7	2.0	0.3	85.0 85.7	74.8 77.3	2.9	3.1	34.2	0.0	0.0	1.5
	33.22	10.12	725.3	2.0	0.3	86.4	79.7	3.6	3.8	44.7	0.0	0.0	3.0
	34.04 34.86	10.58	622.5	2.0	0.3	87.0 87.7	82.2	3.2	3.4	38.3	0.0	0.0	1.5
	35.68	10.88	641.9	2.0	0.3	88.4	87.1	3.2	3.3	37.3	0.0	0.0	1.5
	37.32	11.38	654.7	2.0	0.3	89.0 89.7	89.5 92.0	3.2	3.3	37.0 37 R	0.0	0.0	1.5
	38.14	11.62	648.8	2.0	0.3	90.4	94.4	3.2	3.3	37.1	0.0	0.0	1.5
	58.96° 39.78	11.88 12.12	606.7 640.4	2.0 2.0	0.3 °	91.1 91.7	96.9 90 7	3.0 3 2	3.1 र र	33.5	0.0	0.0	1.5
1	40.60	12.38	636.5	2.0	0.3	92.4	101.8	3.2	3.2	35.4	0.0	0.0	1.5
	41.42 42.24	12.62 12.88	702.5 696.6	2.0 2.0	0.3 0.3	93.1 93.8	104.2 106.7	3.5 3.5	3.6 3.5	40.4 39.7	0.0 0.0	0.0 0.0	1.5 1.5

а

		t.					
6. SP							
		- 11					
τ.	ż.		÷.,	-	-		
۶.					æ	ς.	
			æ		¥	Ŧ	
•				۰.	с.	- 5-	
۰.			•	٩.,	•	• 2	
÷н,			Ψ.	ā.		. D	
•			ā1	i L		h.	
			an an an an an an an an an an an an an a	11	- 1	26.1	ł.
			SE 18	1.t	- 24		٤
÷ .			w	ш.			2

			•			•							
ConeTe Run No CPT Fi	ec Inc 5: 96-09 le: KA065	CPT Interp 13-0831-31 106.COR	retation 15		•				Page	: 2 	n dan Latar Latar		iterit Horssel Sél Bis Sél Bis
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	- Weitz Tavioa
43.06	13.12	1254.0	2.4	0.2	95.1	109.1	5.0	5.0	<b>84</b> .0	30.0	30.0	3.0	- 3400. - 1400.
43.88	13.38	2009.3	15.1	0.8	97.2	111.6	8.0	8.0	144.0	30.0	32.0	6.0	العين الا الا
44.70	13.62	4541.1	11.4	0.3	99.3	114.0	11.4	11.1	0.0	44.7	38.0	1.0	
45.52	14.12	1117.6	2.0	0.1	101.0	110.3	2.4	5.2 4 3	0.0 71 6	30.0	32.0	1.0	
47.16	14.38	1157.0	2.0	0.2	105.7	121.4	4.6	4.4	74.4	30.0	30.0	3.0	
47.98	14.62	1236.2	2.0	0.2	107.8	123.9	4.9	4.7	80.4	30.0	30.0	3.0	
48.80	14.88	1614.7	2.0	0.1	109.9	126.3	5.4	5.0	0.0	30.0	32.0	1.0	.• .
49.02 50 44	15.12	3/15.0	4.0	0.1	• 112.1	128.8	9.3	8.6	0.0	37.3	36.0	1.0	
51.26	15.62	1574.9	17.8	1.1	116.6	131.2	6.3	10.4	106.0	30 0	40.0	1.0	•
52.08	15.88	988.3	2.0	0.2	118.6	136.1	4.0	3.6	58.7	30.0	30.0	1.5	
52.90	16.12	1601.8	3.0	0.2	120.7	138.6	6.4	5.7	107.4	30.0	30.0	3.0	
52.72 56 56	16.38	4145.4	22.0	0.0	122.8	141.0	13.8	12.2	0.0	39.1	36.0	1.0	
55.36	16.88	13021.9	97.8	0.9	127.4	143.5	25.2	20.5	0.0	02.0 71 /	40.0	1.0	•
56.18	17.12	13084.8	84.0	0.6	129.8	148.4	26.2	22.5	0.0	71.2	42.0	1.0	
57.00	17.38	4581.0	51.9	1.1	132.1	150.8	15.3	13.0	0.0	40.9	36.0	1.0	
57.82	17.62	1568.2	2.0	0.1	134.3	153.3	5.2	4.4	0.0	30.0	30.0	1.0	
59.46	18.12	907.5	2.0	0.2	130.4	155.7	5.8	3.2	52.8	30.0	30.0	1.5	
60.28	18.38	1018.4	2.0	0.2	140.5	160.6	4.1	3.4	57.4	30.0	30.0	1.5	
61.10	18.62	970.9	2.0	0.2	142.5	163.1	3.9	3.2	53.2	30.0	30.0	1.5	-
61.93	18.88	1375.6	2.0	0.1	144.6	165.5	5.5	4.5	85.2	30.0	30.0	3.0	
63.57	19.12	1627.0	3.9	0.2	146.7 148 8	168.0 170 /	7.9	6.4	0.0	30.0	32.0	1.0	
64.39	19.62	921.9	2.0	0.2	150.8	172.9	3.7	2.9	47 9	30.0	30.0	. 5.0	
65.21	19.88	928.5	2.0	0.2	152.9	175.4	3.7	2.9	48.0	30.0	30.0	1.5	
66.03	20.12	1201.6	2.0	0.2	154.9	177.8	4.8	3.8	69.5	30.0	30.0	1.5	
67 67	20.58	1538.5	2.0	0.1	157.0	180.3	6.2	4.8	96.1	30.0	30.0	3.0	
68.49	20.82	1238.1	2.4	0.1	159.1	182.7	5.4	4.2	0.0	30.0	30.0	1.0	
69.31	21.12	1225.9	2.0	0.2	163.3	187.6	4.9	3.8	70.0	30.0	30.0	1.5	
70.13	21.38	2892.7	5.8	0.2	165.4	190.1	9.6	7.3	0.0	30.0	32.0	1.0	
70.95	21.62	9351.5	71.3	0.8	167.6	192.5	23.4	17.7	0.0	58.0	40.0	1.0	
72.59	21.00	1640.7	48.4	0.0	169.9	195.0	19.1	14.3	0.0	52.0	38.0	1.0	
73.41	22.38	5348.5	79.2	1.5	174.2	197.4	17.8	4.4	00.5	<b>30.0</b> <b>41.4</b>	30.0	5.0	
74.23	22.62	5490.7	62.3	1.1	176.4	202.3	18.3	13.5	0.0	42.0	36.0	1.0	
75.05	22.88	1237.5	2.1	0.2	178.5	204.8	4.9	3.6	68.3	30.0	30.0	1.5	
76 60	23.12	1227.2	2.0	0.2	180.5	207.2	5.0	3.7	69.6	30.0	30.0	1.5	
77.51	23.62	1513.1	2.7	0.2	184.6	212.1	6.1	4.4	89.3	30.0	30.0	1.5	
78.33	23.88	5950.1	80.9	1.4	186.7	214.6	19.8	14.2	0.0	43.4	36.0	1.0	
79.15	24.12	10242.4	153.0	1.5	189.0	217.0	25.6	18.2	0.0	58.8	40.0	1.0	
/9.9/ 80 70	24.58	13964.7	136.5	1.0	191.3	219.5	27.9	19.8	0.0	67.5	40.0	1.0	
81.61	24.88	2680.8	33.5	1.3	196.0	222.0	21.4	7.5	0.0 180.8	30.0	40.0	1.0	
82.43	25.12	3542.4	22.8	0.6	198.1	226.9	11.8	8.2	0.0	30.0	32.0	1.0	
83.25	25.38	1586.4	2.1	0.1	200.3	229.3	5.3	3.7	0.0	30.0	30.0	1.0	
84.07 8/ 80	25.62	1473.5	2.0	0.1	202.4	231.8	5.9	4.1	83.1	30.0	30.0	1.5	
85.71	25.00	2320.4	3.4	0.1	204.5	234.2	6.5 77	4.4 5 3	0.0	·30.0	30.0	1.0	
86.53	26.38	1501.5	2.0	0.1	208.8	239.1	6.0	4.1	84.3	30.0	30.0	1.0	
87.35	26.62	1973.7	37.1	1.9	210.8	241.6	7.9	5.3	121.7	30.0	30.0	3.0	
88.17	26.88	1977.2	36.6	1.8	212.9	244.0	7.9	5.3	121.6	30.0	30.0	3.0	
80.77 80 81	27.12	4709.7	97 0	2.5	214.9	246.5	18.8	12.6	339.9	34.7	34.0	6.0	
90.63	27.62	2589.0	45.4	1.8	219.0	240.7	10.4	6.8	342.4 160 5	34.0	34.0	3.0	
91.45	27.88	2456.6	35.1	1.4	221.0	253.8	9.8	6.5	158.5	30.0	30.0	3.0	
92.27	28.12	2022.3	8.2	0.4	223.2	256.3	6.7	4.4	0.0	30.0	30.0	1.0	
95.09	28.58	1887.0	4.5	0.2	225.3	258.7	6.3	4.1	0.0	30.0	30.0	1.0	
94.73	28.88	2186:1	21.7	1.0	229.6	261.2	·8.7	4.5	135.4	30.0	30.0 30.0	3.0	
95.55	29.12	1809.4	10.6	0.6	231.7	266.1	7.2	4.7	104.9	30.0	30.0	1.5	
96.37	29.38	1704.4	8.7	0.5	233.7	268.5	6.8	4.4	96.2	30.0	30.0	1.5	
97.19	29.62	1891.1 4751 4	15.3	0.8	235.7	271.0	7.6	4.8	110.8	30.0	30.0	1.5	
98.83	27.00	7002.0	128.6	1.8	240.0	275.9	23.3	14.7	0.0	44.5	36.0	1.0	

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0831-3115 CPT File: KA06S106.COR

.

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	9328.1	151.5	1.6	242.2	278.4	31.1	19.6	0.0	52.6	38.0	1.0
100.47	30.62	7248.5	188.2	2.6	244.3	280.8	29.0	18.2	537.9	45.2	36.0	6.0
101.29	30.88	4177.2	144.2	3.5	246.4	283.3	20.9	13.0	291.8	0.0	0.0	· 6.0
102.11	31.12	3258.6	92.1	2.8	248.4	285.7	16.3	10.1	218.0	0.0	0.0	3.0
102.94	31.38	16323.8	186.0	1.1	250.6	288.2	40.8	25.2	0.0	68.2	40.0	1.0
103.76	31.62	22219.6	238.8	1.1	252.9	290.6	44.4	27.3	0.0	76.9	42.0	1.0
104.58	31.88	27098.4	377.2	1.4	255.3	293.1	67.7	41.5	0.0	82.4	42.0	1.0
105.40	32.12	27398.2	454.3	1.7	257.6	295.5	68.5	41.8	0.0	82.6	42.0	1.0
106.22	32.38	24712.5	365.1	1.5	259.9	298.0	61.8	37.5	0.0	79.5	42.0	1.0
107.04	32.62	25635.7	243.7	1.0	262.3	300.4	51.3	31.0	0.0	80.4	42.0	1.0
107.86	32.88	26753.6	280.1	· 1.0	264.7	302.9	53.5	32.2	0.0	81.5	42.0	1.0
	Depth (ft) 99.65 100.47 101.29 102.11 102.94 103.76 104.58 105.40 106.22 107.04 107.86	Depth (ft) Depth (m)   99.65 30.38   100.47 30.62   101.29 30.88   102.11 31.12   102.94 31.38   103.76 31.62   104.58 31.88   105.40 32.12   106.22 32.38   107.04 32.62   107.86 32.88	Depth Depth AvgQt   (ft) (m) (kPa)   99.65 30.38 9328.1   100.47 30.62 7248.5   101.29 30.88 4177.2   102.94 31.38 16323.8   103.76 31.62 22219.6   104.58 31.88 27098.4   105.40 32.12 27398.2   106.22 32.38 24712.5   107.04 32.62 25635.7   107.86 32.88 26753.6	Depth Depth AvgQt AvgFs   (ft) (m) (kPa) (kPa)   99.65 30.38 9328.1 151.5   100.47 30.62 7248.5 188.2   101.29 30.88 4177.2 144.2   102.11 31.12 3258.6 92.1   102.94 31.38 16323.8 186.0   103.76 31.62 22219.6 238.8   104.58 31.88 27098.4 377.2   105.40 32.12 27398.2 454.3   106.22 32.38 24712.5 365.1   107.04 32.62 25635.7 243.7   107.86 32.88 26753.6 280.1	Depth Depth AvgQt AvgQt AvgFs AvgRf   (ft) (m) (kPa) (kPa) (X)   99.65 30.38 9328.1 151.5 1.6   100.47 30.62 7248.5 188.2 2.6   101.29 30.88 4177.2 144.2 3.5   102.11 31.12 3258.6 92.1 2.8   102.94 31.38 16323.8 186.0 1.1   103.76 31.62 22219.6 238.8 1.1   104.58 31.88 27098.4 377.2 1.4   105.40 32.12 27398.2 454.3 1.7   106.22 32.38 24712.5 365.1 1.5   107.04 32.62 25635.7 243.7 1.0   107.86 32.88 26753.6 280.1 1.0	Depth Depth AvgQt AvgFs AvgRf E.Stress   (ft) (m) (kPa) (kPa) (%) (kPa)   99.65 30.38 9328.1 151.5 1.6 242.2   100.47 30.62 7248.5 188.2 2.6 244.3   101.29 30.88 4177.2 144.2 3.5 246.4   102.11 31.12 3258.6 92.1 2.8 248.4   102.94 31.38 16323.8 186.0 1.1 250.6   103.76 31.62 22219.6 238.8 1.1 252.9   104.58 31.88 27098.4 377.2 1.4 255.3   105.40 32.12 27398.2 454.3 1.7 257.6   106.22 32.38 24712.5 365.1 1.5 259.9   107.04 32.62 25635.7 243.7 1.0 262.3   107.86 32.88 26753.6 280.1 1.0 264.7	Depth (ft) Depth (m) AvgQt (kPa) AvgFs (kPa) AvgRf (%) E.Stress (kPa) Hyd. Pr. (kPa)   99.65 30.38 9328.1 151.5 1.6 242.2 278.4   100.47 30.62 7248.5 188.2 2.6 244.3 280.8   101.29 30.88 4177.2 144.2 3.5 246.4 283.3   102.11 31.12 3258.6 92.1 2.8 248.4 285.7   102.94 31.38 16323.8 186.0 1.1 250.6 288.2   103.76 31.62 22219.6 238.8 1.1 252.9 290.6   104.58 31.88 27098.4 377.2 1.4 255.3 293.1   105.40 32.12 27398.2 454.3 1.7 257.6 295.5   106.22 32.38 24712.5 365.1 1.5 259.9 298.0   107.04 32.62 25635.7 243.7 1.0 262.3 300.4	Depth Depth AvgQt AvgFs AvgRf E.Stress Hyd. Pr. N60   (ft) (m) (kPa) (kPa) (%) (kPa) (kPa) (blo   99.65 30.38 9328.1 151.5 1.6 242.2 278.4 31.1   100.47 30.62 7248.5 188.2 2.6 244.3 280.8 29.0   101.29 30.88 4177.2 144.2 3.5 246.4 283.3 20.9   102.11 31.12 3258.6 92.1 2.8 248.4 285.7 16.3   102.94 31.38 16323.8 186.0 1.1 250.6 288.2 40.8   103.76 31.62 22219.6 238.8 1.1 252.9 290.6 44.4   104.58 31.88 27098.4 377.2 1.4 255.3 293.1 67.7   105.40 32.12 27398.2 454.3 1.7 257.6 295.5 68.5   1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Page: 3









KLEINFELDER

Client: Sounding: Date:

06-SC-106 29-Jui-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

۰.

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wa	ve Velocity	Corres Depth	ponding ncrement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
•						
1.45	1.55				1	
2.45	2.51	5.9	* 163	533	1.5 - 2.5	4.8 - 8.0
3.45	3.50	6.4	153	503	2.5 - 3.5	8.0 - 11.3
4.45	4.49	8.7	114	373	3.5 - 4.5	11.3 - 14.6
5.45	5.48	6.9	¥144	472	4.5 - 5.5	14.6 - 17.9
6.45	6.47	7.2	138	454	5.5 - 6.5	17.9 - 21.2
7.45	7.47	6.4	156	511	6.5 - 7.5	21.2 - 24.4
8.45	8.47	6.6	151	496	7.5 - 8.5	24.4 - 27.7
9.45	9.47	6.5	154	504	8.5 - 9.5	27.7 - 31.0
10.45	10.46	7.5	+ 133	437	9.5 - 10.5	31.0 - 34.3
11.45	11.46	7.4	135	443	10.5 - 11.5	34.3 - 37.6
12.45	12.46	8.5	118	386	11.5 - 12.5	37.6 - 40.8
13.45	13.46	7.1	141	462	12.5 - 13.5	40.8 - 44.1
14.45	14.46	6.0	167	546	13.5 - 14.5	44.1 - 47.4
15.45	15.46	5.4	* 185	607	14.5 - 15.5	47.4 - 50.7
16.45	16.46	6.3	159	520	15.5 - 16.5	50.7 - 54.0
17.45	17.46	5.4	185	607	16.5 - 17.5	54.0 - 57.3
18.45	18.46	5.7	175	575	17.5 - 18.5	57.3 - 60.5
19.45	19.46	6.3	159	521	18.5 - 19.5	60.5 - 63.8
20.45	20.46	5.8	¥ 172	565	19.5 - 20.5	63.8 - 67.1
21.45	21.46	5.9	169	556	20.5 - 21.5	67.1 - 70.4
22.45	22.46	5.8	172	565	21.5 - 22.5	70.4 - 73.7
23.45	23.46	4.4	227	745	22.5 - 23.5	73.7 - 76.9
24.45	24.46	6.4	156	512	23.5 - 24.5	76.9 - 80.2
25.45	25.46	6.2	<b>⊁</b> 161	529	24.5 - 25.5	80.2 - 83.5
26.45	26.46	4.2	238	781	25.5 - 26.5	83.5 - 86.8
27.45	27.46	4.5	222	729	26.5 - 27.5	86.8 - 90.1
28.45	28.46	4.5	222	729	27.5 - 28.5	90.1 - 93.3
29.45	29.46	5.0	200	656	28.5 - 29.5	93.3 - 96.6
<u>   3</u> 0.45	30.46	5.2	* <u>192</u>	631	29.5 - 30.5	96.6 - 99.9
31.45	31.45	5.4	185	607	30.5 - 31.5	99.9 - 103.2
32.45	32.45	6.0	167	547	31.5 - 32.5	103.2 - 106.5
33.45	33.45	4.8	208	683	32.5 - 33.5	106.5 - 109.7

C

	Consta	1.00	CDT Intor			•				Daga				· ·
	Interp	retation	Output - R	elease 1.00	.07					Page		1. 1. 12		\$
	Run No:	: 96-08	04-2150-45	i94								1 A.	na in ≜u	¥ \$
<u> </u>	JOD NO: Client:	: 90-30 • Kiein	y felder				and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec				· ·	· · ·		en en en en en en en en en en en en en e
1.	Project	t: 115 S	ection 4				•		- 	· ·				
1	Site:	I 15,	s4: 700 W,	06-SC-108										are a
	Locatio	on: 500 S	On Rmp-S	•								· • *		¥7
	Cone:	20 T	ON A 040						• •					
	CPI Dat CPT Tim	(e: 90/07) ne: 15:58	/00											
	CPT Fil	e: KA06S	108.COR	•										: •. ·.
		Tabla (m	· · · · · · · · · · · · · · · · · · ·	2 00	······································	·								•
	Averag	able (m	/. ement (m):	0.25	(10).	0.0								
	Su Nkt	used:		12.50										
	Phi Me	ethod :		Robertson	and Camp	paneila, 19	983						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	
	Used L	init Weig	hts Assign	ed to Soil	Zones	. Sands								-
	Depth	Depth	AvgQt	Avgfs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	 Su	Dr	Phi	OCR	
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blow	s/ft)	(kPa)	(%)	(deg.)	(ratio)	
	0.41	0.12	1286.7	6.1	0.5	2.2	0.0	5.1	10.3	102.8	62.9	50.0	10.0	
	1.23	0.38	2084.9	11.6	0.6	6.8	0.0	6.9	13.9	0.0	60.8	46.0	1.0	
	2.05	0.88	739.4	19.1	2.6	15.9	0.0	2.2 4.9	9.9	103.5	40.1	42.0	. 10.0	•
	3.69	1.12	554.7	11.9	2.1	20.4	0.0	3.7	7.4	42.7	0.0	0.0	6.0	
	4.51	1.38	441.9	10.9	2.5	24.8	0.0	4.4	8.7	33.4	0.0	0.0	6.0	
	5.55	1.02	1517.2	12.3	1.2	29.2 33.8	0.0	5.5	9.5 8.7	103.0	30.0	38.0	6.0	
	6.97	2.12	1669.9	13.6	0.8	37.0	1.2	6.7	10.7	130.5	30.2	38.0	6.0	
	7.79	2.38	1777.2	14.2	0.8	39.1	3.7	7.1	11.1	138.8	31.2	38.0	6.0	
	8.61	2.62	2337.6	16.8	0.7	41.2	6.1	7.8	11.9	0.0	38.3	40.0	1.0	
	10.25	3.12	7419.2	44.7	0.7	45.6	11.0	18.5	26.9	0.0	41.7 70.0	40.0	1.0	
	11.07	3.38	10331.8	79.7	0.8	47.9	13.5	25.8	36.5	0.0	78.8	46.0	1.0	
	11.89	3.62	12566.3	78.2	0.6	50.2	15.9	25.1	34.7	0.0	83.7	46.0	1.0	
6.	12.71	5.88	58/8.5	55.3 25 0	0.9	52.6	18.4	14.7	19.8	0.0	61.3	42.0	1.0	
	14.35	4.38	10867.5	19.1	0.2	57.4	23.3	21.7	28.1	0.0	77.6	44.0	1.0	
( )	15.17	4.62	7332.3	22.5	0.3	59.7	25.8	18.3	23.2	0.0	65.8	42.0	1.0	
	15.99	4.88	3859.7	37.2	1.0	62.0	28.2	12.9	16.0	0.0	46.8	40.0	1.0	
	17.63	5.38	439.7	2.0	0.5	65.5	33.1	2.2	2.7	27.3	0.0	0.0	1.5	
	18.45	5.62	387.7	4.0	1.0	<b>66.1</b>	35.6	1.9	2.3	22.9	0.0	0.0	1.5	
	19.27	5.88	955.8	12.1	1.3	67.5	38.0	4.8	5.7	<b>68</b> .0	0.0	0.0	6.0	
	20.09	6.38	2085.1	27.8	1.2	09.5 71.6	40.5	4.2 8.3	4.9 9.6	58.0 157.7	30.0	36.0	5.0	
	21.74	6.62	397.8	2.2	0.6	72.9	45.4	2.0	2.3	22.4	0.0	0.0	1.5	
	22.56	6.88	2368.7	30.4	1.3	74.3	47.8	9.5	10.8	179.7	30.3	36.0	6.0	
	23.38	7.12	922.3	20.3	2.2	76.3	50.3	4.6	5.2	63.7	0.0	0.0	3.0	
	25.02	7.62	1204.3	17.9	1.5	79.1	55.2	6.0	6.6	85.6	0.0	0.0	6.0	
	25.84	7.88	594.2	9.7	1.6	81.1	57.6	3.0	3.2	36.4	0.0	0.0	1.5	
	26.66	8.12	935.3	13.3	1.4	83.2	60.1	4.7	5.0	63.4	0.0	0.0	3.0	
	27.40	8.62	1870.0	52.8	2.8	87.3	62.5	5.3 9.3	9.8	137.4	0.0	32.0 0.0	6.0	
	29.12	8.88	907.2	23.4	2.6	89.3	67.4	6.0	6.3	60.0	0.0	0.0	3.0	
	29.94	9.12	5859.5	74.6	1.3	91.4	69.9	19.5	20.0	0.0	53.2	40.0	1.0	
	30.76	9.38	1055.1	24.0	2.3	93.5	72.3	5.3	5.3	71.1	0.0	0.0	3.0	
	32.40	9.88	839.5	7.7	0.9	97.6	77.3	4.2	4.2	53.2	0.0	0.0	3.0	
	33.22	10.12	703.8	4.3	0.6	99.0	79.7	3.5	3.5	42.0	0.0	0.0	1.5	
	34.04	10.38	602.4	2.4	0.4	99.7	82.2	3.0	3.0	33.6	0.0	0.0	1.5	
	34.80 35.68	10.62	591.9 623.5	3.3 3.7	0.6	100.3	87.1	3.0 3.1	2.9	32.6 34.8	0.0	0.0	1.5	
	36.50	11.12	572.2	2.9	0,5	101.7	89.5	2.9	2.8	30.5	0.0	0.0	1.5	
	37.32	11.38	639.3	2.9	0.5	102.3	92.0	3.2	3.1	35.6	0.0	0.0	1.5	
	38.14	11.62	739.7	4.4	0.6	103.0	94.4	3.7	3.6	43.4	0.0	0.0	1.5	
	30.70 30 78	12 12	696.2	3.6	0.5	105.7	99.3	3.5	3.3	39.4	0.0	0.0	1.5	
¢ .	40.60	12.38	668.8	4.3	0.6	105.0	101.8	3.3	3.2	37.0	0.0	0.0	1.5	
1	41.42	12.62	680.8	5.1	0.8	105.7	104.2	3.4	3.2	37.7	0.0	0.0	1.5	
2 <b>-</b>	42.24	12.88	662.1	6.1	0.9	107.1	106.7	5.3	5.1	22.2	0.0	0.0	1.2	

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-4594 CPT File: KA06S108.COR

Page: 2

CPT File: KA06S108.COR					•			•					
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
43.06	13.12	724.9	7.0	1.0	109.1	109.1	 3.6	3.4	40.5	 0 0	<u>.</u>	1 5	
43.88	13.38	715.7	7.7	1.1	111.2	111.6	3.6	3.3	39.4	0.0	0.0	1.5	
44.70	13.62	689.9	7.1	1.0	113.2	114.0	3.4	3.2	37.0	0.0	0.0	1.5	
45.52	13.88	1235.9	14.1	. 1.1	115.3	116.5	4.9	4.5	80.3	30.0	30.0	3.0	
46.34	14.12	5492.6	47.8	0.9	117.4	118.9	13.7	12.4	0.0	47.8	38.0	1.0	
4/.10	14.58	16/2.2	31.5	1.9	119.6	121.4	6.7	6.0	114.5	30.0	30.0	3.0	
47.90	14.02	203.8 4720 0	44.8 78.0	1.4	121.7	123.9	10.7	9.5	0.0	31.8	34.0	1.0	
40.00	15 12	3801 6	40.7	1.0	123.9	120.3	15.7	15.8	0.0	42.7	38.0	1.0	
50.44	15.38	1852.5	14.0	0.8	128 2	131 2	7.4	A /	127 5	30.9	30.0	1.0	•
51.26	15.62	2226.9	31.7	1.4	130.2	133.7	8.9	7.6	157.0	30.0	32.0	3.0	
52.08	15.88	1486.Z	15.8	1.1	132.3	136.1	5.9	5.1	97.4	30.0	30.0	3.0	
52.90	16.12	3248.8	31.1	1.0	134.4	138.6	10.8	9.1	0.0	30.8	34.0	1.0	
53.72	16.38	8392.3	103.1	1.2	136.6	141.0	21.0	17.6	0.0	57.8	40.0	1.0	
54.54	16.62	18132.8	139.8	0.8	139.0	143.5	36.3	30.1	0.0	79.6	44.0	1.0	
56 18	17 12	1552 0	101.4	1.0	141.3	145.9	20.9	17.2	0.0	49.0	38.0	1.0	
57.00	17 38	1728 8	10.2	0.0	143.4	148.4	6.2	5.1	100.8	30.0	30.0	3.0	
57.82	17.62	7118.8	62.0	0.9	145.4	150.0	0.9 17 8	<b>7.0</b> 1/ 7	114.6	50.0	30.0	3.0	
58.64	17.88	5754.9	131.0	2.3	149.8	155.7	23 0	18 4	0.0 436 0	52.U	38.0	1.0	•
59.46	18.12	9356.3	135.6	1.4	151.9	158.2	23.4	18.6	0.0	59.4	40.0	1.0	
60.28	18.38	17348.9	180.5	1.0	154.3	160.6	34.7	27.3	0.0	76.9	42.0	1.0	
61.10	18.62	14626.9	133.2	0.9	156.7	163.1	29.3	22.9	0.0	71.7	42.0	1.0	
61.93	18.88	1550.0	17.9	1.2	159.0	165.5	6.2	4.8	98.0	30.0	30.0	3.0	
02.75	19.12	1092.5	2.5	. 0.2	161.0	168.0	4.4	3.4	61.1	30.0	30.0	1.5	
64 30	19.30	1049.3	2.1	0.5	163.1	170.4	4.2	3.2	57.3	30.0	30.0	1.5	
65.21	19.02	1096 0	0 1	0.0	167.1	172.9	5.0	3.8	73.3	30.0	30.0	1.5	
66.03	20.12	1714.5	9.2	0.5	167.1	177.9	4.4	3.5	6U.1	30.0	30.0	1.5	
66.85	20.38	1612.0	13.4	0.8	171.2	180.3	6.4	4.8	109.4	30.0	30.0	3.0	
67.67	20.62	1341.2	13.6	1.0	173.3	182.7	5.4	4.0	78.8	30.0	30.0	15	
68.49	20.88	1132.6	8.7	0.8	175.3	185.2	4.5	3.3	61.8	30.0	30.0	1.5	
69.31	21.12	1299.3	9.9	0.8	177.4	187.6	5.2	3.8	74.7	30.0	30.0	1.5	En lis
70.15	21.58	1688.3	21.6	1.3	179.4	190.1	6.8	4.9	105.5	30.0	30.0	3.0	
70.95	21.02	1/41.2	25.0	1.4	181.5	192.5	7.0	5.1	109.4	30.0	30.0	3.0	- E -
72.59	22.12	1153 0	8 1	0.7	103.5	195.0	0.0	4.5	89.6	30.0	30.0	1.5	لبريية
73.41	22.38	1182.0	9.6	0.8	187.6	197.4	4.0	3.3	61./	30.0	30.0	1.5	
74.23	22.62	3046.7	29.8	1.0	189.7	202.3	10.2	7.2	0.0	30.0	30.0	1.5	
75.05	22.88	6525.1	75.5	1.2	191.9	204.8	21.8	15.4	0.0	45.7	36.0	1.0	
75.87	23.12	7469.2	190.1	2.5	194.0	207.2	29.9	21.0	565.4	49.4	38.0	6.0	
76.69	23.38	4208.0	39.4	0.9	196.1	209.7	14.0	9.8	0.0	32.8	34.0	1.0	
70 77	23.62	2/66.3	61.6	2.2	198.2	212.1	11.1	7.7	188.5	30.0	30.0	3.0	
70.33	22.00	9304.3	149.8	1.0	200.3	214.6	31.7	21.9	0.0	55.9	38.0	1.0	
79.97	24.12	1402 6	5 6	2.0	202.5	217.0	8.1	5.5	95.3	0.0	0.0	1.5	
80.79	24.62	1581.9	7.0	0.4	204.5	219.5	6.3	4.1	כ. כמ ז כס	30.0	30.0	1.5	
81.61	24.88	3551.4	61.9	1.7	208.6	224.4	14.2	9.6	249.5	30.0	32.0	6.0	
82.43	25.12	2935.9	34.2	1.2	210.7	226.9	9.8	6.6	0.0	30.0	30.0	1.0	
83.25	25.38	2349.5	33.1	1.4	212.8	229.3	9.4	6.3	152.6	30.0	30.0	3.0	
84.07	25.62	4248.0	90.0	2.1	214.9	231.8	17.0	11.3	304.1	31.8	32.0	6.0	
04.0Y 85 71	22.00	1859.5	30.1	1.6	216.9	234.2	7.4	4.9	112.7	30.0	30.0	3.0	
86 53	20.12	2030.0	29.7	1.5	219.0	236.7	8.2	5.4	126.6	30.0	30.0	3.0	
87.35	26.62	4810 5	05 3	2 0	221.0	239.1	6.9	4.6	102.0	30.0	30.0	1.5	
88.17	26.88	2911.4	30.1	1.0	225.3	241.8	0 7	6.3	0.0	34.0	34.0	1.0	
88.99	27.12	2024.1	19.2	0.9	227.4	246.5	8.1	5.3	124.0	30.0	30.0	3.0	
89.81	27.38	1976.8	18.6	0.9	229.4	248.9	7.9	5.1	119.9	30.0	30.0	3.0	
90.63	27.62	2166.5	32.9	1.5	231.5	251.4	8.7	5.6	134.7	30.0	30.0	3.0	
91.45	27.88	2227.7	19.7	0.9	233.5	253.8	8.9	5.7	139.2	30.0	30.0	3.0	
92.27	28.12	2512.0	26.2	1.0	235.6	256.3	10.0	6.4	161.6	30.0	30.0	3.0	
93.09	20.30	4270.U 8565 7	J2.4 117 ⊑	1.2	23/./	258.7	14.3	9.1	0.0	30.6	32.0	1.0	
04 77	20.02	-2856 A	66 5	27	239.9	201.2	21.4	13.5	U.U	50.3	36.0	1.0	
95.55	29,12	6030 7	110.9	1.8	246.1	203.0	20 1	12 4	100.1	20.0	30.0	5.0	
96.37	29.38	10293.2	148.2	1.4	246.5	200.1	25.7	16 0	0.0	40.0	34.U 329.0	1.0	1
97.19	29.62	2811.2	13.1	0.5	248.7	271.0	9.4	5.8	0.0	30.0	30.0	1.0	(a) is
98.01	29.88	2409.0	20.1	0.8	250.9	273.5	8.0	5.0	0.0	30.0	30.0	1.0	
98.83	30.12	2108.5	24.8	1.2	253.0	275.9	8.4	5.2	126.4	30.0	30.0	1.5	( T

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-4594 CPT File: KA06S108.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	10560.1	125.4	1.2	255.1	278.4	26.4	16.2	0.0	55.4	38.0	1.0
100.47	30.62	20845.3	219.0	1.1	257.5	280.8	41.7	25.4	0.0	74.8	42.0	1.0
101.29	30.88	21252.9	149.4	0.7	259.9	283.3	42.5	25.8	0.0	75.2	42.0	1.0
102.11	31.12	3407.9	41.4	1.2	262.2	285.7	11.4	6.9	0.0	30.0	30.0	1.0
102.94	31.38	3032.2	7.2	0.2	264.4	288.2	10.1	6.1	0.0	30.0	30.0	1.0
103.76	31.62	2907.5	11.8	0.4	266.6	290.6	9.7	5.8	0.0	30.0	30.0	1.0
104.58	31.88	2892.8	14.2	0.5	268.7	293.1	9.6	5.8	0.0	30.0	30.0	1.0
105.40	32.12	5881.1	59.6	1.0	270.9	295.5	19.6	11.7	0.0	37.8	34.0	1.0
106.22	32.38	21194.9	127.1	0.6	273.2	<b>298.</b> 0	42.4	25.1	0.0	74.4	40.0	1.0
107.04	32.62	21579.5	123.9	. 0.6	275.6	300.4	43.2	25.4	0.0	74.8	40.0	1.0
107.86	32.88	12171.9	164.9	1.4	278.0	302.9	30.4	17.9	0.0	58.3	38.0	1.0
108.68	33.12	16497.8	155.4	0.9	280.4	305.3	33.0	19.3	0.0	66.9	40.0	1.0
109.50	33.38	24772.9	211.1	0.9	282.8	307.8	49.5	28.8	0.0	78.4	42.0	1.0
110.32	33.62	25808.4	366.2	1.4	285.1	310.2	64.5	37.4	0.0	79.4	42.0	1.0
111.14	33.88	31923.6	203.9	0.6	287.5	312.7	63.8	36.9	0.0	85.4	42.0	1.0
111.96	34.12	28048.2	154.6	0.6	290.0	315.1	46.7	26.9	0.0	81.6	42.0	1.0
112.78	34.38	25553.6	193.9	0.8	292.5	317.6	51.1	29.2	0.0	78.8	42.0	1.0

Page: 3







Client: Sounding: Date:

Source: Offset (m): Cone: Geophone: KLEINFELDER 06-SC-108 07-Jun-96

Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone Depth	['] Distance	Last Time Interval For X-Over	Shear Wav	e Velocity	Corresp Depth In	onding crement
(m)	(m)	(ms)	(m/s)	(ft/s)	( <b>m</b> )	(ft)
1.45	1.55					
2.45	2.51	8.9	₩108	353	1.5 - 2.5	4.8 - 8.0
3.45	3.50	7.7	128	418	2.5 3.5	8.0 11.3
4.45	4.49	5.4	183	601	3.5 - 4.5	11.3 - 14.6
5.45	5.48	7.9	<b>⊬126</b>	413	4.5 5.5	14.6 - 17.9
6.45	6.47	8.3	120	394	5.5 - 6.5	17.9 - 21.2
7.45	7.47	7.2	138	454	6.5 - 7.5	21.2 - 24.4
8.45	8.47	6.2	161	528	7.5 - 8.5	24.4 - 27.7
9.45	9.47	4.9	204	668	8.5 - 9.5	27.7 - 31.0
10.45	10.46	6.2	+ 161	528	9.5 - 10.5	31.0 - 34.3
11.45	11.46	8.1	123	405	10.5 - 11.5	34.3 - 37.6
12.45	12.46	6.9	145	4.75	11 5 - 12.5	37.6 - 40.8
13.45	13.46	7.7	130	4 36	12.5 • 13.5	40.8 - 44.1
14.45	14.46	6.6	151	497	13.5 - 14.5	44.1 - 47.4
15.45	15.46	5.1	<b>⊁ 196</b>	643	14.5 - 15.5	47.4 - 50.7
16.45	16.46	4.8	208	683	15.5 - 16.5	50.7 - 54.0
17.45	17.46	5.1	196	643	16.5 - 17.5	54.0 - 57.3
18.45	18.46	4.6	217	713	17.5 - 18.5	57.3 - 60.5
19.45	19.46	5.5	182	596	18.5 - 19.5	60.5 - 63.8
20.45	20.46	6.2	* 161	529	19.5 - 20.5	63.8 - 67.1
21.45	21.46	6.1	164	538	20.5 21.5	67.1 . 70.4
22.45	22.46	5.5	182	596	21.5 - 22.5	70.4 - 73.7
23.45	23.46	4.2	238	781	22.5 23.5	73.7 76.9
24.45	24.46	5.4	185	607	23.5 - 24.5	76.9 - 80.2
25.45	25.46	4.9	¥ 204	669	24.5 - 25.5	80.2 - 83.5
26.45	26.46	4.9	204	669	25.5 26.5	83.5 - 86.8
27.45	27.46	4.5	222	729	26.5 - 27.5	86.8 90.1
28.45	28.46	4.5	222	729	27.5 28.5	90.1 - 93.3
29.45	29.46	3.7	270	887	28.5 - 29.5	93.3 - 96.6
30.45	30.46	4.3	* 233_	763	29.5 - 30.5	96.6 99.9
31.45	31.45	3.7	270	887	30.5 - 31.5	99.9 103.2
32.45	32.45	3.7	270	887	31.5 - 32.5	103.2 - 106.5
33.45	33.45	3.9	256	841	32.5 - 33.5	106.5 - 109.7
34.45	34.45	3.1	- 323	1058	33.5 - 34.5	109.7 - 113.0
					1	
					35 str	

. ·			•			•								
	ConeTec	Inc	CPT Interp	pretation			÷			Page	: 1		•	1
		etation 06-08	OUTPUT - H 0/-21/0-1/	Celease 1.UL	J.U7.									
	ich No:	90-00	04-2147-14											
1	Client:	Klein	felder						;		2.1.3	• 		1.00
( S.	Project	: 115 S	ection 4							•				
Ex .	Site:	115,	\$4: 500 S,	06-SC-111										
ų 🚬	Location	n: 500 s	On Rmp-N							· · ·				•
	Cone:	20 T	ON A 040					· · · · ·						
	CPT Date	e: 96/12	/06										-	
	CPT Time	e: 07:44	111 000	· ·										
		E: KAUOS	.UK											
	Water 1	Table (m	):	2.00	(ft):	6.6								,
	Averagi	ing Incr	ement (m):	0.25	•••••								•	
	Su Nkt	used:		12.50	•									
	Phi Met	thod :		Robertson	and Cam	panella, 19	283						÷	
	Dr Met Used Ur	thod: hit Weid	nts Assian	Jamiolkow ed to Soii	ski - Al Zones	l Sands								
														•
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 vs/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
	0.41	0.12	1.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	1 0	
	1.23	0.38	1.0	` 0.0	0.0	7.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	2.05	0.62	1003.2	16.2	1.6	12.0	0.0	5.0	10.0	79.3	0.0	0.0	10.0	
	2.87	0.88	1601.5	48.2	3.0	16.5	0.0	8.0	16.0	126.8	0.0	0.0	10.0	
	J.09 4 51	1 38	1413.5 5038 7	30.0 70 /	1 3	21.0	0.0	10.0	14.1	111.4	0.0	0.0	10.0	
	5.33	1.62	4924.9	33.4	0.7	30.2	0.0	17.0	21 0	0.0	/1.9 6/ 1	46.0	1.0	
	6.15	1.88	3767.6	37.9	1.0	34.9	0.0	12.6	20.8	0.0	54.4	44.0	1.0	
	6.97	2.12	3397.1	31.8	0.9	38.3	1.2	11.3	17.9	0.0	50.1	42.0	1.0	
	7.79	2.38	2346.4	30.6	1.3	40.4	3.7	9.4	14.4	184.2	38.7	40.0	10.0	
	8.61	2.62	2512.5	26.1	1.1	42.5	6.1	9.2	13.9	181.1	37.6	40.0	10.0	
	10.25	3.12	884.1	13.0	1.5	44.0 46.7	8.6	1.6	11.2	0.0	36.6	38.0	1.0	
	11.07	3.38	1113.7	17.7	1.6	48.8	13.5	5.6	7.8	84.1	0.0	0.0	6.0	
	11.89	3.62	3809.4	36.8	1.0	50.9	15.9	12.7	17.4	0.0	49.3	40.0	1.0	
1	12.71	3.88	12986.2	70.6	0.5	53.2	18.4	26.0	34.9	0.0	83.8	46.0	1.0	,
SU.	13.55	4.12	10300.0	119.2	0.8	55.6	20.8	30.7	40.3	0.0	88.0	46.0	1.0	
(	14.35	4.50	5770 1	73.0	0.7	28.0	25.5	29.3	5/./	0.0	86.1	46.0	1.0	
	15.99	4.88	1335.0	16.8	1.3	62.4	28.2	5.3	6.6	0.0	30.0	42.0	1.0	
	16.81	5.12	1013.1	4.4	0.4	64.5	30.7	4.1	4.9	73.4	30.0	32.0	6.0	
	17.63	5.38	897.4	5.2	0.6	66.5	33.1	3.6	4.3	63.8	30.0	30.0	3.0	
	18.45	5.62	745.9	4.7	0.6	68.6	35.6	3.7	4.4	51.3	0.0	0. <b>0</b>	3.0	
	20.09	6 12	1188 3	12 1	1.0	70.6	38.0	3.8	4.4	52.1	0.0	0.0	3.0	
	20.92	6.38	1119.1	9.4	0.8	74.7	40.5	4.5	5.1	80.0	30.0	32.0	6.0	
	21.74	6.62	2098.2	29.0	1.4	76.8	45.4	8.4	9.4	158.1	30.0	34.0	6.0	
	22.56	6.88	591.6	8.9	1.5	78.8	47.8	3.0	3.3	37.2	0.0	0.0	1.5	
	23.38	7.12	1734.6	24.9	1.4	80.8	50.3	6.9	7.6	128.3	30.0	34.0	6.0	
	24.20	7.50	935 2	12.7	1.3	84 O	55 2	4.8	5.1	65.8	0.0	0.0	3.0	
	25.84	7.88	990.8	14.7	1.5	87.0	57.6	4./ 5.0	5.0	67.7	0.0	0.0	3.0	
	26.66	8.12	847.4	10.6	1.3	89.0	60.1	4.2	4.4	55.9	0.0	0.0	3.0	
	27.48	8.38	829.3	11.8	1.4	91.1	62.5	4.1	4.3	54.1	0.0	0.0	3.0	
	28.30	8.62	1199.6	15.4	1.3	93.1	65.0	4.8	4.9	83.3	30.0	30.0	3.0	
	29.12	0.00	1705 7	2/ 1	1.0	95.2	67.4	5.5	5.5	74.5	0.0	0.0	3.0	
	30.76	9.38	2664.3	32.5	1.2	97.2	72 3	10.7	10 5	100.2	30.0	32.0	6.0	
	31.58	9.62	1200.6	28.8	2.4	101.3	74.8	6.0	5.8	82.0	0.0	0.0	3.0	
	32.40	9.88	3580.5	52.1	1.5	103.4	77.3	11.9	11.5	0.0	37.4	36.0	1.0	
	33.22	10.12	1475.0	15.3	1.0	105.5	79.7	5.9	5.6	103.2	30.0	30.0	3.0	
	54.04 34 84	10.58	1112.9	3.2	0.3	107.6	82.2	4.5	4.2	73.9	30.0	30.0	3.0	
	35.68	10.88	824.5	2.0	0.2	111 0	87 1	3.0 6 1	3.4	50./	30.0	50.0	5.0	
	36.50	11.12	972.0	2.0	0.2	112.4	89.5	3.9	3.6	61.6	30.0	30.0	3.0	
	37.32	11.38	886.3	2.1	0.2	113.7	92.0	4.4	4.1	54.4	0.0	0.0	1.5	
	38.14	11.62	800.8	2.0	0.2	114.4	94.4	4.0	3.7	.47.4	0.0	0.0	1.5	
•	38.96	11.88	995.6	2.5	0.3	115.8	96.9	4.0	3.6	62.6	30.0	30.0	3.0	
 A	37.18 10 40	12.12	900.5 1064 7	3.1 / 1	0.5	117.8	99.3 101 P	4.0	5.6 Z 9	61.7	30.0	50.0	5.0	
	40.00	12.62	1110_6	2.0	0.7	121.0	104.2	4.4	3.9	70.8	30.0	30.0	3.0	
	42.24	12.88	1178.9	2.4	0.2	123.9	106.7	4.7	4.1	75.9	30.0	30.0	3.0	

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-1438 CPT File: KA06S111.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
43.06	 13.12	1265.9	4.7	 0.4	126.0	109.1	5.1	<b></b>	82.5	30.0	30 0	 7 0
43.88	13.38	1088.5	4.3	0.4	128.0	111.6	4.4	3.8	67.9	30.0	30.0	3.0
44.70	13.62	940.7	4.0	0.4	130.1	114.0	3.8	3.2	55.7	30.0	30.0	1.5
45.52	13.88	1103.6	9.7	0.9	132.1	116.5	4.4	3.8	68.4	30.0	30.0	3.0
46.34	14.12	2329.3	20.5	0.9	134.2	118.9	9.3	7.9	166.1	30.0	32.0	6.0
47.16	14.38	2158.9	34.6	1.6	136.2	121.4	8.6	7.2	152.1	30.0	32.0	6.0
47.98	14.02	5010.5	42.1	1.4	138.3	123.9	12.0	10.0	219.9	30.0	34.0	6.0
40.00	14.00	2026.0	47.7	1.0	140.4	120.3	17.3	14.5	0.0	45.5	38.0	1.0
50.44	15.38	1794.8	21.3	1.2	142.0	120.0	7.0	5.8	121 5	30.0	32.0	1.0
51.26	15.62	2727.0	33.1	1.2	146.7	133.7	10.9	8.8	195.7	30.0	32 0	5.0
52.08	15.88	2101.4	19.9	0.9	148.8	136.1	8.4	6.7	145.3	30.0	30.0	3.0
52.90	16.12	1694.1	16.7	1.0	150.8	138.6	6.8	5.4	112.4	30.0	30.0	3.0
53.72	16.38	2882.2	40.1	1.4	152.9	141.0	11.5	9.1	207.1	30.0	32.0	6.0
54.54	16.62	3757.1	50.4	1.3	155.0	143.5	12.5	9.8	0.0	32.9	34.0	1.0
55.30 54 19	10.00	9400.9 72/5 7	86.9	0.9	157.2	145.9	23.5	18.3	0.0	59.0	40.0	1.0
57 00	17 38	1727 7	04.3 7 8	0.9	159.5	148.4	18.1	14.0	0.0	51.3	38.0	1.0
57.82	17.62	1305 5	7.0 5 7	0.5	161.7	150.0	/.U 5 4	).4 / 7	114.0	30.0	50.0	3.0
58.64	17.88	1151_4	3.8	0.3	165_8	155.7	4.4	4.5	66.J	30.0	30.0	3.0 1 F
59.46	18.12	1525.2	5.7	0.4	167.8	158.2	6.1	4.6	95.9	30.0	30.0	1.5 7 0
60.28	18.38	3656.5	31.7	0.9	169.9	160.6	12.2	9.2	0.0	30.8	34.0	1.0
61.10	18.62	14982.2	107.1	0.7	172.2	163.1	30.0	22.3	0.0	71.1	42.0	1.0
61.93	18.88	17073.6	168.4	1.0	174.6	165.5	34.1	25.3	0.0	74.6	42.0	1.0
62.75	19.12	13420.6	194.3	1.4	177.0	168.0	33.6	24.7	0.0	67.5	40.0	1.0
63.37	19.30	1700 7	180.0	1.0	179.4	170.4	35.1	25.7	0.0	75.0	42.0	. 1.0
65 21	19.02	100/3 3	170.1	1.0	161.8	172.9	35.0	25.4	0.0	74.7	42.0	1.0
66.03	20.12	8518 5	110.6	1.6	104.2	177.9	38.1	21.5	0.0	77.0	42.0	1.0
66.85	20.38	3793.6	64.4	1.7	188.8	180.3	12 6	0 0	0.0	30 4	38.0	1.0
67.67	20.62	7380.7	108.6	1.5	191.0	182.7	24.6	17 4	0.0	20.4 20.3	38.0	1.0
68.49	20.88	15658.9	171.0	1.1	193.2	185.2	39.1	27.6	0.0	70.7	42.0	1.0
69.31	21.12	13025.6	188.4	1.4	195.5	187.6	32.6	22.8	0.0	65.2	40.0	1.0
70.13	21.38	20347.4	290.9	1.4	197.8	190.1	50.9	35.4	0.0	77.9	42.0	1.0
70.95	21.62	26602.9	141.3	0.5	200.2	192.5	44.3	30.7	0.0	85.4	44.0	1.0
/1.//	21.88	18995.6	120.2	0.6	202.7	195.0	38.0	26.1	0.0	75.5	42.0	1.0
73 41	22.12	8837.1 2177 4	100.4	1.1	205.1	197.4	22.1	15.1	0.0	53.4	38.0	1.0
74.23	22.62	2240 6	16 7	0.0	207.2	199.9 202 Z	0./ 7 E	5.9	141.0	30.0	30.0	3.0
75.05	22.88	4806.1	57.5	1.2	211 5	202.3	16.0	10 8	0.0	30.0	30.0	1.0
75.87	23.12	5094.7	84.4	1.7	213.7	207.2	17.0	11 4	0.0	37.5	34.0	1.0
76.69	23.38	8328.3	103.6	1.2	215.9	209.7	20.8	13.9	0.0	51.0	38.0	1.0
77.51	23.62	5757.9	117.0	2.0	218.2	212.1	19.2	12.7	0.0	40.3	34.0	1.0
78.33	23.88	4577.2	105.0	2.3	220.3	214.6	18.3	12.1	331.4	33.6	32.0	6.0
79.15	24.12	9040.7	163.1	1.8	222.4	217.0	30.1	19.8	0.0	52.9	38.0	1.0
79.97	24.38	2610.1	31.2	1.2	224.5	219.5	10.4	6.8	173.3	30.0	30.0	3.0
5U./Y	24.62	104/.0	15.1	0.9	226.5	222.0	6.6	4.3	95.9	30.0	30.0	1.5
01.01 82 /3	24.00	1743.8 1824 8	10.5	U.6 1 0	228.6	224.4	7.0	4.5	103.3	30.0	30.0	1.5
83.25	25.38	2409.3	42.7	1.8	230.0	220.9 220 7	7.3	4.1	107.4	30.0	30.0	1.5
84.07	25.62	2349.0	48.1	2.0	234.7	231_8	9.4	6.0	150.6	30.0	30.0	3.0
84.89	25.88	2042.2	48.9	2.4	236.8	234.2	8.2	5.2	125.7	30.0	30.0	3.0
85.71	26.12	1985.0	46.8	2.4	238.8	236.7	7.9	5.0	120.8	30.0	30.0	3.0
86.53	26.38	1958.3	48.0	2.5	240.9	239.1	9.8	6.2	118.3	0.0	0.0	1.5
87.35	26.62	2159.5	42.0	1.9	242.9	241.6	8.6	5.4	134_0	30.0	30.0	3.0
	20.00	5/10.1 4025 5	05.2	1./	245.0	244.0	14.8	9.3	257.7	30.0	32.0	6.0
00.77 R0 21	27 70	4023.3	00.U 77 2	2.1	247.0	246.5	16.1	10.0	282.6	30.0	32.0	6.0
07.01 00 63	27 62	2136 3	41.5	1.0	247.1	240.Y	14.2	0.0 57	U.U 170 7	50.0	52.0	1.0
91.45	27.88	3195.5	72.8	2.3	253.3	253.8	0.7 12 R	7.0	215 1	30.0	30.0	5.0
92.27	28.12	2316.1	29.4	1.3	255.3	256.3	9.3	5.7	144.4	30.0	30.0	3.0
93.09	28.38	5215.9	102.5	2.0	257.4	258.7	17.4	10.6	0.0	35.1	32.0	1.0
93.91	28.62	8361.2	148.8	1.8	259.6	261.2	27.9	16.9	0.0	48.5	36.0	1.0
94.73	28.88	4767.8	97.3	2.0	261.7	263.6	19.1	11.5	339.4	32.3	32.0	6.0
95.55	29.12	8505.1	118.6	1.4	263.9	266.1	21.3	12.8	0.0	48.7	36.0	1.0
96.37	29.38	8499.1	106.9	1.3	266.2	268.5	21.2	12.7	0.0	48.6	36.0	1.0
97.19	29.62	1989.7	20.9	1.1	268.4	271.0	8.0	4.8	116.0	30.0	30.0	1.5
98.01	Z9.88	2039.4	9.3	0.5	270.5	273.5	6.8	4.0	0.0	50.0	50.0	1.0
Y8.83	50.12	1905.1	1.6	0.4	212.1	212.9	0.4	<b>J.</b> Ö	0.0	20.0	20.0	1.0



, a at is

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-1438 CPT File: KA06S111.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	2863.1	42.7	1.5	274.8	278.4	11.5	6.8	184.8	30.0	30 0	3 n
100.47	30.62	11241.7	140.4	1.2	276.9	280.8	28.1	16.5	0.0	56.0	38.0	1.0
101.29	30.88	11133.9	170.7	1.5	279.2	283.3	27.8	16.3	0.0	55.6	38.0	1.0
102.11	31.12	9926.2	189.3	1.9	281.5	285.7	33.1	19.3	0.0	52.2	36.0	1.0
102.94	31.38	20359.2	151.8	0.7	283.8	288.2	40.7	23.7	0.0	72.7	40.0	1.0
103.76	31.62	19244.3	109.5	0.6	286.2	290.6	38.5	22.3	0.0	71.0	40.0	1.0
104.58	31.88	22347.2	175.3	0.8	288.6	293.1	44.7	25.7	0.0	75.1	40.0	1.0
105.40	32.12	19742.0	100.6	0.5	291.0	295.5	39.5	22.7	0.0	71.5	40.0	1 0
106.22	32.38	23306.1	145.8	0.6	293.5	298.0	46.6	26.6	0.0	76.1	42.0	1 0

Page: 3






Client: Sounding: Date:

C

6

KLEINFELDER 06-SC-111 12-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone	Distance	Last Time	Shear Wa	ve Velocity	Corres	ponding
Depth		Interval For			Depth I	ncrement
		X-Over				
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
1.70	1.79	·				
2.70	2.76	5.6	<i>≁</i> 173	567	1.7 - 2.7	5.6 - 8.9
3.70	3.74	7.8	126	414	2.7 - 3.7	8.9 - 12.1
4.70	4.73	6.1	162	533	3.7 - 4.7	12.1 - 15.4
5.70	5.73	6.7	🚽 <b>148</b> 🕚	487	4.7 - 5.7	15.4 - 18.7
6.70	6.72	7.9	126	414	5.7 - 6.7	18.7 - 22.0
7.70	7.72	6.9	144	474	6.7 - 7.7	22.0 - 25.3
8.70	8.72	6.3	158	520	7.7 - 8.7	25.3 - 28.5
9.70	9.72	6.5	154	504	8.7 - 9.7	28.5 - 31.8
10.70	10.71	6.0	¥ 166	546	9.7 - 10.7	31.8 - 35.1
11.70	11.71	7.5	133	437	10.7 - 11.7	35.1 - 38.4
12.70	12.71	7.5	133	437	11.7 - 12.7	38.4 - 41.7
13.70	13.71	7.4	135	443	12.7 - 13.7	41.7 - 44.9
14.70	14.71	6.9	145	475	13.7 - 14.7	44.9 - 48.2
15.70	15.71	4.9	¥ 204	669	14.7 - 15.7	48.2 - 51.5
16.70	16.71	5.1	196	643	15.7 - 16.7	51.5 - 54.8
17.70	17.71	4.9	204	669	16.7 - 17.7	54.8 - 58.1
18.70	18.71	6.1	164	538	17.7 - 18.7	58.1 - 61.4
19.70	19.71	4.2	238	781	18.7 - 19.7	61.4 - 64.6
20.70	20.71	4.6	<i>¥</i> −217	713	19.7 - 20.7	64.6 - 67.9
21.70	21.71	4.5	222	729	20.7 - 21.7	67.9 - 71.2
22.70	22.71	4.5	222	729	21.7 - 22.7	71.2 - 74.5
23.75	23.76	4.2	250	820	22.7 - 23.8	74.5 - 77.9
24.70	24.71	4.4	216	708	23.8 - 24.7	77.9 - 81.0
25.70	25.71	5.4	+ 185	607	24.7 - 25.7	81.0 - 84.3
26.70	26.71	4.4	227	745	25.7 - 26.7	84.3 - 87.6
27.75	27.76	4.4	239	783	26.7 - 27.8	87.6 - 91.0
28.75	28.76	4.5	222	729	27.8 - 28.8	91.0 - 94.3
<b>29</b> .70	29.71	4.0	237	779	28.8 - 29.7	94.3 - 97.4
30.70	30.71	4.9	* 204	669	29.7 - 30.7	97.4 - 100.7
31.70	31.70	4.0	250	820	30.7 - 31.7	100.7 - 104.0
32.70	32.70	3.5	286	937	31.7 - 32.7	104.0 - 107.3
1						

·	ConeT Inter Run Ne Job Ne	ec Inc pretation o: 96-08 o: 96-30	CPT Interp Output - R 304-2149-16 99	retation elease 1.0 25	0.07	•		· .		Page	: 1	· · · ·		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
<u>(</u> 2	Client	t: Klein	nfelder	х. ^х			-						14.35	
1. 1	Site:	I15 s	S4: 115 R	of W, 06-S	C-113				•	· · ·			1 	·
	Locati	ion: EB 18	O Off Rmp-I	N				5 F				· .		<b>*</b> ™ 1.1.1
	CPT Da	ate: 96/10	04 1 040				•		•					
	CPT Ti	ime: 23:57												
	CPT Fi	ile: KA06S	113.COR											*
	Water	Table (m	i):	2.00	(ft):	6.6								
	Avera Su Nk	iging incr (tused:	ement (m):	12.50										
	Phi M	lethod :		Robertso	n and Cam	panella, 1	983						•	
	Ur M Used	letnoa : Unit Weig	hts Assigne	Jamiolko d to Soil	WSK1 - AL Zones	l Sands								
	Depth	Depth	Ava0t	AvoFe	AvaDf		Da	·····						
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	(NI)OU ws/ft)	su (kPa)	Ur (%)	Phi (deg.)	OCR (ratio)	
	0.41	0.12	8897.5	88.3	1.0	2.4	 0.0		 44 5		05 n	50 0		
	1.23	0.38	6308.5	113.2	1.8	7.1	0.0	21.0	42.1	0.0	92.1	50.0	1.0	
	2.05	0.62	4448.2 3114.1	54.4 28.0	1.2	11.7	0.0	14.8	29.7	0.0	74.8	48.0	1.0	
	3.69	1.12	2094.9	25.9	1.2	20.9	0.0	8.4	16.8	165.9	29.8	44.0 42.0	1.0	
	4.51	1.38	1699.2	35.2	2.1	25.4	0.0	6.8	13.2	133.9	36.1	40.0	10.0	
	5.55	1.62	2768.3	25.6	0.9	29.9	0.0	9.2	16.5	0.0	47.7	42.0	1.0	
	6.97	2.12	6464.4	58.6	0.8	38.1	12	15.5	22.1	0.0	64.4 48.4	44.0	1.0	
	7.79	2.38	8934.7	73.5	0.8	40.4	3.7	22.3	34.4	0.0	77.0	44.0	1.0	
	8.61	2.62	14677.1	107.7	0.7	42.8	6.1	29.4	43.9	0.0	90.4	48.0	1.0	
	9.43	2.00	14902.0	110.2	0.7	45.2	8.6	29.8	43.4	0.0	90.1	48.0	1.0	
	11.07	3.38	20040.5	85.7	0.4	50.1	13.5	40.1	47.0	0.0	92.4 95 n	48.0	1.0	
	11.89	3.62	18046.0	58.5	0.3	52.5	15.9	36.1	48.8	0.0	93.4	48.0	1.0	
NT .	12./1	5.88	15444.6	13.9	0.1	54.9	18.4	30.9	40.8	0.0	88.3	46.0	1.0	
	14.35	4.38	4375.3	27.8	0.6	59.6	20.8	24.5	51.6 18 5	0.0	81.0	46.0	1.0	
(	15.17	4.62	1953.4	19.7	1.0	61.7	25.8	7.8	9.7	149.3	30.0	36.0	6.0	
1.	15.99	4.88	2512.1	42.7	1.7	63.8	28.2	10.0	12.3	193.6	34.1	38.0	6.0	
	17.63	5.38	1104.5	17.3	1.7	67.9	30.7	6.0 5.5	7.3	88.5 80 Z	0.0	0.0	6.0	
	18.45	5.62	923.1	10.1	1.1	69.9	35.6	4.6	5.4	65.4	0.0	0.0	3.0	
	19.27	5.88	740.3	5.8	0.8	72.0	38.0	3.7	4.3	50.4	0.0	0.0	3.0	
	20.09	0.12 6.38	029.1 528.5	4.8	0.8	73.3	40.5	3.1	3.6	41.2	0.0	0.0	3.0	
	21.74	6.62	458.6	2.1	0.5	74.7	45.4	2.0	2.6	27.1	0.0	0.0	1.5	
	22.56	6.88	455.6	2.3	0.5	75.4	47.8	2.3	2.6	26.6	0.0	0.0	1.5	
	23.38	7.12	425.6	2.9	0.7	76.0	50.3	2.1	2.4	23.9	0.0	0.0	1.5	
	25.02	7.62	1925.2	16.0	0.8	79.4	52.7	3.8	4.Z 8.5	65.5 1/3 2	30.0	30.0	3.0	
	25.84	7.88	2758.9	29.4	1.1	81.6	57.6	9.2	10.0	0.0	33.3	36.0	1.0	•
	26.66	8.12	641.5 7795 7	2.4	0.4	83.0	60.1	3.2	3.4	39.9	0.0	0.0	1.5	
	27.40	8.62	2256.7	41.5	1.1	84.4 86.5	62.5	12.6	13.4	0.0	41.9	38.0	1.0	
	29.12	8.88	905.9	2.4	0.3	88.6	67.4	3.6	3.8	60.0	30.0	30.0	3.0	
	29.94	9.12	1321.2	16.4	1.2	90.6	69.9	5.3	5.4	92.9	30.0	32.0	6.0	
	50.76 31.58	9.58	996.5 1088.7	6.8 9.0	0.7	92.7	72.3	4.0	4.1	66.5	30.0	30.0	3.0	
	32.40	9.88	3166.1	35.8	1.1	96.8	77.3	10.6	4.4	0.0	34.8	36.0	3.0	
	33.22	10.12	1352.7	38.8	2.9	98.9	79.7	6.8	6.7	93.9	0.0	0.0	3.0	
	34.04	10.38	1663.1	32.9	2.0	101.0	82.2	6.7	6.5	118.4	30.0	32.0	6.0	
	35.68	10.82	1994.4	29.5	1.5	103.0	84.6 87 1	4.7 8 0	4.6 7 K	79.6 144 2	30.0	30.0	3.0	
	36.50	11.12	1491.7	10.8	0.7	107.1	89.5	6.0	5.6	103.6	30.0	30.0	3.0	
	37.32	11.38	3777.2	65.3	1.7	109.2	92.0	15.1	14.2	286.1	38.1	36.0	6.0	
	38.94	11.02	3434.9 1003 1	01.1 6 6 6	2.3	111.2	94.4	13.8	12.8	259.9	35.3	36.0	6.0	_
	39.78	12.12	846.5	2.7	0.3	114.6	99.3	4.2	3.9	50.6	0.0	0.0	1.5	•
1	40.60	12.38	915.3	3.0	0.3	116.0	101.8	3.7	3.3	55.8	30.0	30.0	1.5	
	41.42	12.62	888.0	3.7	0.4	118.0	104.2	3.6	3.2	53.3	30.0	30.0	1.5	
	46.24	16.00	010.2	6.7	U.J	117.4	100.7	44.1		40./	u.u	u.u	1.7	

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-1625 CPT File: KA06S113.COR

Page: 2

Depth	Depth	AvaQt	Avafs	AvaRf	E.Stress	Hvd. Pr.	N60	(N1)60	Su	Dr	Phi	900	193.45
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blow	es/ft)	· (kPa)	(2)	(deg.)	(ratio)	. • d
					••••••••••					····			
43.06	13.12	940.5	4.2	0.5	120.7	109.1	3.8	3.4	56.8	30.0	30.0	1.5	
43.88	13.38	906.2	3.8	0.4	122.8	111.6	3.6	3.2	53.7	30.0	30.0	1.5	
44.70	13.62	892.0	4.3	0.5	124.8	114.0	3.6	3.1	52.3	30.0	30.0	1.5	
45.52	13.88	922.4	6.3	0.7	126.9	116.5	3.7	3.2	54.3	30.0	30.0	1.5	
46.34	14.12	945.5	7.1	0.8	128.9	118.9	3.8	3.3	55.8	30.0	30.0	1 5	
47.16	14.38	929.5	6.4	0.7	131.0	121.4	3.7	3.2	54.2	30.0	30.0	1 5	
47.98	14.62	926.8	6.8	0.7	133.0	123.9	3.7	3.1	53.6	30.0	30.0	1.5	
48.80	14.88	963.8	8.8	0.9	135.1	126.3	3.9	3.2	56.2	30.0	30.0	1.5	
49.62	15.12	1631.9	31.4	1.9	137.1	128.8	6.5	5.5	109.3	30.0	30.0	3.0	
50.44	15.38	3739.8	60.2	1.6	139.2	131.2	12.5	10.3	0.0	34.3	34 0	1 0	·
51.26	15.62	2693.2	29.4	1.1	141.4	133.7	9.0	7.4	0.0	30.0	32 0	1.0	
52.08	15.88	3019.7	23.8	0.8	143.6	136.1	10.1	8.2	0.0	30.0	34.0	1.0	
52.90	16.12	2431.0	28.6	1.2	145.7	138.6	9.7	7.9	171.7	30.0	32.0	6.0	
53.72	16.38	11137.3	198.2	1.8	147.8	141.0	37.1	29.9	0.0	64.8	40.0	1.0	
54.54	16.62	16641.6	428.6	2.6	150.0	143.5	55.5	44.3	0.0	76.1	42.0	1.0	
55.36	16.88	9424.2	221.9	2.4	152.1	145.9	31.4	24.9	0.0	59.6	40.0	1.0	
56.18	17.12	8153.9	170.4	2.1	154.3	148.4	27.2	21.4	0.0	55.2	38.0	1.0	
57.00	17.38	8016.2	162.7	2.0	156.5	150.8	26.7	20.9	0.0	54.5	38.0	- 1.0	
57.82	17.62	8568.1	160.2	1.9	158.7	153.3	28.6	22.2	0.0	56.2	40.0	1.0	
58.64	17.88	8657.7	147.9	1.7	160.8	155.7	28.9	22.3	0.0	56.3	40.0	1.0	
59.46	18.12	7232.7	194.1	2.7	162.9	158.2	28.9	22.2	552.9	51.0	38.0	6.0	
60.28	18.38	6968.6	142.4	2.0	165.0	160.6	23.2	17.7	0.0	49.7	38.0	1.0	
61.10	18.62	3674.0	49.2	1.3	167.2	163.1	12.2	9.3	0.0	31.2	34.0	1.0	
61.93	18.88	4580.6	75.9	1.7	169.4	165.5	15.3	11.5	0.0	37.3	34.0	1 0	
62.75	19.12	4103.7	96.6	2.4	171.5	168.0	16.4	12.3	301.1	34.0	34.0	6.0	
63.57	19.38	4128.0	74.2	1.8	173.6	170.4	13.8	10.2	0.0	34.0	34.0	1.0	
64.39	19.62	6516.8	127.5	2.0	175.8	172.9	21.7	16.0	0.0	46.9	38.0	1.0	
65.21	19.88	8272.7	163.8	2.0	178.0	175.4	27.6	20.2	0.0	53.6	38.0	1 0	
66.03	20.12	11712.8	299.5	2.6	180.1	177.8	39.0	28.5	0.0	63.4	40 0	1.0	
66.85	20.38	15699.8	351.2	2.2	182.3	180.3	52.3	37.9	0.0	71.6	42.0	1.0	
67.67	20.62	10039.7	217.1	2.2	184.5	182.7	33.5	24.1	0.0	58.6	40.0	1.0	
68.49	20.88	8307.1	222.2	2.7	186.6	185.2	33.2	23.8	634.8	53.0	38.0	6.0	
69.31	21.12	2319.1	30.5	1.3	188.6	187.6	9.3	6.6	155.4	30.0	30.0	3.0	
70.13	21.38	1904.3	7.8	0.4	190.7	190.1	6.3	4.5	0.0	30.0	30.0	1.0	
70.95	21.62	2978.4	26.9	0.9	192.9	192.5	9.9	7.0	0.0	30.0	32.0	1.0	
71.77	21.88	6535.7	132.1	2.0	195.1	195.0	21.8	15.3	0.0	45.5	36.0	1.0	
72.59	22.12	4316.2	89.4	2.1	197.2	197.4	17.3	12.0	313.7	33.5	34.0	6.0	
73.41	22.38	2380.1	24.6	1.0	199.2	199.9	9.5	6.6	158.5	30.0	30.0	3.0	
74.23	22.62	2151.0	22.2	1.0	201.3	202.3	8.6	5.9	139.8	30.0	30.0	3.0	
75.05	22.88	1987.6	21.4	1.1	203.3	204.8	8.0	5.5	126.4	30.0	30.0	3.0	
75.87	23.12	1709.0	15.6	0.9	205.4	207.2	6.8	4.7	103.7	30.0	30.0	3.0	
76.69	23.38	1675.2	11.3	0.7	207.4	209.7	6.7	4.6	100.6	30.0	30.0	1.5	
77.51	23.62	1576.5	8.5	0.5	209.5	212.1	6.3	4.3	92.4	30.0	30.0	1.5	
78.33	23.88	3294.1	41.9	1.3	211.6	214.6	11.0	7.4	0.0	30.0	32.0	1.0	
79.15	24.12	5355.2	191.7	3.6	213.7	217.0	26.8	17.9	394.0	0.0	0.0	6.0	
79.97	24.38	21315.0	357.4	1.7	215.9	219.5	53.3	35.5	0.0	77.9	42.0	1.0	
80.79	24.62	27723.6	356.9	1.3	218.2	222.0	55.4	36.7	0.0	85.3	44.0	1.0	
81.61	24.88	28397.1	381.8	1.3	220.6	224.4	71.0	46.8	0.0	85.9	44.0	1.0	
82.43	25.12	34641.5	417.5	1.2	223.0	226.9	69.3	45.4	0.0	91.4	44.0	1.0	
83.25	25.38	31973.1	459.7	1.4	225.3	229.3	79.9	52.1	0.0	88.9	44.0	1.0	
84.07	25.62	29736.4	372.6	1.3	227.7	231.8	59.5	38.6	0.0	86.7	44.0	1.0	
84.89	25.88	31648.1	431.3	1.4	230.1	234.2	63.3	40.8	0.0	88.4	44.0	1.0	
85.71	26.12	31936.0	493.8	1.5	232.5	236.7	79.8	51.3	0.0	88.5	44.0	1.0	
86.53	26.38	27849.2	399.1	1.4	234.8	239.1	69.6	44.5	0.0	84.4	42.0	1.0	
87.35	26.62	25565.7	264.6	1.0	237.1	241.6	51.1	32.5	0.0	81.8	42.0	1.0	
88.17	26.88	8863.4	185.9	2.1	239.4	244.0	29.5	18.7	0.0	51.3	38.0	1.0	
88.99	27.12	3065.4	56.4	1.8	241.5	246.5	12.3	7.7	206.2	30.0	30.0	3.0	
89.81	27.38	2849.2	48.2	1.7	243.6	248.9	11.4	7.1	188.5	30.0	30.0	3.0	
90.63	27.62	2630.8	45.7	1.7	245.6	251.4	10.5	6.6	170.7	30.0	30.0	3.0	
91.45	27.88	2963.4	51.3	1.7	247.7	253.8	11.9	7.4	197.0	30.0	30.0	3.0	
92.27	28.12	4097.5	113.5	2.8	249.7	256.3	16.4	10.2	287.3	30.0	32.0	6.0	
93.09	28.38	4022.0	65.2	1.6	251.8	258.7	13.4	8.3	0.0	30.0	32.0	1.0	
93.91	28.62	4360.5	103.0	2.4	253.9	261.2	17.4	10.7	307.6	30.1	32.0	6.0	
94.73	28.88	2933.4	67.5 [.]	2.3	256.0	263.6	11.7	7.2	. 1 <b>93.</b> 1	30.0	30:0	3.0	•••
95.55	29.12	3374.6	88.6	2.6	258.0	<b>266.1</b>	13.5	8.2	228.0	30.0	30.0	3.0	
96.37	29.38	4258.4	85.9	2.0	260.1	268.5	17.0	10.3	298.4	30.0	32.0	6.0	
97.19	29.62	19951.7	325.2	1.6	262.2	271.0	49.9	30.1	0.0	73.3	40.0	1.0	
98.01	29.88	22682.1	463.7	2.0	264.5	273.5	56.7	34.1	0.0	76.8	42.0	1.0	
98.83	30.12	16186.8	197.6	1.2	266.8	275.9	40.5	24.2	0.0	67.0	40.0	1.0	



ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-1625 CPT File: KA06S113.COR

Depth (ft)	Depth	AvgQt (kRa)	AvgFs (kpa)	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
	(#7	(KF@)	(KF@)	(4)	(KPa)	(KPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)
99.65	30.38	6968.5	141.1	2.0	269.1	278.4	23.2	13.9	0 0		 7/ n	
100.47	30.62	4491.7	95.1	2.1	271.2	280.8	18.0	10.7	315 2	30 0	34.0	1.0
101.29	30.88	4831.8	87.6	1.8	273.3	283.3	16 1	0.5	0.0	30.0	72.0	0.0
102.11	31.12	5159.1	165.1	3.2	275.4	285 7	20.6	12 2	367.8	77.0	32.0	1.0
102.94	31.38	5018.3	158.3	3.2	277.5	288 2	20 1	11 8	354 2	72.0	32.0	0.0
103.76	31.62	25473.7	282.7	1 1	270 7	200.6	50.0	20.9	330.2	32.9	32.0	6.0
104.58	31.88	31654.4	314.2	1.0	282 1	290.0	67.7	27.0	0.0	(9.3	42.0	1.0
105.40	32.12	31907.9	288.5	0.0	28/ 5	205 5	47.9	77 0	0.0	65.4 0F F	42.0	1.0
106.22	32.38	33739.7	362.7	.1 1	287 0	272.5	47 5	37.0	0.0	82.2	42.0	1.0
107.04	32.62	34681.2	385 0	1 1	280 /	270.0	40 /	39.0	0.0	87.0	42.0	1.0
107.86	32.88	32920.9	362.8		207.4	300.4	09.4	39.9	0.0	87.7	42.0	1.0
108.68	33.12	36234.8	415 9	1 1	271.0	302.9	07.0	31.1	0.0	86.1	42.0	1.0
109.50	33.38	29169.3	434 5	1 5	274.2	202.2	72.5	41.3	0.0	88.7	42.0	1.0
110.32	33.62	25180.2	440 1	1.5	270.0	307.0	12.9	41.4	0.0	82.4	42.0	1.0
111.14	33.88	20076 3	323 2	1.0	270.7	310.2	65.0	37.0	0.0	78.1	42.0	1.0
111 06	36 12	33040 0	345 0	1 1	201.2	312.7	29.9	33.8	0.0	82.9	42.0	1.0
12 78	34 38	27014 0	362.8	1.1	303.7	313.1	07.9	58.1	0.0	86.4	42.0	1.0
13 60	34.62	32045 3	371 7	1.3	306.0	317.6	67.5	57.8	0.0	79.7	42.0	1.0
116 60	7/ 99	14007 1	231.3	0.7	508.4	320.1	64.1	35.7	0.0	84.5	42.0	1.0
14.42	34.00	10003.1	21/.5	1.4	510.7	322.5	40.0	22.2	0.0	64 5	38.0	1 0

Page; 3

1 46 1 -







KLEINFELDER

06-SC-113

10-Jun-96

C

Client: Sounding: Date:

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Way	e Velocity	Corresp Depth Ir	oonding acrement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
0.95	1.10		1			
1.95	2.03	6.7	<b>→</b> 138	453	1.0 - 2.0	3.1 . 6.4
2.95	3.00	11.4	85	280	2.0 3.0	6.4 - 9.7
3.95	3.99	5.7	173	568	3.0 - 4.0	9.7 - 13.0
4.95	4.98	6.1	★ 163	534	4.0 - 5.0	13.0 - 16.2
5.95	5.98	8.1	123	403	5.0 - 6.0	16.2 - 19.5
6.95	6.97	9.4	106	348	6.0 - 7.0	19.5 - 22.8
7.95	7.97	7.8	128	419	7.0 - 8.0	22.8 - 26.1
8.95	8.97	6.9	145	474	8.0 - 9.0	26.1 - 29.4
9.95	9.97	6.0	<b>≁</b> 166	546	9.0 - 10.0	29.4 32.6
10.95	10.96	5.1	196	642	10.0 - 11.0	32.6 - 35.9
11.95	11.96	5.6	178	585	11.0 - 12.0	35.9 - 39.2
12.95	12.96	7.1	141	462	12.0 - 13.0	39.2 - 42.5
13.95	13.96	7.4	135	443	13.0 - 14.0	42.5 - 45.8
14.95	14.96	7.0	¥ 143	468	14.0 - 15.0	45.8 - 49.0
15.95	15.96	6.6	151	497	15.0 16.0	49.0 52.3
16.95	16.96	5.0	200	656	16.0 - 17.0	52.3 - 55.6
17.95	17.96	5.0	200	656	17.0 - 18.0	55.6 - 58.9
18.95	18.96	4.8	208	683	18.0 - 19.0	58.9 - 62.2
19.95	19.96	4.4	+ 227	745	19.0 20.0	62.2 - 65.5
20.95	20.96	4.9	204	669	20.0 - 21.0	65.5 - 68.7
21.95	21.96	5.4	185	607	21.0 - 22.0	68.7 - 72.0
22.95	22.96	4.3	232	763	22.0 - 23.0	72.0 75.3
23.95	23.96	4.9	204	669	23.0 - 24.0	75.3 - 78.6
24.95	24.96	4.8	* 208	683	24.0 - 25.0	78.6 - 81.9
25.95	25.96	3.4	294	965	25.0 - 26.0	81.9 - 85.1
26.95	26.96	3.4	294	965	26.0 - 27.0	85.1 - 88.4
27.95	27.96	4.1	244	800	27.0 - 28.0	88.4 - 91.7
28.95	28.96	4.1	244	800	28.0 - 29.0	91.7 - 95.0
29.95	29.96	3.7	+ 270 7	887	29.0 - 30.0	95.0 - 98.3
_30.95	30.96	4.4	227	746	30.0 - 31.0	98.3 - 101.5
31.95	31.95	4.1	244	800	31.0 - 32.0	101.5 - 104.8
32.95	32.95	3.0	333	1093	32.0 - 33.0	104.8 - 108.1
33.95	<b>33.9</b> 5	3.9	256	841	33.0 - 34.0	108.1 - 111.4
34.95	34.95	2.7	¥ 370	1215	34.0 - 35.0	111.4 - 114.7

												•		4.5
	·					•								
	ConeTe	c Inc	CPT Interp	retation alosso 1 A	0.07					Page	<del>:</del> 1		· •	с.
	Run No	ecación e 96-08	05-0943-58	57	0.07								· •	an ann an Albana An Albana
	Job No	: 96-30	9									÷ .		
-	Client	: Klein	felder									•	· • •	- <b>-</b>
<b>{</b>	Projec	t: 115 S	ection 4	-						· · · ·				
1	Site:	I 15,	S4: I15 R d	of W, 06-Si	C-115								• • •	s
	Locati	on: EB 18	0 Off Rmp-M	4				• •						
	Cone:	20 T	ON A 040											•
	CPT Da	te: 96/2/	/06											
		INC: U0:45	115 000	· · ·										· .
	Water	Table (m	):	2.00	(ft):	6.6								•
	Avera	ging Incr	ement (m):	0.25										
	Su Nk	t used:		12.50	•								•	
	Phi M	ethod :		Robertsor	n and Cam	panella, 1	983							
	Dr Mi Licodi	ethod : Unit Veid	hte Acciane	Jamioikov Id to Soii	vski - Al Zonec	l Sands								
					201105									-
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
	0.41	0.12	 1_0	0.0	0.0	 2 4	••••••••••••••••••••••••••••••••••••••	••••••	n n	n n				-
	1.23	0.38	1.0	0.0	0.0	7.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	2.05	0.62	1.0	0.0	0.0	12.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	2.87	0.88	1.0	0.0	0.0	17.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	5.69	1.12	1.0	0.0	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	4.51	1.58	1.0	0.0	0.0	26.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	6 15	1.02	1.0	0.0	0.0	31.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	6.97	2.12	1.0	0.0	0.0	40.2	1.2	0.0	0.0	0.0	0.0	0.0	1.0	
	7.79	2.38	1.0	0.0	0.0	42.6	3.7	0.0	0.0	0.0	0.0	0.0	1.0	
	8.61	2.62	1.0	0.0	0.0	45.1	6.1	0.0	0.0	0.0	0.0	0.0	1.0	
	9.43	2.88	. 1.0	0.0	0.0	47.5	8.6	0.0	0.0	0.0	0.0	0.0	1.0	
	10.25	3.12	1.0	0.0	0.0	49.9	11.0	0.0	0.0	0.0	0.0	0.0	1.0	
	11.89	3.62	1.0	0.0	0.0	56 7	15.5	0.0	0.0	0.0	0.0	0.0	1.0	
6.	12.71	3.88	1.0	0.0	0.0	57.2	18.4	0.0	0.0	0.0	0.0	0.0	1.0	
Í.	13.53	4.12	1.0	0.0	0.0	59.6	20.8	0.0	0.0	0.0	0.0	0.0	1.0	
	14.35	4.38	1.0	0.0	0.0	62.0	23.3	0.0	0.0	0.0	0.0	0.0	1.0	
	15.17	4.62	1.0	0.0	0.0	64.4	25.8	0.0	0.0	0.0	0.0	0.0	1.0	
and the	12.99	4.00	1.0	0.0	0.0	66.9	28.2	0.0	0.0	0.0	0.0	0.0	1.0	
	17.63	5.38	1 0	0.0	0.0	69.3 71 7	30.7	0.0	0.0	0.0	0.0	0.0	1.0	
	18.45	5.62	1.0	0.0	0.0	74 1	35.1	0.0	0.0	0.0	0.0	0.0	1.0	
	19.27	5.88	991.3	20.8	2.1	76.4	38.0	5.0	5.6	70.2	0.0	0.0	1.0	
	20.09	6.12	2102.8	45.7	2.2	78.4	40.5	8.4	9.3	158.7	30.0	74 N	5.0	
	20.92	6.38	2911.4	81.6	2.8	80.5	42.9	14.6	15.9	223.0	0.0	0.0	6.0	
	21.74	6.62	2153.6	62.4	2.9	82.5	45.4	10.8	11.6	162.1	0.0	0.0	6.0	
	22.30 37 78	0.00 7 12	3/00.0 (681 7	95.7 120 7	2.5	84.6	47.8	15.1	16.0	290.9	41.7	38.0	6.0	
	24.20	7.38	7889-6	128.4	<b>2.0</b> 1.6	00.0 88 7	50.5 52 7	18.7	19.7 27 z	563.6	47.6	40.0	10.0	
	25.02	7.62	7320.7	118.2	1.6	90.9	55.2	24.4	25.1	0.0	50 7	42.U	1.0	
	25.84	7.88	12725.4	118.1	0.9	93.2	57.6	25.5	25.8	0.0	75.2	44.0	1.0	
	26.66	8.12	13496.4	106.0	0.8	95.6	60.1	27.0	27.0	0.0	76.5	44.0	1.0	
	27.48	8.38	1689.5	13.4	0.8	97.8	62.5	6.8	6.7	122.3	30.0	32.0	6.0	
	20.50	8.62 g ee	6/5.0	15.2	2.3	99.9	65.0	4.5	4.4	40.8	0.0	0.0	1.5	
	29.12	0.00	000.0 ד ד ד 70	14.0	2.2	101.9	67.4	4.4	4.3	39.7	0.0	0.0	1.5	
	30.76	9.38	632.7	10.9	1.0	104.0	עס. ד רד	3.5 7 7	5.4	42.4	0.0	0.0	1.5	
	31.58	9.62	973.4	19.5	2.0	108.1	74.8	4.9	4.6	63.2	0.0	0.0	3.0	
	32.40	9.88	2384.0	59.5	2.5	110.1	77.3	9.5	8.9	175.7	30.0	34.0	6.0	
	33.22	10.12	1515.2	57.3	3.8	112.2	79.7	10.1	9.3	105.9	0.0	0.0	3.0	
	54.U4 7/ 04	10.38	1055.2	55.9	3.2	114.2	82.2	7.0	6.4	68.7	0.0	0.0	3.0	
	35.68	10.88	745.5	10 5	2.0	110.3	84.0 97 1	5.6	5.1 4 E	51.1	0.0	0.0	1.5	
	36.50	11.12	768.2	15.8	2.1	120.4	07.1 805	3.U 3.R	4.5	43.2 46 7	0.0	0.0	1.5	
	37.32	11.38	766.1	14.3	1.9	122.4	92.0	3.8	3.4	44,1	0.0	0.0	1.5	•
	38.14	11.62	891.3	15.6	1.8	124.5	94.4	4.5	3.9	53.8	0.0	0.0	1.5	
	· 38.96	11.88	930.8	15.8	1.7	126.5	96.9	4.7	4.0	56.6	0.0	0.0	1.5	· •
	39.78	12.12	1622.3	35.4	2.2	128.5	99.3	8.1	7.0	111.6	0.0	0.0	3.0	
ĺ.	40.60	12.58	2067.3	45.7	2.2	130.6	101.8	8.3	7.1	146.8	30.0	32.0	6.0	
	41.42	12.02	1193 3	22 0	2.0	134.7	104.2	6 0	5 0	229.9 76 2	50.0 0 0	ጋዓ.ሀ በበ	3.0	

ConeTec Inc. - CPT Interpretation Run No: 96-0805-0943-5867 CPT File: KA06S115.COR

Run No CPT Fi	: 96-08 le: KA069	305-0943-586 5115.COR	57						Page	: 2		-	•
Depth (ft)	Depth (m)	AvgQt (kPa)	Avgfs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 bws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
43.06	13.12	2608.9	38.7	1.5	136.7	109.1	10.4	8.7	189.0	30.0	32.0	6.0	2
43.88	13.38	2453.2	43.2	1.8	138.8	111.6	9.8	8.2	176.2	30.0	32.0	6.0	
44.70	13.62	1249.4	14.0	1.1	140.8	114.0	5.0	4.1	79.6	30.0	30.0	3.Ò	
45.52	13.88	1367.0	18.4	1.3	142.9	116.5	5.5	4.5	88.6	30.0	30.0	3.0	·
40.34	14.12	1014.0	41.5	2.0	144.9	118.9	8.1	6.6	108.1	0.0	0.0	3.0	
47.10	14.50	1010 6	24.5	2.0	147.0	121.4	7.0	0.2	70.2	0.0	. 0.0	1.5	
48.80	14.88	1972.8	47.9	2.4	151.1	126.3	0 0	70	135 6	0.0	0.0	1.5	
49.62	15.12	1022.4	27.0	2.6	153.1	128.8	5.1	4.0	59.2	0.0	0.0	1.5	
50.44	15.38	1046.1	20.4	2.0	155.2	131.2	5.2	4.1	60.8	0.0	0.0	1.5	
51.26	15.62	2379.0	31.8	1.3	157.2	133.7	9.5	<u>7.4</u>	167.1	30.0	32.0	6.0	
52.00	15.00	2300.4	74.4 70 n	2.3	159.5	136.1	9.5	7.3	165.7	30.0	32.0	6.0	
53.72	16.38	1566.1	46.5	3.0	163.4	130.0	78	<b>9.</b> 5 6 0	1/4.0	0.0	0.0	6.0	
54.54	16.62	962.2	21.3	2.2	165.4	143.5	4.8	3.7	52.3	0.0	0.0	1.5	
55.36	16.88	1143.8	20.5	1.8	167.5	145.9	5.7	4.3	66.4	0.0	0.0	1.5	
56.18	17.12	1081.1	20.0	1.8	169.5	148.4	5.4	4.1	61.1	0.0	0.0	1.5	
57.00	17.58	1139.7	19.5	1.7	171.5	150.8	5.7	4.3	65.4	0.0	0.0	1.5	
58.64	17.02	10/2.7	17.5	1.7	175.6	155.5	5.1	3.8	55.1	0.0	0.0	1.5	
59.46	18.12	1112.8	24.2	2.2	177.7	158.2	5.6	4.1	62 2	0.0	0.0	1.5	
60.28	18.38	1075.9	22.4	2.1	179.7	160.6	5.4	3.9	58.8	0.0	0.0	1.5	
61.10	18.62	1075.8	22.1	2.1	181.8	163.1	5.4	3.9	58.5	0.0	0.0	1.5	
61.95	18.88	1204.1	23.1	1.9	183.8	165.5	6.0	4.3	68.4	0.0	0.0	1.5	
63.57	19.38	1222_0	24.5	1.0	187.9	168.0	5.8	4.2	64.4	0.0	0.0	1.5	
64.39	19.62	1181.8	25.2	2.1	190.0	172.9	5.9	4.4	65 5	0.0	0.0	1.5	
65.21	19.88	1202.8	24.7	2.1	192.0	175.4	6.0	4.2	66.8	0.0	0.0	1.5	
66.03	20.12	1588.9	43.8	2.8	194.1	177.8	7.9	5.6	97.4	0.0	0.0	3.0	
66.85	20.38	2113.2	79.1	3.7	196.1	180.3	14.1	9.8	138.9	0.0	0.0	3.0	
67.07	20.02	6716 2	70.1 102 7	2.7	198.2	182.7	14.0	9.7	193.5	0.0	0.0	3.0	
69.31	21.12	2175.2	85.8	3.0	200.3	187.6	20.7	14.5	0.0	43.7	36.0	1.0	
70.13	21.38	2937.9	75.0	2.6	204.4	190.1	11.8	8.0	203 5	30.0	32 0	3.0	
70.95	21.62	8569.9	148.5	1.7	206.5	192.5	28.6	19.5	0.0	52.5	38.0	1.0	
71.77	21.88	6503.6	121.7	1.9	208.7	195.0	21.7	14.7	0.0	44.4	36.0	1.0	
73.41	22.12	29/2./	120.5	4.1	210.8	197.4	19.8	13.4	205.2	0.0	0.0	3.0	
74.23	22.62	2500.3	64.6	2.6	215.0	202.3	10.0	67	166 6	49.8	38.0	1.0	
75.05	22.88	6114.2	159.2	2.6	217.1	204.8	24.5	16.2	455.4	42.1	36.0	5.0	
75.87	23.12	11918.1	263.9	2.2	219.2	207.2	39.7	26.3	0.0	61.1	40.0	1.0	
76.69	23.38	10711.9	317.3	3,0	221.3	209.7	42.8	28.2	822.5	57.9	38.0	6.0	
79 77	23.02	14284.0	323.9	2.3	223.4	212.1	47.6	31.2	0.0	66.0	40.0	1.0	
70.33	25.00	2031.1	58 0	4.3	227.5	214.6	20.5	13.4	128.9	0.0	0.0	3.0	
79.97	24.38	2834.4	81.1	2.9	229.5	219.5	14.2	0.2	141.5	0.0	0.0	3.0	
80.79	24.62	3656.5	118.7	3.2	231.5	222.0	18.3	11.8	256.2	0.0	0.0	6.0	
81.61	24.88	4197.1	98.8	2.4	233.6	224.4	16.8	10.8	299.1	30.2	32.0	6.0	
82.45	25.12	4411.1	135.6	3.1	235.6	226.9	17.6	11.2	315.9	31.5	32.0	6.0	
84.07	25.62	1937.3	48.5	25	230 7	229.3	12.3	7.8	159.9	0.0	0.0	3.0	
84.89	25.88	2336.2	67.1	2.9	241.8	234.2	11.7	7.4	148.8	0.0	0.0	3.0	
85.71	26.12	2697.4	86.7	3.2	243.8	236.7	13.5	8.5	177.4	0.0	0.0	3.0	
86.53	26.38	1585.9	35.1	2.2	245.9	239.1	7.9	4.9	88.1	0.0	0.0	1.5	
87.55	26.62	1903.8	41.2	2.2	247.9	241.6	7.6	4.7	113.1	30.0	30.0	1.5	
88.90	20.00	1475 7	20 0	2.1	250.0	244.0	7.	4.8	83.9	0.0	0.0	1.5	
89.81	27.38	1505.0	27.4	1.8	254.1	240.5	6.0	4.3	70.2 80 2	30 0	10.0	1.5	
90.63	27.62	2243.9	50.2	2.2	256.1	251.4	9.0	5.5	138.9	30.0	30.0	3.0	
91.45	27.88	5303.7	114.2	2.2	258.2	253.8	21.2	12.9	383.3	35.5	32.0	6.0	
92.27	28.12	4645.3	168.1	3.6	260.2	256.3	23.2	14.1	330.3	0.0	0.0	6.0	· · .
95.09 07.01	28.38	2550.2	74.4	2.9	262.3	258.7	12.8	7.7	162.3	0.0	0.0	3.0	
93.91	20.02 28.88	1663 0	40./	2.7	204.3	201.2	9.4 g z	5.7	108.3	0.0	0.0	1.5	
95.55	29.12	1724.1	39.1	2.3	268.4	266.1	8.6	5.1	95.2	0.0	0.0	1.5	
96.37	29.38	2061.8	44.4	2.2	270.5	268.5	8.2	4.9	121.8	30.0	30.0	1.5	
97.19	29.62	1932.4	39.7	2.1	272.5	271.0	7.7	4.6	111.1	30.0	30.0	1.5	
98.01	29.88	1870.3	34.8	1.9	274.5	273.5	7.5	4.4	105.8	30.0	30.0	1.5	
98.83	30.12	1724.3	35.5	2.1	276.6	275.9	6.9	4.1	93.7	30.0	30.0	1.5	

.

Page: 2





ConeTec Inc. - CPT Interpretation Run No: 96-0805-0943-5867 CPT File: KA06S115.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf	E.Stress (kPa)	Hyd. Pr. (kPa)	N60	(N1)60	Su (kPa)	Dr (%)	Phi (deg.)	OCR
									(Kru)	·····	(ueg.)	(14(10)
99.65	30.38	1769.8	33.1	1.9	278.6	278.4	7.1	4.2	97.0	30.0	30.0	1.5
100.47	30.62	2793.8	69.3	2.5	280.7	280.8	11.2	6.5	178.6	30.0	30.0	3.0
101.29	30.88	10031.6	312.7	3.1	282.7	283.3	40.1	23.4	757.2	52.5	36.0	6.0
102.11	31.12	15240.7	335.9	2.2	284.8	285.7	50.8	29.5	0.0	64.4	38.0	1.0
102.94	31.38	3861.1	180.9	4.7	287.0	288.2	25.7	14.9	262.9	0.0	0.0	3.0
103.76	31.62	6429.2	129.0	2.0	289.1	290.6	21.4	12.3	0.0	39.4	34.0	1 0
104.58	31.88	1691.7	33.3	2.0	291.2	293.1	6.8	3.9	88.6	30.0	30.0	1.5
105.40	32.12	1756.5	32.6	1.9	293.2	295.5	7.0	4.0	93.4	30.0	30.0	1.5
106.22	32.38	1663.7	34.7	2.1	295.3	298.0	8.3	4.7	85.6	0.0	0.0	1.5
107.04	32.62	1655.7	45.5	2.8	297.3	300.4	8.3	4.7	84.6	0.0	0.0	1 5
107.86	32.88	2576.1	84.4	3.3	299.4	302.9	12.9	7.3	157.9	0.0	0.0	3.0
108.68	33.12	3329.6	123.5	3.7	301.4	305.3	16.6	9.4	217.8	0.0	0.0	3.0
109.50	33.38	3437.3	165.4	4.8	303.4	307.8	34.4	19.3	226.1	0.0	0.0	3 0
110.32	33.62	2448.8	100.3	4.1	305.4	310.2	16.3	9.1	146.7	0.0	0.0	1 5
111.14	33.88	2234.7	72.3	3.2	307.4	312.7	11.2	6.2	129.2	0.0	0.0	1.5
111.96	34.12	2043.5	63.9	3.1	309.5	315.1	10.2	5.7	113.5	0.0	0.0	1 5
112.78	34.38	2300.1	64.2	2.8	311.5	317.6	11.5	6.4	133.7	0.0	0.0	1.5
113.60	34.62	3459.1	78.3	2.3	313.6	320.1	13.8	7.6	226.0	30.0	30.0	3.0
114.42	34.88	6252.6	177.8	2.8	315.6	322.5	25.0	13.8	449.2	37 3	32 0	5.0

Page: 3







Client: Sounding: Date: KLEINFELDER 06-SC-115 27-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Wa	ve Velocity	Corres Depth I	ponding ncrement
(m)	( <i>m</i> )	(ms)	(m/s)	(ft/s)	(m)	(ft)
(m) 6.85 7.85 8.85 9.85 10.95 11.95 12.95 13.95 14.95 15.95 16.95 17.95 18.95 19.95 20.95 21.95 22.95 23.95 24.95 25.95	(m) 6.87 7.87 8.87 9.87 10.96 11.96 12.96 13.96 14.96 15.96 16.96 17.96 18.96 19.96 20.96 21.96 22.96 23.96 23.96 24.96 25.96	X-Over (ms) 5.2 6.4 6.8 6.6 6.6 5.4 5.0 5.0 4.4 5.2 5.8 6.0 5.8 4.8 3.6 4.4 3.8 4.2 4.2	(m/s) 192 156 147 ↓ 166 151 185 200 ~ 200 227 192 172 167 * 172 208 278 278 278 227 263 ¥ 238 238	(17/5) 629 511 482 546 497 607 656 656 656 745 631 565 547 565 683 911 745 863 781 781	(m) 6.9 - 7.9 7.9 - 8.9 8.9 - 9.9 9.9 - 11.0 11.0 - 12.0 12.0 - 13.0 13.0 - 14.0 14.0 - 15.0 15.0 - 16.0 16.0 - 17.0 17.0 - 18.0 18.0 - 19.0 19.0 - 20.0 20.0 - 21.0 21.0 - 22.0 22.0 - 23.0 23.0 - 24.0 24.0 - 25.0 25.0 - 26.0	(ft) 22.5 - 25.8 25.8 - 29.0 29.0 - 32.3 32.3 - 35.9 35.9 - 39.2 39.2 - 42.5 42.5 - 45.8 45.8 - 49.0 49.0 - 52.3 52.3 - 55.6 55.6 - 58.9 58.9 - 62.2 62.2 - 65.5 65.5 - 68.7 68.7 - 72.0 72.0 - 75.3 75.3 - 78.6 78.6 - 81.9 81.9 85.1
23.95 26.95 27.95 28.95 29.95 30.95 31.95 32.95 33.95 34.95	23.96 26.96 27.96 29.96 30.96 31.95 32.95 33.95 34.95	4.2 4.8 5.0 4.2 5.2 5.0 3.6 5.2 4.2 5.2	238 208 200 238 ¥ 192 200 278 192 238 ¥ 192	781 683 656 781 631 656 911 631 781 631	25.0 - 26.0   26.0 - 27.0   27.0 - 28.0   28.0 - 29.0   29.0 - 30.0   30.0 - 31.0   31.0 - 32.0   32.0 - 33.0   33.0 - 34.0   34.0 - 35.0	81.9 - 85.1 85.1 - 88.4 88.4 - 91.7 91.7 - 95.0 95.0 - 98.3 98.3 - 101.5 101.5 - 104.8 104.8 - 108.1 108.1 - 111.4 111.4 - 114.7

										•				
						•								
	Conele	ecinc. •	CPT Interp Output - R	retation elease 1.0	0.07					Page	a: 1 ₀			ntinae ∛ states
	Run No	o: 96-08	04-2149-22	34										· · · ·
	Job No	o: 96-30	19 Kalalan	• .								· · ·		• • •
E.	Client	: Klein +- 115 c	ection 4	5 <b>4</b>			· · .		•			•••	्र हे है	1921.9 
1	Site:	.c. 115 a 115.	S4: 115 R (	of W. 06-S	C-117									
	Locati	on: EB 18	0 Structure	e								× .		. • • • ·
• /	Cone:	20 T	ON A 040				•							
	CPT Da	te: 96/12	/06											
	CPT Fi	le: KA06S	117.COR	•										·.
														<u>.</u> .
	Water	Table (m aipa Ince	); emont (m);	2.00	(ft):	6.6								
	Su Nk	t used:	emeric (RIJ.	12.50	•								·	
	Phi M	ethod :		Robertso	n and Cam	ipanella, 1	983							
	Dr Mo	ethod : Unit Veid	hte Accione	Jamiolko Indito Soil	wski - Al Zones	Sands								•
			·····											-
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	
	(ft)	(m) 	(kPa) 	(kPa)	(%)	(kPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)	
	0.41	0.12	11844.2	71.8	0.6	2.4	0.0	23.7	47.4	0.0	95.0	50 0	1 0	-
	1.23	0.38	17537.6	119.4	0.7	7.3	0.0	35.1	70.2	0.0	95.0	50.0	1.0	
	2.05	0.62	12167.6	74.6	0.6	12.2	0.0	24.3	48.7	0.0	95.0	50.0	1.0	
	3.69	1.12	4687.6	66.3	1.4	21.7	0.0	15.4	20.0	0.0	/4.8 67 5	46.0	1.0	
	4.51	1.38	2560.3	66.2	2.6	26.2	0.0	10.2	19.6	202.7	47.4	40.0	10.0	
	5.33	1.62	2128.8	43.3	2.0	30.8	0.0	8.5	15.0	167.8	39.8	40.0	10.0	
	6.15	1.88	1152.1	32.6	2.8	35.2	0.0	5.8	9.5	89.4	0.0	0.0	6.0	
	7.79	2.38	1147.2	28.0	2.4		37	5.7	8.9 8.8	04.8 88.2	0.0	0.0	6.0	
	8.61	2.62	.947.1	24.5	2.6	42.6	6.1	4.7	7.1	71.9	0.0	0.0	0.0 6 0	
	9.43	2.88	1660.3	24.6	1.5	44.7	8.6	6.6	9.7	128.6	30.0	38.0	6.0	
	10.25	5.12	2388.4	34.3	1.4	46.7	11.0	9.6	13.7	186.5	37.1	38.0	6.0	
	11.89	3.62	17149.6	30.1	0.8	40.9	13.5	36.5 RC 7	17.2	0.0	57.2	42.0	1.0	
13	12.71	3.88	15797.4	53.7	0.3	53.7	18.4	31.6	40.7	0.0	89.3	46.0	1.0	
( N	13.53	4.12	15516.2	55.8	0.4	56.1	20.8	31.0	40.6	0.0	88.2	46.0	1.0	
	14.35	4.38	9909.7 001 2	26.4	0.3	58.5	23.3	19.8	25.4	0.0	74.7	44.0	1.0	
	15.99	4.88	466.1	6.5	2.0	62 1	25.8 28.2	2.3	7.5	65.2 30 1	0.0	0.0	6.0	
	16.81	5.12	424.2	3.7	0.9	62.8	30.7	2.1	2.6	26.5	0.0	0.0	1.5	
	17.63	5.38	397.2	3.6	0.9	63.5	33.1	2.0	2.4	24.1	0.0	0.0	1.5	
	18.45	5.82 5.88	099.9 1228 5	22.7	3.2	64.8	35.6	7.0	8.5	48.0	0.0	0.0	3.0	
	20.09	6.12	995.4	23.5	2.0	68.8	38.U 40 5	0.1 5 0	7.4 5 0	89.9	0.0	0.0	6.0	
	20.92	6.38	820.1	19.Z	2.3	70.8	42.9	5.5	6.4	56.5	0.0	0.0	3.0	
	21.74	6.62	732.8	14.5	2.0	72.9	45.4	3.7	4.2	49.2	0.0	0.0	3.0	
	22.56	0.88 7 12	601.4 510 0	9.8	1.6	74.9	47.8	3.0	3.4	38.3	0.0	0.0	3.0	
	24.20	7.38	464.2	5.7	1.2	78.3	50.5 52.7	3.4 2.3	3.8 2.6	50.7 26.6	0.0	0.0	1.5	
	25.02	7.62	485.9	6.3	1.3	79.0	55.2	2.4	2.7	28.1	0.0	0.0	1.5	
	25.84	7.88	800.0	15.5	1.9	80.4	57.6	4.0	4.4	53.0	0.0	0.0	3.0	•
	20.00	8.38	1009.7 3966.8	25.1 51 0	1.0	82.4	60.1 42.5	6.4	6.9	117.4	30.0	32.0	6.0	
	28.30	8.62	2824.6	43.1	1.5	86.6	65.0	11.3	11.9	213.8	43.2	36.0	6.0	
	29.12	8.88	2407.3	17.8	0.7	88.7	67.4	8.0	8.3	0.0	30.0	34.0	1.0	
	29.94	9.12	2387.5	46.4	1.9	90.9	69.9	9.6	· 9.8	178.1	30.0	34.0	6.0	
	30.78	9.50	1093.6	2.5	0.5	92.9	72.5	4.4	4.4	74.4	30.0	30.0	3.0	
	32.40	9.88	1335.4	7.3	0.5	97.0	77.3	5.3	5.3	92.9	30.0	30.0	3.0	
	33.22	10.12	1104.7	8.5	0.8	<b>99.</b> 0	79.7	4.4	4.3	74.1	30.0	30.0	3.0	
	34.04	10.38	1015.9	15.1	1.5	101.1	82.2	5.1	4.9	66.6	0.0	0.0	3.0	
	35.68	10.82	646.9	20.8 9.4	2.2	103.1	84.6 87 1	6.0 てつ	5.8 7 1	51.3 36 /	0.0	0.0	3.0	
	36.50	11.12	931.7	9.0	1.0	107.2	89.5	4.7	4.4	58.8	0.0	0.0	3.0	
	37.32	11.38	2672.5	42.9	1.6	109.3	92.0	10.7	10.0	197.7	30.0	34.0	6.0	
	58.14 38.04	11.62	5125.7	47.6	1.5	111.3	94.4	12.5	11.6	233.4	32.4	36.0	6.0	
	39.78	12.12	966.9	17.3	1.8	115.4	99.3	4.8	· 0.1·	· <del>·</del> 60.2	· 0.0	· •••	3.0	
1	40.60	12.38	789.8	8.2	1.0	117.5	101.8	3.9	3.6	45.6	0.0	0.0	1.5	
1	41.42	12.62	818.9	7.1	0.9	119.5	104.2	4.1	3.7	47.6	0.0	0.0	1.5	
	42.24	12.88	838.7	8.6	1.0	121.6	106.7	4.Z	3.7	48.8	0.0	0.0	1.5	

•

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-2234 CPT File: KA06S117.COR

CPT Fi	le: KAO6S	117.COR											÷.
Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 pws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	1999 - Ale 1999 - Ale 1999 - Ale
43.06	13.12	901.4	8.6	1.0	123.6	109.1	4.5	4.0	53.5	0.0	0.0	1.5	1.1.4
43.88	13.38	832.8	7.6	0.9	125.7	111.6	4.2	3.6	47.6	0.0	0.0	1.5	
44.70	13.62	1006.8	9.1	0.9	127.7	114.0	4.0	3.5	61.2	30.0	30.0	1.5	
45.52	13.88	965.9	11.2	1.2	129.8	116.5	4.8	4.1	57.6	0.0	0.0	1.5	
40.54	14.12	933.9	11.0	1.2	151.8	118.9	4.8	4.1	56.4	0.0	0.0	1.5	
47.10	14.30	1028.5	11.0	1.2	133.9	121.4	4.0	4.1	20.J 61 5	30.0	30.0	1.5	
48.80	14.88	1025.8	12.0	1.2	137.9	126.3	5.1	4.3	60.9	0.0	0.0	1.5	
49.62	15.12	1068.5	12.5	1.2	. 140.0	128.8	5.3	4.4	64.0	0.0	0.0	1.5	
50.44	15.38	992.1	13.9	1.4	142.0	131.2	5.0	4.1	57.5	0.0	0.0	1.5	•
51.26	15.62	993.6	14.9	1.5	144.1	133.7	5.0	4.1	57.3	0.0	0.0	1.5	
52.08	15.88	2883.0	20.5	1.8	146.1	136.1	11.5	9.3	208.1	30.0	32.0	6.0	
53 72	16.38	1768.4	23.4	1.3	140.2	130.0	7 1	5.6	118 2	34.0	34.0	1.0	
54.54	16.62	2628.8	39.9	1.5	152.4	143.5	10.5	8.3	186.6	30.0	32.0	6.0	
55.36	16.88	7619.2	101.9	1.3	154.6	145.9	19.0	15.0	0.0	53.2	38.0	1.0	•
56.18	17.12	10915.2	105.3	1.0	156.9	148.4	27.3	21.3	0.0	63.3	40.0	1.0	
57.00	17.38	2473.4	49.8	2.0	159.0	150.8	9.9	7.7	173.1	30.0	32.0	6.0	
59 4/	17.62	23/0.3	3U./ 58 0	1.5	161.1	155.5	9.5	7.3	165.0	30.0	32.0	6.0	
59.46	18.12	5776.6	88.0	1.5	165.4	158.2	12.0	9.0 14.7	0.0	32.9	34.0	1.0	
60.28	18.38	10099.2	139.9	1.4	167.6	160.6	25.2	19.1	0.0	60.2	40.0	1.0	
61.10	18.62	19566.8	224.4	1.1	170.0	163.1	39.1	29.4	0.0	78.9	42.0	1.0	
61.93	18.88	32009.0	200.7	0.6	172.5	165.5	53.3	39.8	0.0	92.8	44.0	1.0	
62.75	19.12	29176.3	143.6	0.5	175.0	168.0	48.6	36.0	0.0	89.9	44.0	1.0	
63.57	19.38	9413.8	81.1	0.9	177.4	170.4	23.5	17.3	0.0	57.3	38.0	1.0	
65 21	19.02	15667 2	184 8	1.1	181 0	172.9	9.8 79.7	7.1	0.0	50.0	32.0	1.0	
66.03	20.12	28996.8	330.7	1.1	184.3	177.8	58.0	20.1 41 R	0.0	80 0	42.0	1.0	
66.85	20.38	28361.4	244.8	0.9	186.7	180.3	56.7	40.6	0.0	88.2	44.0	1.0	
67.67	20.62	16230.4	151.8	0.9	189.1	182.7	32.5	23.1	0.0	72.0	42.0	1.0	
68.49	20.88	3344.4	72.3	2.2	191.3	185.2	13.4	9.5	237.4	30.0	32.0	6.0	
69.31 70.17	21.12	2194.2	30.5	1.4	193.4	187.6	8.8	6.2	145.1	30.0	30.0	3.0	
70.15	21.30	1379.3	12.1	0.8	195.4	190.1	6.4 E 7	4.5	97.1	30.0	30.0	1.5	
71.77	21.88	1440.7	11.2	0.8	197.5	192.5	5.8	3.7 4 0	13.2	30.0	30.0	1.5	
72.59	22.12	1443.5	10.5	0.7	201.6	197.4	5.8	4.0	83.6	30.0	30.0	1.5	
73.41	22.38	1493.6	17.4	1.2	203.6	199.9	6.0	4.1	87.2	30.0	30.0	1.5	
74.23	22.62	2132.2	19.8	0.9	205.7	202.3	8.5	5.8	137.9	30.0	30.0	3.0	
75.05	22.88	2802.4	34.7	1.2	207.7	204.8	11.2	7.6	191.2	30.0	30.0	3.0	
13.01 76.60	23.12	1092.U	23.4 /8.6	1.4	209.8	207.2	6.8	4.6	102.0	30.0	30.0	1.5	
77.51	23.62	2608.1	48.5	1.9	213.0	209.7	10 4	7 0	174 6	30.0	30.0	3.0	
78.33	23.88	2199.0	37.9	1.7	215.9	214.6	8.8	5.9	141.5	30.0	30.0	3.0	
79.15	24.12	2185.2	35.0	1.6	218.0	217.0	8.7	5.8	140.0	30.0	30.0	3.0	
79.97	24.38	2363.5	39.8	1.7	220.0	219.5	9.5	6.2	153.9	30.0	30.0	3.0	
80.79	24.62	2556.9	40.7	1.6	222.0	222.0	10.2	6.7	169.0	30.0	30.0	3.0	
82.43	24.00	2254.8	21.8	1.4	224.1	224.4	9.2	5.0	148.0	30.0	30.0	3.0	
83.25	25.38	3623.2	63.8	1.8	228.2	229.3	14.5	9.4	253.3	30.0	32.0	6.0	
84.07	25.62	4949.0	76.1	1.5	230.3	231.8	16.5	10.6	0.0	35.2	34.0	1.0	
84.89	25.88	4599.7	83.8	1.8	232.5	234.2	15.3	9.8	0.0	32.9	32.0	1.0	
85.71	26.12	2605.8	37.2	1.4	234.6	236.7	10.4	6.7	170.8	30.0	30.0	3.0	
86.55	26.38	3297.3	42.1	1.5	236.7	239.1	11.0	7.0	0.0	30.0	30.0	1.0	
88 17	20.02	1813 2	15.7	0 0	238.8	241.6	11.7	1.4	195.7	30.0	30.0	3.0	
88.99	27.12	2124.6	16.0	0.8	242.9	246.5	8.5	5.3	130.8	30.0	30.0	.3.0	
89.81	27.38	1777.3	14.1	0.8	244.9	248.9	7.1	4.4	102.7	30.0	30.0	1.5	
90.63	27.62	1474.6	11.8	0.8	247.0	251.4	5.9	3.7	78.1	30.0	30.0	1.5	
91.45	27.88	1865.0	25.6	1.4	249.0	253.8	7.5	4.6	109.0	30.0	30.0	1.5	
92.27	28.12	2213.3	58.8	1.8	251.1	256.3	8.9	5.5	136.5	30.0	30.0	3.0	
93.09 07 01	20.30	2011.0	22.5 5 77	1.7	255.7	278./ 241 7	8.U 9 0	<b>4.9</b>	117 0	30.0	30.0	1.5	
94.73	28,88	2201.4	34.8	1.6	257.2	263.6	8.8	<b>7.7</b> 5.4	134.4	30.0	30.0	3.0	
95.55	29.12	3683.7	52.1	1.4	259.3	266.1	12.3	7.5	0.0	30.0	30.0	1.0	
96.37	29.38	4071.8	46.6	1.1	261.5	268.5	13.6	8.2	0.0	30.0	32.0	1.0	
97.19	29.62	2293.8	25.3	1.1	263.6	271.0	9.2	5.5	140.7	30.0	30.0	3.0	
98.01	29.88	2063.6	26.6	1.3	265.7	273.5	8.3	5.0	122.0	30.0	30.0	1.5	
98.83	30.12	3030.5	40.0	1.3	267.8	275.9	10.1	6.0	0.0	30.0	30.0	1.0	

.

.

.

•



ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-2234 CPT File: KA06S117.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio
99.65	30.38	4436.1	66.1	1.5	270.0	278.4	14.8	8.8	0.0	30.0	32 0	1 0
100.47	30.62	10370.8	129.6	1.2	272.2	280.8	25.9	15.4	0.0	54.0	38.0	1.0
101.29	30.88	4588.6	131.8	2.9	274.4	283.3	18.4	10.8	322.5	30.5	32.0	6.0
102.11	31.12	10506.8	156.3	1.5	276.5	285.7	26.3	15.5	0.0	54.1	38.0	1 0
102.94	31.38	3493.6	62.6	1.8	278.7	288.2	14.0	8.2	234.1	30.0	30.0	3.0
103.76	31.62	<b>5820.5</b>	89.7	1.5	280.8	290.6	19.4	11.3	0.0	37.0	32 0	1.0
104.58	31.88	2213.7	33.4	1.5	282.9	293.1	8.9	5.2	131.0	30.0	30.0	1 5
105.40	32.12	1677.2	16.2	1.0	285.0	295.5	6.7	3.9	87.7	30.0	30.0	1 5
106.22	32.38	2194.4	46.0	2.1	287.0	<b>298.</b> 0	8.8	5.1	128.8	30.0	30.0	1.5
107.04	32.62	3730.3	92.2	2.5	289.1	300.4	14.9	8.6	251.3	30.0	30.0	3 0
107.86	32.88	2951.7	48.2	· 1.6	291.1	302.9	11.8	6.8	188.6	30.0	30.0	3.0
108.68	33.12	3748.9	57.9	1.5	293.2	305.3	12.5	7.1	0.0	30.0	30.0	1 0
109.50	33.38	6440.8	131.6	2.0	295.4	307.8	21.5	12.2	0.0	39.1	34.0	1.0
110.32	33.62	14746.2	161.5	1.1	297.6	310.2	36.9	20.9	0.0	62.8	38.0	1.0

Page: 3





. . .



Client: Sounding: Date: KLEINFELDER 06-SC-117 12-Jun-96

Source: Offset (m): Cone: Geophone:

C

Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For	Shear Way	e Velocity	Corresponding Depth Increment				
(m)	(m)	X-Over (ms)	(m/s)	(ft/s)	(m)	(ft)			
1.65	1.74								
2.65	2.71	8.5	114	373	1.7 2.7	5.4 - 8.7			
3.65	3.69	6.4	154	505	2.7 - 3.7	8.7 - 12.0			
4.65	4.68	5.3	187	613	3.7 - 4.7	12.0 - 15.3			
5.65	5.68	7.7	¥ 129	424	4.7 5.7	15.3 - 18.5			
6.65	6.67	8.0	124	408	5.7 - 6.7	18.5 21.8			
7.65	7.67	6.6	151	496	6.7 . 7.7	21.8 - 25.1			
8.00	8.02	2.9	120	395	7.7 - 8.0	25.1 - 26.2			
9.00	9.02	6.3	158	520	8.0 - 9.0	26.2 29.5			
10.00	10.02	5.9	<b>∀ 169</b>	555	9.0 10.0	29.5 - 32.8			
11.00	11.01	5.2	192	630	10.0 - 11.0	32.8 - 36.1			
12.00	1 :.01	5.1	196	643	11.0 12.	36.1 - 39.4			
13.00	13.01	5.5	182	596	12.0 - 13.0	39.4 - 42.7			
14.00	14.01	6.3	159	520	13.0 - 14.0	42.7 - 45.9			
15.00	15.01	6.4	+ 156	512	14.0 - 15.0	45.9 49.2			
16.00	16.01	5.8	172	565	15.0 - 16.0	49.2 - 52.5			
17.00	17.01	5.8	172	565	16.0 17.0	52.5 - 55.8			
18.00	18.01	4.6	217	713	17.0 - 18.0	55.8 - 59.1			
19.00	19.01	2.9	345	1131	18.0 - 19.0	59.1 - 62.3			
20.00	20.01	4.3	* 232	763	19.0 - 20.0	62.3 - 65.6			
21.00	21.01	3.8	263	863	20.0 - 21.0	65.6 - 68.9			
22.00	22.01	4.6	217	713	21.0 22.0	68.9 - 72.2			
23.00	23.01	5.0	200	656	22.0 . 23.0	72.2 75.5			
24.00	24.01	5.6	179	586	23.0 - 24.0	75.5 78.7			
25.00	25.01	4.7	¥ 213	698	24.0 - 25.0	78.7 82.0			
26.00	26.01	4.0	250	820	25.0 - 26.0	82.0 - 85.3			
27.00	27.01	4.9	204	669	26.0 - 27.0	85.3 88.6			
28.00	28.01	4.7	213	698	27.0 - 28.0	88.6 91.9			
29.00	29.01	5.7	175	575	28.0 - 29.0	91.9 95.1			
30.00	30.01	5.0	÷ 200	656	29.0 - 30.0	95.1 98.4			
31.00	31.01	3.3	303	994	30.0 - 31.0	98.4 ####			
32.00	32.00	3.9	256	841	31.0 - 32.0	#### ####;			
33.00	33.00	4.4	227	746	32.0 - 33.0	#### - ####			
34.00	34.00	4.0	250	820	33.0 - 34.0	#### - ####			

														4
	ConeTe	c Inc -	CPT Intern	retetion						0			·	ar sate
	Interp	retation	Output - Re	elease 1.0	0.07					Page			· · · · ·	
	Run No	: 96-08	04-2149-306	59										- R - <b>B</b> A <b>J</b>
	Job No	: 96-30	<b>)9</b>										·	
1	Client	: Klein	nfelder							t e ea	** <b>a</b>	No.	$\mathcal{F}_{\mathcal{F}}$	55.1.1
t de se	Projec	t: 115 S	ection 4		•			1997 - A			•			1.121
	Site:	115,	S4: 115, 06	5-SC-124						• .			an an an an an an an an an an an an an a	an an an an an an an an an an an an an a
	Locati	ON: EB 18	ON A OGO	•									· .	5 <b>9</b>
	CPT Da	20 1 te: 06/13						•					•	
	CPT Ti	me: 08:15												
	CPT Fi	le: KA06S	124.COR											· · ·
														•
	Water	Table (m	):	2.00	(ft);	6.6								
	Avera	ging Incr	ement (m):	0.25										
	Dhi M	t used:		- IZ.JU Poberteo	n and Cam		097							•
	Dr Me	ethod :		Jamiolko	n and cam weiri - Al	panella, r I Sande	700							
	Used L	Unit Weig	hts Assigne	d to Soil	Zones	C Jankas								
			<del>.</del> .											
	Depth	Depth	Avget	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	
		(m) 	(KP8) 	(KP8)	(A) 	(KPa)	(кра)	(DLO	WS/TT)	(KPa)	(%)	(deg.)	(ratio)	
	0.41	0.12	12844.7	79.1	0.6	2.4	0.0	25.7	51.4	0.0	<b>0</b> 5 N	50 0	1 0	
	1.23	0.38	30668.6	216.2	0.7	7.3	0.0	61.3	122.7	0.0	95.0	50.0	1.0	
	2.05	0.62	6563.3	108.9	1.7	12.1	0.0	21.9	43.8	0.0	85.5	50.0	1.0	
	2.87	<b>(0.88</b>	2599.9	67.4	2.6	16.6	0.0	10.4	20.8	206.7	54.4	44.0	10.0	
	3.69	1.12	891.8	43.1	4.8	21.1	0.0	8.9	17.8	69.7	0.0	0.0	6.0	
	4.51	1.38	963.2	37.9	3.9	25.4	0.0	9.6	18.7	75.0	0.0	0.0	6.0	
	5.33	1.62	925.5	44.9	4.9	29.8	0.0	9.3	16.6	71.7	0.0	0.0	6.0	
	6.15	1.88	1029.5	25.0	1.5	34.2	0.0	6.5	10.9	127.6	30.6	38.0	6.0	
	7 70	2 38	574 9	21.0	2.1	37.3	1.2	3.0	0.0	42.0	0.0	0.0	6.0	
	8.61	2.62	554.8	32.0	5.8	41 4	5.7	5.5	9.0	42.3	0.0	0.0	6.0	
	9.43	2.88	585.3	26.7	4.6	43.4	8.6	5 0	87	40.0	0.0	0.0	3.0	. •
	10.25	3.12	4669.1	24.2	0.5	45.5	11.0	11.7	16.9	0.0	56.7	42.0	1.0	
	11.07	3.38	7680.0	35.8	0.5	47.8	13.5	19.2	27.2	0.0	70.3	44.0	1.0	
	11.89	3.62	10763.8	38.4	0.4	50.1	15.9	21.5	29.8	0.0	79.3	46.0	1.0	
6	12./1	5.88	12/1/.1	47.3	0.4	52.5	18.4	25.4	34.3	0.0	83.4	46.0	1.0	
KL :	12.33	4.12	124/1.9	5U./ 91 0	0.5	55.0	20.8	30.9	40.8	0.0	88.4	46.0	1.0	
1 M	15.17	4.62	17331.7	30.0	0.0	50 g	25.3	21.4	35.4	0.0	84.3	46.0	1.0	
(	15.99	4.88	16175.4	26.6	0.2	62.2	28.2	39.1	40.1	0.0	90.4	40.0	1.0	
	16.81	5.12	15200.4	36.4	0.2	64.7	30.7	30.4	37.0	0.0	85.5	46.0	1.0	
	17.63	5.38	18739.3	49.1	0.3	67.1	33.1	37.5	44.8	0.0	91.0	46.0	1.0	
	18.45	5.62	20620.5	42.5	0.2	<b>69</b> .6	35.6	34.4	40.3	0.0	93.2	46.0	1.0	
	19.27	5.88	23025.5	50.5	0.2	72.1	38.0	38.4	44.2	0.0	95.0	46.0	1.0	
	20.09	6.12	7821.9	78.6	1.0	74.5	40.5	19.6	22.2	0.0	64.4	42.0	1.0	
	20.72	6 62	0/1.2	10 1	. 2.1	70.7	42.9	5.4	6.0	76.1	0.0	0.0	3.0	
	22.56	6.88	820.4	13.8	1.7	80.8	43.4	4.0	2.5	55 3	0.0	0.0	. 3.0	
-	23.38	7.12	708.1	15.7	2.2	82.8	50.3	4.7	5.1	46.0	0.0	0.0	3.0	
	24.20	7.38	696.8	9.1	1.3	84.9	52.7	3.5	3.7	44.7	0.0	0.0	3.0	
	25.02	7.62	677.4	9.0	1.3	86.9	55.2	3.4	3.6	42.8	0.0	0.0	1.5	
	25.84	7.88	710.1	9.6	1.4	89.0	57.6	3.6	3.7	45.1	0.0	0.0	3.0	
	26.66	8.12	771.4	11.8	1.5	91.0	60.1	3.9	4.0	49.6	0.0	0.0	3.0	
	27.40	8.30	2143.0	50.7	1.4	93.1	62.5	8.6	8.7	159.2	30.0	34.0	6.0	•
	20.30	8 88	020 6	44.0 14 R	2.0	97.1	63.0	0.0	8.8	165.5	30.0	54.0	6.0	
	29.94	9.12	2031.8	38.5	1.0	97.2	60 0	4.0	4.0 8.0	1/0 0	30.0	12.0	5.0	
	30.76	9.38	1044.7	9.5	0.9	101.3	72.3	4.2	4.1	69.7	30.0	30.0	3.0	
	31.58	9.62	1152.9	13.1	1.1	103.3	74.8	4.6	4.4	78.0	30.0	30.0	3.0	
	32.40	9.88	1305.7	14.8	1.1	105.4	77.3	5.2	5.0	89.8	30.0	30.0	3.0	
	33.22	10.12	1040.1	10.1	1.0	107.4	79.7	4.2	3.9	68.2	30.0	30.0	3.0	
	34.04	10.38	1181.4	15.9	1.3	109.5	82.2	4.7	4.4	79.2	30.0	30.0	3.0	
	34.00 35 AR	10.62	1040.7	37.8 16 1	2.2	111.5 442 4	84.6 97 1	7.4	6.8 / /	132.0	30.0	32.0	6.0	
	36.50	11.12	2555 8	51 5	2 0	115.0	0/,1 20 5	5.U 10.2	4.0	04.4 122 4	U.U 30 0	U.U 12.0	3.U ∡ ∩	
	37.32	11.38	772.4	9.8	1.3	117 7	92 N	30	7.3	45 0	0.0	0.0	0.0	
	38.14	11.62	1427.1	21.0	1.5	119.7	94.4	5.7	5.1	97.0	30.0	30.0	3.0	
	38.96	. 11.88	3670.8	75.8	2.1	121.8	96.9	14.7	13.0	276.2	35.7	36.0	· 6.0	
	39.78	12.12	1364.9	22.7	1.7	123.8	99.3	6.8	6.0	91.3	0.0	0.0	3.0	•
1	40.60	12.38	2546.6	50.3	2.0	125.8	101.8	10.2	8.9	185.5	30.0	32.0	6.0	
1.	41.42	12.62	1243.8	31.1	2.5	127.9	104.2	6.2	5.4	80.9	0.0	0.0	3.0	
	42.24	12.88	987.0	12.1	1.2	129.9	106.7	4.9	4.2	60.0	0.0	0.0	1.5	

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-3069 CPT File: KA06S124.COR

.

Page:	2	2
	· *	

a si ab

			•••••									
Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)
				••••••								
43.00	13.12	959.6	13.0	1.4	132.0	109.1	4.8	4.1	57.5	0.0	0.0	1.5
43.00	13.30	1109.8	15.1	1.2	134.0	111.6	4.4	3.8	69.1	30.0	30.0	3.0
44.70	13.02	1008.9	10.5	1.0	136.1	114.0	4.0	3.4	60.7	30.0	. 30.0	1.5
43.32	13.00	1011.3	9.0	0.9	138.1	116.5	4.0	3.4	60.6	30.0	30.0	1.5
40.34	14.12	1008.7	11.8	1.1	140.2	118.9	4.4	3.6	66.4	30.0	30.0	1.5
47.10	14.38	1044.1	14.6	1.4	142.2	121.4	5.2	4.3	62.4	0.0	0.0	1.5
47.98	14.62	10/9.1	18.0	1.7	144.3	123.9	5.4	4.4	64.9	0.0	0.0	1.5
40.00	14.00	1079.0	13.0	1.3	146.3	126.3	5.4	4.4	64.6	0.0	0.0	1.5
49.02	15.12	1089.1	15.0	1.4	148.4	128.8	5.4	4.4	65.0	0.0	0.0	1.5
51 34	15.38	1105.6	16.9	1.5	150.4	131.2	5.5	4.4	65.9	0.0	0.0	1.5
51.20	15.02	1151.5	23.1	2.0	152.5	133.7	5.8	4.6	69.2	0.0	0.0	1.5
52.08	12.88	11/0.1	21.1	1.8	154.5	136.1	5.9	4.6	70.4	0.0	0.0	1.5
57 73	16.12	1344.0	39.4	2.9	156.6	138.6	6.7	5.3	84.0	0.0	0.0	3.0
56 56	16.30	7007 9	(4.2	1.2	158.7	141.0	20.5	15.9	0.0	46.8	38.0	1.0
55 74	10.02	2002.0	49.1	1.6	160.8	143.5	12.0	9.3	216.0	30.0	32.0	6.0
56 18	17 12	23/2.1	23.9	1.0	162.8	145.9	9.5	7.3	165.1	30.0	32.0	6.0
57 00	17.12	2147.2	12.0	0.6	164.9	148.4	7.2	5.4	0.0	30.0	30.0	1.0
57 92	17.30	1031.3	13.7	0.8	167.0	150.8	6.5	4.9	105.1	30.0	30.0	3.0
50 4/	17.02	308/.0	01.8	1.7	169.2	153.3	12.3	9.2	0.0	31.1	34.0	1.0
50 44	18 17	0/09.5	108.8	1.6	171.3	155.7	22.4	16.7	0.0	48.1	38.0	1.0
27.40 60 39	10.12	1313.4	140.5	2.0	1/5.5	158.2	24.6	18.3	0.0	50.7	38.0	1.0
61 10	10.20	2003.0	110.5	2.0	1/5.7	160.6	19.5	14.4	0.0	43.9	36.0	1.0
41 07	10.02	2160.9	47.8	2.5	177.8	163.1	8.7	6.4	147.2	30.0	30.0	3.0
47 75	10.00	1331.0	17.2	1.3	179.8	165.5	5.3	3.9	78.9	30.0	30.0	1.5
63 57	19.12	1584.2	16.7	1.1	181.9	168.0	6.3	4.6	98.7	30.0	30.0	3.0
4/ 20	10 42	1010.7	20.5	1.4	183.9	170.4	6.0	4.4	92.5	30.0	30.0	. 3.0
45 21	19.02	0037-8	107.3	1.8	186.0	172.9	20.1	14.4	0.0	43.9	36.0	1.0
44 07	19.00	4212.4	122.5	2.9	188.1	175.4	17.1	12.2	312.7	33.8	34.0	6.0
00.UJ	20.12	11/55.5	251.1	2.0	190.3	177.8	39.2	27.8	0.0	62.7	40.0	1.0
47 47	20.30	13008.0	185.8	1.4	192.5	180.3	32.5	22.9	0.0	65.4	40.0	1.0
49 (0	20.02	3497.4	98.0	2.8	194.7	182.7	14.0	9.8	249.6	30.0	32.0	6.0
40 71	20.00	0052.9	155.5	2.2	196.8	185.2	20.2	14.1	0.0	43.2	36.0	1.0
70 47	21.12	3846.0	88.8	2.3	198.9	187.6	15.4	10.7	276.8	30.0	32.0	6.0
70.15	21.38	7083.9	132.7	1.9	201.0	190.1	23.6	16.3	0.0	47.4	36.0	1.0
70.95	21.02	16516.1	219.3	1.3	203.2	192.5	41.3	28.3	0.0	71.5	42.0	1.0
11.11	21.88	11913.0	279.1	2.3	205.5	195.0	39.7	27.1	0.0	62.0	40.0	1.0
12.59	22.12	6895.2	170.9	2.5	207.6	197.4	27.6	18.7	519.2	46.2	36.0	6.0
7/ 22	22.38	3362.7	83.3	2.5	209.6	199.9	13.5	9.1	236.3	30.0	32.0	6.0
74.23	22.02	1000.0	12.7	0.8	211.7	202.3	6.7	4.5	100.3	30.0	30.0	1.5
75.03	22.00	1906.4	15.5	0.8	213.7	204.8	7.6	5.1	119.0	30.0	30.0	3.0
73.0/	23.12	2030.5	21.3	1.0	215.8	207.2	8.1	5.4	128.6	30.0	30.0	3.0
/0.0Y	23.38	2347.1	32.4	1.4	217.8	209.7	9.4	6.2	153.6	30.0	30.0	3.0
	23.02	3842.4	15.5	2.0	219.9	212.1	15.4	10.1	272.8	30.0	32.0	6.0
0.33	23.88	2443.2	41.7	1.7	221.9	214.6	9.8	6.4	160.5	30.0	30.0	3.0
19.15	24.12	2184.5	32.4	1.5	224.0	217.0	8.7	5.7	139.5	30.0	30.0	3.0
19.97	24.38	2034.0	29.9	1.5	226.0	219.5	8.1	. 5.3	127.1	30.0	30.0	3.0
50.79	24.62	2074.9	32.3	1.6	228.0	222.0	8.3	5.4	130.0	30.0	30.0	3.0
51.61	24.88	1783.3	19.6	1.1	230.1	224.4	7.1	4.6	106.3	30.0	30.0	1.5
32.43	25.12	1653.2	14.1	0.9	232.1	226.9	6.6	4.2	95.5	30.0	30.0	1.5
13.25	25.38	2050.4	22.0	1.1	234.2	229.3	8.2	5.2	127.0	30.0	30.0	3.0
4.07	25.62	3313.8	71.2	2.1	236.2	231.8	13.3	8.4	227.7	30.0	30.0	3.0
4.89	25.88	12939.4	323.0	2.5	238.3	234.2	43.1	27.3	0.0	62.2	40.0	1.0
5.71	26.12	6033.5	196.1	3.2	240.5	236.7	24.1	15.2	444.5	40.2	34.0	6.0
6.53	26.38	14836.7	367.0	2.5	242.6	239.1	49.5	31.1	0.0	65.9	40.0	1.0
7.35	26.62	2940.4	78.8	2.7	244.7	241.6	11.8	7.4	196.3	30.0	30.0	3.0
8.17	26.88	3546.6	69.2	2.0	246.7	244.0	14.2	8.8	244.5	30.0	32.0	3.0
0.99	21.12	2075.9	26.6	1.3	248.8	246.5	8.3	5.2	126.5	30.0	30.0	3.0
9.81	27.38	2291.1	34.2	1.5	250.8	248.9	9.2	5.7	143.3	30.0	30.0	3.0
0.63	27.62	1871.4	28.1	1.5	252.9	251.4	7.5	4.6	109.4	30.0	30-0	1.5
1.45	27.88	1991.8	29.3	1.5	254.9	253.8	8.0	4.9	118.6	30.0	30.0	1.5
2.27	28.12	2168.5	39.3	1.8	257.0	256.3	8.7	5.3	132.4	30.0	30.0	3.0
3.09	28.38	3087.5	73.9	2.4	259.0	258.7 ·	12.3	7.5	205.6	30.0	30.0	3_0
3.91	28.62	2536.8	77.5	3.1	261.1	261.2	12.7	7.7	161.2	0.0	0.0	3.0
4.73	28.88	2346.4	58.0 ·	2.5	263.1	263.6	9.4	5.7	145.6	30.0	30.0	3.0
5.55	29.12	2272.8	49.7	2.2	265.2	266.1	9.1	5.5	139.3	30.0	30.0	3.0
6.37	29.38	2818.7	48.1	1.7	267.2	268.5	11.3	6.8	182.6	30.0	30.0	3.0
7.19	29.62	5507.9	86.4	1.6	269.3	271.0	18.4	10.9	0.0	36.0	32.0	1.0
8.01	29.88	2310.7	27.1	1.2	271.4	273.5	9.2	5.5	141.3	30.0	30.0	3.0
28.83	30.12	2010 5	17 3	0 0	273 5	275 0	8 0	1 9	114 0	70 0	70.0	1 6

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-3069 CPT File: KA06S124.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
00 65	30.38	2333.9	26.6	 1.1	275.5	278.4	9.3	5.5	142.4	30.0	30.0	3 0
100 47	30.62	4837.6	113.4	2.3	277.6	280.8	19.4	11.4	342.3	31.8	32.0	6.0
101 20	30.88	4604.4	105.6	2.3	279.6	283.3	18.4	10.8	323.3	30.3	32.0	· 6.0
107.27	31.12	7857.2	178.2	2.3	281.7	285.7	26.2	15.3	0.0	45.5	36.0	1 0
102.11	31 38	12013.8	243.0	2.0	283 9	288.2	40.0	23.3	0.0	57.6	38.0	1.0
103 76	31.62	4665.1	147.4	3.2	286.0	290.6	23.3	13.5	327.1	0.0	0.0	6.0
104.58	31.88	7315.4	143.7	2.0	288.1	293.1	24.4	14.1	0.0	43.1	34.0	1.0
105.40	32.12	2757.4	46.6	1.7	290.2	295.5	11.0	6.3	173.7	30.0	30.0	3.0
106.22	32.38	2009.6	27.7	1.4	292.3	298.0	8.0	4.6	113.6	30.0	30.0	1.5
107.04	32.62	2516.6	51.6	2.1	294.3	300.4	10.1	5.7	153.7	30.0	30.0	3 0
107.86	32.88	2690.9	67.7	2.5	296.4	302.9	10.8	6.1	167.3	30.0	30.0	3.0
108.68	33.12	2950.3	70.2	2.4	298.4	305.3	11.8	6.7	187.7	30.0	30.0	3.0
109.50	33.38	2748.1	37.0	1.3	300.5	307.8	11.0	6.2	171.2	30.0	30.0	3.0
110.32	33.62	2749.3	60.8	2.2	302.5	310.2	11.0	6.2	170.9	30.0	30.0	3.0
111.14	33.88	3034.2	82.6	2.7	304.6	312.7	12.1	6.8	193.4	30.0	30.0	3.0
111.96	34.12	3764.2	105.7	2.8	306.6	315.1	15.1	8.4	251.4	30.0	30.0	3.0
112.78	34.38	4232.6	92.2	2.2	308.7	317.6	16.9	9.4	288.5	30.0	30.0	3.0
113.60	34.62	4874.2	155.3	3.2	310.7	320.1	24.4	13.5	339.5	0.0	0.0	6.0
114.42	34.88	8481.0	197.4	2.3	312.8	322.5	28.3	15.6	0.0	46.2	34.0	1.0

Page: 3







Client: Sounding: Date:

 $\mathbf{C}$ 

KLEINFELDER 06-SC-124 13-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geonhana	Distance	Last Time	Choor Ma	Valent:	Corresponding					
Denth		Last Ime	Sucar wa	ve velocity	Corres	ponding				
Dehu					Debuil					
(m)	(m)		(m/s)	(ff/s)	(m)					
()	(11)	(///5/	(1103)	(103)	(111)	(11)				
3 60	3.64									
4.60	4.63	5.0	198	650	36 - 46	118 - 151				
5.60	5.63	4.8	* 207	679	46 - 56	15.1 - 18.4				
6.60	6.62	5.0	199	653	5.6 - 6.6	18.4 - 21.7				
7.60	7.62	6.6	151	496	6.6 - 7.6	21.7 - 24.9				
8.60	8.62	7.3	137	448	7.6 - 8.6	24.9 - 28.2				
9.60	9.62	5.5	181	595	8.6 - 9.6	28.2 - 31.5				
10.60	10.61	5.2	<b>⊭ 192</b>	630	9.6 - 10.6	31.5 - 34.8				
11.60	11.61	5.0	200	655	10.6 - 11.6	34.8 - 38.1				
12.60	12.61	4.7	213	697	11.6 - 12.6	38.1 - 41.3				
13.60	13.61	5.4	185	607	12.6 - 13.6	41.3 - 44.6				
14.60	14.61	5.8	172	565	13.6 - 14.6	44.6 - 47.9				
15.60	15.61	6.4	¥ 156	512	14.6 - 15.6	47.9 - 51.2				
16.60	16.61	6.5	154	504	15.6 - 16.6	51.2 - 54.5				
17.60	17.61	4.9	204	669	16.6 - 17.6	54.5 - 57.7				
18.60	18.61	4.6	217	713	17.6 - 18.6	57.7 - 61.0				
19.60	19.61	5.3	189	619	18.6 - 19.6	61.0 - 64.3				
20.60	20.61	4.2	<b>⊮ 238</b>	781	19.6 - 20.6	64.3 - 67.6				
21.60	21.61	4.0	250	820	20.6 - 21.6	67.6 - 70.9				
22.60	22.61	3.9	256	841	21.6 - 22.6	70.9 - 74.1				
23.60	23.61	5.2	192	631	22.6 - 23.6	74.1 - 77.4				
24.60	24.61	4.4	227	745	23.6 - 24.6	77.4 - 80.7				
25.60	25.61	4.4	<b>⊭ 227</b>	745	24.6 - 25.6	80.7 - 84.0				
26.60	26.61	4.2	238	781	25.6 - 26.6	84.0 - 87.3				
27.60	27.61	5.0	200	656	26.6 - 27.6	87.3 - 90.6				
28.60	<b>28.61</b>	5.4	185	607	27.6 - 28.6	90.6 - 93.8				
29.60	29.61	4.7	213	698	28.6 - 29.6	93.8 - 97.1				
	30.61	4.4	+ 227	746	29.6 - 30.6	97.1 - 100.4				
31.60	31.60	3.3	303	994	30.6 - 31.6	100.4 - 103.7				
32.60	32.60	4.8	208	683	31.6 - 32.6	103.7 - 107.0				
33.60	33.60	3.6	278	911	32.6 - 33.6	107.0 - 110.2				
34.60	34.60	4.2	238	781	33.6 - 34.6	110.2 - 113.5				
35.10	35.10	1.6	* 312	1025	34.6 - 35.1	113.5 - 115.2				
					34,85					

·	ConeTe Interp Run No	c Inc retation : 96-08	CPT Interp Output - R 04-2149-32	retation elease 1.0 73	0.07	•	<i>.</i>			Page	: <b>İ</b> .			7. 1 2 12
0	Job No Client Projec	: 96-30 : Klein t: 115 S	9 felder ection 4				· · ·	· · ·			• • • • • • • • • • • • • • • • • • •	· · · · · ·		
C	Site:	115, 9 00: S Tem	S4: UPRR R ple Struct	of W, 06-	SC-126									
N. 3	Cone:	20 T	DN A 040	•								• •		
	CPT Dat CPT Tir	te: 96/21, ne: 08:44	/06											
	CPT Fi	le: KA06S	126.COR	•										
	Water Averag Su Nki	Table (m) ging Incre t used:	): ement (m):	2.00 0.25 12.50	(ft);	6.6							· • • • • • • • • • • • • • •	••
	Dr Me	ethod:	nte Accian	Jamioiko and to Soil	n and camµ ⊌ski - All Zonos	Sands	703							
	Dopth	Donth	Ave0+		2011es	<b>F Ch</b>								•
	(ft)	(m)	(kPa)	(kPa)	AVGRT (%)	(kPa)	kyd. Pr. (kPa)	NOU (bioi	(N1)60 WS/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
	0.41	0.12	6478.3	56.3	0.9	2.4	0.0	16.2	32.4	0.0	95.0	50.0	1.0	
	1.25	0.58	- 2159.2	69.3	1.0	7.1	0.0	19.4	38.8	0.0	89.7	50.0	1.0	
	2.87	0.88	592.0	17.5	2.9	16.1	0.0	5.9	11.8	46.1	0.0	0.0	10.0	
	3.69	1.12	579.1	20.6	3.6	20.4	0.0	5.8	11.6	44.7	0.0	0.0	6.0	
	4.51	1.38	560.4	24.3	4.3	24.8	0.0	5.6	11.0	42.8	0.0	0.0	6.0	
	6.15	1.88	462.4	40.0	2.3	29.2	0.0	8.6	15.6	66.7	0.0	0.0	6.0	
	6.97	2.12	768.7	35.3	4.6	36.7	1.2	7.7	12.4	58.5	0.0	0.0	6.0 6 N	
	7.79	2.38	2947.5	21.4	0.7	38.8	3.7	9.8	15.4	0.0	45.8	40.0	1.0	
	8.61	2.62	5438.7	22.0	0.4	41.0	6.1	13.6	20.8	0.0	62.6	44.0	1.0	
	10.25	2.00	2168.6	42.4	0.9	45.2	8.6	15.9	23.7	0.0	58.1	42.0	1.0	
	11.37	3.38	2545.1	37.8	1.5	47.4	13.5	10.2	14.5	109.0	34.0	38.0	6.0 10.0	
	11.89	3.62	1748.0	38.3	2.2	49.4	15.9	8.7	12.2	134.6	0.0	0.0	6.0	
1	12.71	3.88	1877.3	45.3	2.4	51.5	18.4	9.4	12.8	144.6	0.0	0.0	6.0	
	15.55	4.12	3622.6 (570 0	90.3	2.5	53.5	20.8	14.5	19.4	283.9	47.1	40.0	10.0	
	14.35	4.50	2126.2	45.6	1.8	55.6 57.7	23.3	15.1	19.8	0.0	53.0	42.0	1.0	
۱	15.99	4.88	2357.4	62.0	2.6	59.8	28.2	11.8	14.9	181 6	30.8	38.0	6.0	
	16.81	5.12	3091.5	108.3	3.5	61.8	30.7	15.5	19.2	239.9	0.0	0.0	6.0	
	17.63	5.38	4250.9	105.1	2.5	63.9	33.1	17.0	20.8	332.3	49.2	40.0	10.0	
	18.45	5.62	52/5.1 799/ /	66.4	1.3	66.0	35.6	17.6	21.2	0.0	54.9	42.0	1.0	
	20.09	6.12	2004.4 4113 0	60.2 40.7	1.5	68.2 70 Z	38.0	12.9	15.3	0.0	45.7	40.0	1.0	
	20.92	6.38	616.4	6.1	1.0	71.8	40.5	3.1	3.6	40.1	40.9	40.0	1.0	
	21.74	6.62	651.1	2.7	0.4	72.4	45.4	3.3	3.7	42.7	0.0	0.0	3.0	
	22.56	6.88	574.2	3.3	0.6	73.1	47.8	2.9	3.3	36.3	0.0	0.0	1.5	
	23.38	7.12	542.1	4.6	0.8	73.8	50.3	2.7	3.1	33.4	0.0	0.0	1.5	
	25.02	7.62	559.8	4.5	0.5	74.5	55 2	2.2	2.8	29.1 34.4	0.0	0.0	1.5	
	25.84	7.88	1024.1	12.2	1.2	76.5	57.6	5.1	5.7	71.2	0.0	0.0	3.0	
	26.66	8.12	995.4	19.1	1.9	78.5	60.1	5.0	5.5	68.5	0.0	0.0	3.0	
	27.48	8.38	709.2	9.3	1.3	80.6	62.5	3.5	3.9	45.3	0.0	0.0	3.0	
	20.30	0.02 8.88	630.U 550 7	9.0	1.4	82.6	65.0	3.2	3.4	39.1	0.0	0.0	1.5	
	29.94	9.12	572.0	6.1	1.5	04.7 86.0	60 0	2.8	3.0	32.0	0.0	0.0	1.5	
	30.76	9.38	575.2	4.6	0.8	86.7	72.3	2.9	3.0	33.3	0.0	0.0	1.5	
	31.58	9.62	538.1	3.8	0.7	87.4	74.8	2.7	2.8	30.1	0.0	0.0	1.5	
	32.40	9.88	547.9	3.8	0.7	88.1	77.3	2.7	2.9	30.6	0.0	0.0	1.5	
	33.22	10.12	248.2 597 4	5.2	1.0	88.7	79.7	2.7	2.8	30.4	0.0	0.0	1.5	
	34.86	10.62	595.6	4.9 4.6	0.8	07.4 90.1	84.A	2.9	5.0	55.0 33.7	0.0	0.0	1.5	
	35.68	10.88	1449.6	19.7	1.4	91.4	87.1	5.8	5.9	101.7	30.0	32.0	6.0	•
	36.50	11.12	1005.8	24.6	2.4	93.5	89.5	5.0	5.1	65.8	0.0	0.0	3.0	
	37.32	11.38	2525.3	37.4	1.5	95.5	92.0	10.1	10.1	187.0	30.0	34.0	6.0	
	30.14 38 04	11.02	2058.6 717 1	49.4	2.4	97.6 · 00 4	94.4	8.2	8.2	149.3	30.0	34.0	6.0	
	30.90	12,12	997.8	17.4	17	101 7	90.9 00 7	3.0 5 0	C.C` ۵ ۵	· 41.0	· U.U	0.0	· 1.5	
1	40.60	12.38	2064.5	33.7	1.6	103.7	101.8	8.3	7.9	148.7	30.0	32.0	6.0	
11 .	41.42	12.62	1415.4	18.3	1.3	105.8	104.2	5.7	5.4	96.4	30.0	30.0	3.0	
	42.24	12.88	1253.0	13.1	1.0	107.8	106.7	5.0	4.7	83.1	30.0	30.0	3.0	

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-3273 CPT File: KA06S126.COR

.

.

Depth	Depth	AvaQt	AvaFs	AvaRf	E.Stress	Hvd. Pr	N60	(N1)60	Su	 Dr	Phi		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)	· · · ·
43 06	 13 12	1305 3	 25 8	 1 8	100 0	100 1			0/ 1				
43.88	13.38	1152.3	17.8	1.5	111.9	111.6	5.8	5.3	74.3	0.0	0.0	3.0	
44.70	13.62	1012.8	19.6	1.9	114.0	114.0	5.1	4.6	62.8	0.0	0.0	3.0	
45.52	13.88	2722.1	51.9	1.9	116.0	116.5	10.9	9.9	199.2	30.0	34.0	6.0	
46.34	14.12	2848.9	31.9	1.1	118.1	118.9	9.5	8.6	0.0	30.0	34.0	1.0	
47.10	14.58	4020.U 2512 8	<b>90.</b> 1	2.1	120.2	121.4	18.5	16.5	350.9	42.6	38.0	6.0	
48.80	14.88	1653.2	33.5	2.0	124.3	125.9	6.6	5.9 5.8	181.3	30.0	32.0	6.0	
49.62	15.12	2458.6	56.6	.2.3	· 126.4	128.8	9.8	8.6	176.3	30.0	32.0	5.0	•
50.44	15.38	947.9	12.2	1.3	128.4	131.2	4.7	4.1	55.1	0.0	0.0	1.5	
51.26	15.62	1176.6	15.6	1.3	130.5	133.7	4.7	4.0	73.0	30.0	30.0	3.0	
52.08	15.88	938.3	10.7	1.1	132.5	136.1	4.7	4.0	53.6	0.0	0.0	1.5	
53.72	16.38	1010 3	12.7	1.3	134.0	158.6	5.0	4.2	57.5	0.0	0.0	1.5	
54.54	16.62	922.9	9.3	1.0	138.7	143.5	4.6	4.2	51 3	0.0	0.0	1.5	
55.36	16.88	1019.8	10.1	1.0	140.7	145.9	4.1	3.4	58.7	30.0	30.0	1.5	
56.18	17.12	1062.7	15.8	1.5	142.7	148.4	5.3	4.4	61.7	0.0	0.0	1.5	
57.00	17.38	1051.4	13.8	1.3	144.8	150.8	5.3	4.3	60.5	0.0	0.0	1.5	
57.02	17.02	1488 4	27.0	1.0	140.8	155.5	6.5	5.2	105.0	30.0	30.0	3.0	
59.46	18.12	1311.9	26.7	z.0	150.9	158.2	6.6	5.2	94.7	0.0	0.0	3.0	
60.28	18.38	1099.8	14.9	1.4	153.0	160.6	5.5	4.4	62.9	0.0	0.0	1.5	
61.10	18.62	1133.0	22.7	2.0	155.0	163.1	5.7	4.5	65.2	0.0	0.0	1.5	
61.93	18.88	1164.6	15.7	1.4	157.1	165.5	5.8	4.5	67.4	0.0	0.0	1.5	
62.75	19.12	1182.0	18.5	1.6	159.1	168.0	5.9	4.6	68.4	0.0	0.0	1.5	
64.39	19.62	2330.8	78.3	3.4	163.2	172.0	11 7	2.4	150 4	0.0	0.0	.3.0	
65.21	19.88	2461.6	52.2	2.1	165.3	175.4	9.8	7.5	169.0	30.0	32 0	3.0	
66.03	20.12	4640.8	61.1	1.3	167.4	177.8	15.5	11.7	0.0	37.9	36.0	1.0	
66.85	20.38	4190.5	73.2	1.7	169.6	180.3	14.0	10.5	0.0	34.8	34.0	1.0	
01.01 68 40	20.62	2007.0	56.4 (7.2	2.1	171.7	182.7	10.7	8.0	185.1	30.0	32.0	6.0	
69.31	21.12	1819.8	47.2	2.0	175.8	185.2	9.6	/.1 6 7	163.8	30.0	30.0	3.0	
70.13	21.38	6448.8	110.9	1.7	177.9	190.1	21.5	15.8	0.0	46.4	0.0 38.0	5.0	
70.95	21.62	4959.3	124.2	2.5	180.0	192.5	19.8	14.5	366.9	38.8	36.0	6.0	
71.77	21.88	14942.2	160.1	1.1	182.2	195.0	37.4	27.1	0.0	70.2	42.0	1.0	
72.59	22.12	16044.7	142.3	0.9	184.5	197.4	32.1	23.1	0.0	72.0	42.0	1.0	
74.23	22.62	5617.0	69.7	1.2	188.9	202 3	14.3	10.2	255.2	30.0	32.0	6.0	
75.05	22.88	4198.1	72.6	1.7	191.0	204.8	14.0	9.9	0.0	41.0	30.0	1.0	
75.87	23.12	11156.0	151.6	1.4	193.3	207.2	27.9	19.6	0.0	61.0	40.0	1.0	
76.69	23.38	15433.3	229.4	1.5	195.6	209.7	38.6	27.0	0.0	70.1	40.0	1.0	
79 77	23.02	20121.8	3/5.0	1.9	197.9	212.1	50.3	35.0	0.0	77.5	42.0	1.0	
70.33	22.00	23267 1	202.9 440 0	1.0	200.2	214.6	54.9	37.9	0.0	79.9	42.0	1.0	
79.97	24.38	33047.5	528.8	1.6	204.8	219.5	82 6	40.0	0.0	01.4	42.0	1.0	
80.79	24.62	34533.6	565.3	1.6	207.0	222.0	86.3	58.7	0.0	92.4	44.0	1.0	
81.61	24.88	36283.9	644.0	1.8	209.3	224.4	90.7	61.4	0.0	93.6	44.0	1.0	
82.43 83 25	25.12	35582.8	625.7	1.8	211.6	226.9	89.0	59.8	0.0	92.9	44.0	1.0	
84.07	25.62	33610.4	143.9	0.4	214.0	229.3	56 0	42.9 37 3	0.0	91.7	44.0	1.0	
84.89	25.88	13272.2	137.6	1.0	218.9	234.2	33.2	21.9	0.0	64.2	44.0	1.0	
85.71	26.12	2570.3	40.3	1.6	221.1	236.7	10.3	6.8	169.0	30.0	30.0	3.0	
86.53	26.38	2203.7	37.6	1.7	223.1	239.1	8.8	5.8	139.3	30.0	30.0	3.0	
87.35	26.62	2082.2	30.4	1.5	225.2	241.6	8.3	5.4	129.2	30.0	30.0	3.0	
88.99	27.12	1865.6	34.9	1.2	221.2	244.0	7.0	4.9	115.5	30.0	30.0	1.5	
89.81	27.38	2234.9	37.3	1.7	231.3	248.9	8.9	4.0	140 4	30.0	30.0	1.5	
90.63	27.62	3314.7	50.0	1.5	233.4	251.4	13.3	8.5	226.4	30.0	30.0	3.0	
91.45	27.88	8655.7	136.1	1.6	235.5	253.8	28.9	18.4	0.0	50.9	38.0	1.0	
92.27	28.12	2700.7	78.0 75 0	2.9	237.6	256.3	13.5	8.6	176.5	0.0	0.0	3.0	
93.09 07.01	20.30	2502.1	73.U 58 5	د. د ۲ ۲	237.0 261 7	270./ 261 2	10.0	1.1	140.9	U.U 30.0	0.0	5.0	
94.73	28.88	2378.9	54.6	2.3	243.7	263.6	9.5	6.0	149.7	30.0	30.0	3.0	
95.55	29.12	2344.7	55.0	2.3	245.8	266.1	9.4	5.9	146.6	30.0	30.0	3.0	
96.37	29.38	2327.8	54.1	2.3	247.8	268.5	9.3	5.8	144.9	30.0	30.0	3.0	
97.19	29.62	2175.2	37.0	1.7	249.9	271.0	8.7	5.4	132.3	30.0	30.0	3.0	
98.01	29.88	2474.3	46.7	1.9	251.9	273.5	9.9	6.1	155.9	30.0	30.0	3.0	
Y0.05	20.12	2727.2	120.3	د.د	234.U	213.9	17./	12.1	212.0	0.0	0.0	o.u	

.

#### ancie dan de la com



. .



------





Client: Sounding: Date:

 $\left( \right)$ 

KLEINFELDER 06-SC-126 21-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For	Shear Wa	ave Velocity	Corres Depth	sponding Increment
		X-Over				
(m)	<u>(m)</u>	(ms)	(m/s)	(ft/s)	(m)	(ft)
0.05	1.40					
0.95	1.10					
1.95	2.03	7.5	+ 123	405	1.0 - 2.0	3.1 - 6.4
2.95	3.00	7.2	135	444	2.0 - 3.0	6.4 - 9.7
3.95	3.99	5.2	190	623	3.0 - 4.0	9.7 - 13.0
4.95	4.98	5.6	+ 177	581	4.0 - 5.0	13.0 - 16.2
5.95	5.98	4.9	203	666	5.0 - 6.0	16.2 - 19.5
0.95	6.97	7.5	133	436	6.0 - 7.0	19.5 - 28
7.95	7.97	9.3	107	352	7.0 - 8.0	22.8 - 26.1
8.95	8.97	7.3	137	448	8.0 - 9.0	26.1 - 29.4
9.95	9.97	8.0	<b>∀ 125</b>	409	9.0 - 10.0	29.4 - 32.6
10.95	10.96	8.6	115	379	10.0 - 11.0	32.6 - 35.9
11.95	11.96	5.6	178	585	11.0 - 12.0	35.9 - 39.2
12.95	12.96	6.1	165	542	12.0 - 13.0	39.2 - 42.5
13.95	13.96	5.3	190	624	13.0 - 14.0	42.5 - 45.8
14.95	14.96	5.1	* 196	643	14.0 - 15.0	45.8 - 49.0
15.95	15.96	5.4	185	607	15.0 - 16.0	49.0 . 52.3
16.95	16.96	6.7	149	489	16.0 - 17.0	52.3 . 55.6
17.95	17.96	6.2	161	529	17.0 - 18.0	55.6 - 58.9
18.95	18.96	6.0	167	547	18.0 - 19.0	58.9 62.2
19.95	19.96	6.5	* 154	505	19.0 - 20.0	62.2 - 65.5
20.95	20.96	5.1	196	643	20.0 - 21.0	65.5 - 68.7
21.95	21.96	4.8	208	683	21.0 - 22.0	68.7 - 72.0
22.95	22.96	4.5	222	729	22.0 - 23.0	720 - 753
23.95	23.96	4.1	244	800	23.0 - 24.0	75.3 . 78.6
24.95	24.96	3.7	* 270	886	24.0 - 25.0	786 . 819
25.95	25.96	4.0	250	820	25.0 - 26.0	819 851
26.95	26.96	5.1	196	643	26.0 - 27.0	85.1 - 88.4
27.95	27.96	4.6	217	713	27.0 - 28.0	88.4 - 91.7
28.95	28.96	4.9	204	669	28.0 - 29.0	91.7 - 95.0
29.95	29.96	5.0	* 200	656	29.0 - 30.0	95.0 - 98.3

. •	ConeTe	ac Inc -	CPT Intern	retation						Dece				· ·
	Interp	pretation	Output - Re	elease 1.0	0.07					Page	· ·			이 사람은 이 이 문제 문제 문제
	Run No	o: 96-08	04-2149-359	97								1.1	19. S	1 147
-	Job No	): 96-30	19 Ifal dar			· ·	(1,1,2)					• . •		•
18 Jul	Proiec	t: Klein	ection 4		•		· · ·			•	1 D		1 th day and 2	1
à.	Site:	115,	S4: S Tempi	le, 06-SC-	131									<u>-</u> ≩₹3 
	Locati	on: S Terr	ple Sturct.	•				~				14 Jan 1	· * •	10 C
	Cone:	20 T	ON A 040					· .					5. 1	•
	CPT Da	me: 11:20	/00										•	
	CPT Fi	le: KA06S	131.COR											·
			••••••			• • • • • • •								• •
	Avera	naina Incr	ement (m):	0.25	(ft):	: 6.6								
	Su Nk	t used:		12.50	•									
	Phi M	lethod :		Robertso	n and Car	mpanella, 1	983							
	Dr N Used	lethod :	hte Acciana	Jamiolko Idito Soil	Wski - Al	ll Sands								
														<b>.</b> .
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	
	(11)	(m)	(KPa) 	(КРа)	(7)	(KPa)	(KPa)	(Dlo)	/s/tt) 	(kPa)	(%) 	(deg.)	(ratio)	_
	0.41	0.12	6733.6	108.6	1.6	2.3	0.0	22.4	44.9	0.0	95.0	50.0	1.0	-
	1.23	0.38	4688.0	48.7	1.0	6.9	0.0	15.6	31.3	0.0	83.8	50.0	1.0	
	2.05	0.62	1430-1	49.3 52.0	1.0	11.5	0.0	12.4	24.9	247.8	64.8	46.0	10.0	
	3.69	1.12	1330.5	66.8	5.0	20.4	0.0	13.3	26.6	104.8	0.0	0.0	10.0	
	4.51	< 1.38 <hr/>	1022.6	50.8	5.0	24.8	0.0	10.2	20.1	79.8	0.0	0.0	6.0	
	5.33	1.62	1176.3	63.1	5.4	29.2	0.0	11.8	21.3	91.8	0.0	0.0	6.0	
	6.97	2.12	747.0	30.4	5.4 4.1	35.0	0.0	12.7	21.4	98.8	0.0	0.0	6.0	
	7.79	2.38	1011.7	41.2	4.1	38.6	3.7	10.1	15.9	77.5	0.0	0.0	6.0	
	8.61	2.62	585.7	26.4	4.5	40.6	6.1	5.9	9.0	43.1	0.0	0.0	6.0	
	9.45	2.88	699.9 2037 0	33.4	4.8	42.5	8.6	7.0	10.5	51.9	0.0	0.0	6.0	
	11.07	3.38	6357.2	35.5	0.6	44.5	13.5	15.9	22.8	156.5	33.3	58.0	6.0	
	11.89	3.62	3078.0	36.8	1.2	48.9	15.9	10.3	14.4	0.0	43.8	40.0	1.0	
E.	12.71	3.88	1909.4	53.7	2.8	51.0	18.4	9.5	13.1	147.2	0.0	0.0	6.0	
	15.55	4.12	1299.6	31.0	2.4	53.0	20.8	6.5	8.7	98.1	0.0	0.0	6.0	
	15.17	4.62	1180.8	28.9	2.5	57 1	25.3	0.0 5 0	8.7	99.5 87 8	0.0	0.0	6.0	
(	15.99	4.88	1810.5	39.3	2.2	59.2	28.2	7.2	9.2	137.9	30.0	36.0	6.0	
	16.81	5.12	3128.8	35.3	1.1	61.3	30.7	10.4	13.0	0.0	41.0	38.0	1.0	
	18 45	5.30	2420.5	23.1	1.0	63.4	33.1	9.7	11.9	185.9	33.1	38.0	6.0	
	19.27	5.88	2517.4	27.0	1.1	67.5	38.0	10.1	0.2 12.0	128.0	30.0	34.0	6.U	
	20.09	6.12	7829.0	77.3	1.0	69.7	40.5	19.6	23.0	0.0	65.4	42.0	1.0	
	20.92	6.38	9043.3	140.5	1.6	71.9	42.9	30.1	34.8	0.0	69.1	42.0	1.0	
	21.74	6.88	11283 0	140.0	1.5	74.1	45.4	26.5	30.1	0.0	73.2	44.0	1.0	
	23.38	7.12	13181.9	87.0	0.7	78.8	50.3	26.4	29.1	0.0	74.0	44.0	1.0	
	24.20	7.38	4977.4	32.6	0.7	81.1	52.7	12.4	13.5	0.0	50.3	40.0	1.0	
	25.02	7.62	826.2	9.6	1.2	83.3	55.2	4.1	4.4	55.0	0.0	0.0	3.0	
	26.66	8.12	672.8	5.4	0.8	86.7	57.6	3.5	3./	44.5	0.0	0.0	3.0	
	27.48	8.38	738.8	11.2	1.5	88.1	62.5	3.7	3.9	47.1	0.0	0.0	3.0	
	28.30	8.62	1027.1	33.2	3.2	90.1	65.0	6.8	7.1	69.8	0.0	0.0	3.0	
	29.12	8.88	795.4	15.8	2.0	92.2	67.4	4.0	4.1	50.9	0.0	0.0	3.0	
	30.76	9.38	669.5	7.2	1.1	96.3	72 3	3.7 3 3	. 3.3	45.1	0.0	0.0	1.5	
	31.58	9.62	577.4	7.5	1.3	98.3	74.8	2.9	2.8	32.3	0.0	0.0	1.5	
	32.40	9.88	629.7	9.1	1.4	100.4	77.3	3.1	3.1	36.2	0.0	0.0	1.5	
	32.22	10.12	019.4 647 7	8.5 R 0	1.4	102.4	79.7	3.1	3.0	35.0	0.0	0.0	1.5	
	34.86	10.62	643.7	8.7	1.4	104.5	02.2 84.6	3.2	3.1	36.2	0.0	0.0	1.5	
	35.68	10.88	656.6	8.6	1.3	108.6	87.1	3.3	3.1	36.9	0.0	0.0	1.5	
	36.50	11.12	641.7	8.6	1.3	110.6	89.5	3.2	3.0	35.3	0.0	0.0	1.5	
	57.52	11.58	603.1 2031 0	8.6 24 0	1.4	112.7	92.0	3.0	2.8	31.9	0.0	0.0	1.5	
	38.96	11.88	1196.8	31.5	2.6	116.8	96.9	6.0	7.4	78.7	0.0	· 0.0	8.U 3.0	
	39.78	12.12	1767.8	31.8	1.8	118.8	99.3	7.1	6.3	124.0	30.0	32.0	6.0	
(	40.60	12.38	1953.7	25.7	1.3	120.8	101.8	7.8	7.0	138.5	30.0	32.0	6.0	
	41.42	12.62	758.6	6.7 28 2	0.9	122.9	104.2	3.8	3.3	42.5	0.0	0.0	1.5	
. –	46.24	12.00	1476.0	20.2	1.7	16.4.7	100.7		0.5		0.0	0.0	<i></i>	
ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-3597 CPT File: KA06S131.COR

.

.

•

Depth (ft)	Depth (m)	AvgQt (kPa)	Avgfs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 bws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
43.06	13.12	1893.8	33.9	1.8	127.0	109.1	7.6	6.6	132.6	30.0	32.0	6.0	
43.88	13.38	1527.8	28.8	1.9	129.0	111.6	7.6	6.6	103.0	0.0	0.0	3.0	
44.70	13.62	1491.1	28.4	1.9	131.1	114.0	7.5	6.4	99.7	0.0	0.0	3.0	
45.52	13.88	1407.0	32.5	2.3	133.1	116.5	7.0	6.0	92.6	0.0	0.0	3.0	
40.34	14.12	1047.0	10.2	1.5	135.2	118.9	5.2	4.4	65.4	0.0	0.0	1.5	
4/.10	14.30	1310.3	24.1	7.9	137.2	121.4	0.0	5.5	04.0	0.0	0.0	3.0	
47.70	14.88	3127.5	48.7	1.6	139.3	125.9	12.7	10.0	233.9 228 8	30.0	34.0	6.0	
49.62	15.12	4648.4	94.3	2.0	143.4	128.8	18.6	15.2	350.1	- 40 2	34.0	6.0	
50.44	15.38	3242.1	57.3	1.8	145.4	131.2	13.0	10.5	237.2	30.0	34.0	6.0	
51.26	15.62	1390.9	30.4	2.2	147.5	133.7	7.0	5.6	88.8	0.0	0.0	3.0	
52.08	15.88	2799.5	70.7	2.5	149.5	136.1	11.2	9.0	201.1	30.0	32.0	6.0	
52.90	16.12	1534.2	27.1	1.8	151.6	138.6	6.1	4.9	<b>99.</b> 5	30.0	30.0	3.0	
53.72	16.38	1140.6	10.2	0.9	153.6	141.0	4.6	3.6	67.7	30.0	30.0	1.5	
54.54	16.62	1349.6	16.4	1.2	155.7	143.5	5.4	4.2	84.0	30.0	30.0	3.0	
52.30 54 10	10.88	11/1.4	10.8	1.4	15/./	145.9	5.9	4.6	69.4	0.0	0.0	1.5	
57 00	17.12	070 0	14.0	1.3	129.7	148.4	2.4	4.2	02.0	0.0	0.0	1.5	
57.82	17.62	1070.2	12.4	1.2	163.8	153 3	4.7	3.0	60.2	30.0	30.0	1.5	
58.64	17.88	1223.1	19.7	1.6	165.9	155.7	6.1	4.6	72.1	0.0	0.0	1.5	
59.46	18.12	1115.0	14.3	1.3	167.9	158.2	5.6	4.2	63.1	0.0	0.0	1.5	
60.28	18.38	1226.1	14.8	1.2	170.0	160.6	4.9	3.7	71.6	30.0	30.0	1.5	
61.10	18.62	1331.9	16.6	1.2	172.0	163.1	5.3	4.0	79.7	30.0	30.0	1.5	
61.93	18.88	1349.8	19.6	1.5	174.1	165.5	5.4	4.0	80.8	30.0	30.0	1.5	
62.75	19.12	1307.8	20.6	1.6	176.1	168.0	6.5	4.8	77.1	0.0	0.0	1.5	
65.57	19.38	1267.1	19.8	1.6	178.2	170.4	6.3	4.6	73.5	0.0	0.0	1.5	
64.39	19.02	13/1.3	19.0	1.4	180.2	172.9	5.5	4.0	81.5	30.0	30.0	1.5	
44 07	20 12	1300.0	20.0	1.9	182.3	1/5.4	6.9	5.0	82.3	0.0	0.0	1.5	
66.85	20.38	2550.9	50.0 64 5	2.3	184.5	177.8	8.0	0.2 7 7	108.0	70.0	0.0	3.0	
67.67	20.62	1633.1	32.1	2.0	188.4	182.7	6.5	4.7	101 0	30.0	30.0	3.0	
68.49	20.88	1624.4	41.9	2.6	190.5	185.2	8.1	5.8	99.9	0.0	0.0	3.0	
69.31	21.12	2275.7	48.5	2.1	192.5	187.6	9.1	6.4	151.6	30.0	30.0	3.0	
70.13	21.38	2524.7	27.3	1.1	194.6	190.1	10.1	7.1	171.2	30.0	30.0	3.0	
70.95	21.62	1904.0	29.6	1.6	196.6	192.5	7.6	5.3	121.2	30.0	30.0	3.0	
71.77	21.88	2283.6	38.1	1.7	198.7	195.0	9.1	6.3	151.2	30.0	30.0	3.0	
72.59	22.12	2687.2	56.5	2.1	200.7	197.4	10.7	7.4	183.1	30.0	30.0	3.0	
76 23	22.30	120/0.3	205.9	1.3	202.9	199.9	39.2	26.9	0.0	70.0	40.0	1.0	
75 05	22.02	20078 6	126 0	0.9	203.2	202.3	47.0	32.1	0.0	81.5	42.0	1.0	
75.87	23.12	23282.6	174.0	0.7	210 2	204.0	44 4	23.9	0.0	80.0	44.0	1.0	
76.69	23.38	22009.3	180.9	0.8	212.6	209.7	46.0	29.5	0.0	70.1	42.0	1.0	
77.51	23.62	25832.8	160.0	0.6	215.0	212.1	51.7	34.5	0.0	83.5	42.0	1.0	
78.33	23.88	27642.3	130.4	0.5	217.5	214.6	46.1	30.6	0.0	85.3	44.0	1.0	
79.15	24.12	16515.3	106.1	0.6	220.0	217.0	33.0	21.8	0.0	70.4	40.0	1.0	
79.97	24.38	11170.5	271.5	2.4	222.3	219.5	37.2	24.4	0.0	59.0	38.0	1.0	
80.79	24.62	16161.1	350.9	2.2	224.5	222.0	53.9	35.2	0.0	69.4	40.0	1.0	
82 /3	24.00	10133 4	200.4	2.1	220.8	224.4	47.5	30.9	0.0	80.3	42.0	1.0	
83.25	25.38	14874.5	248 1	17	231 3	220.9	33.0	21.0	0.0	55.8 44 4	58.0	1.0	
84.07	25.62	23516.5	274.6	1.2	233.7	231 8	47 0	30 1	0.0	70.6	40.0	1.0	
84.89	25.88	9109.5	284.4	3.1	235.9	234.2	36.4	23.2	691.2	52.3	38.0	6.0	
85.71	26.12	27982.3	381.2	1.4	238.1	236.7	70.0	44.4	0.0	84.3	42.0	1.0	
86.53	26.38	31917.1	450.7	1.4	240.4	239.1	79.8	50.4	0.0	88.0	44.0	1.0	
87.35	26.62	35381.2	405.2	1.1	242.7	241.6	70.8	44.5	0.0	90.8	44.0	1.0	
88.17	26.88	44191.9	325.5	0.7	245.2	244.0	73.7	46.0	0.0	95.0	44.0	1.0	
80 91	27.70	47092.0	541./ 209 7	0.8	247.8	246.5	75.2	46.7	0.0	95.0	44.0	1.0	
07.01	27.30	31042.1	270.J 758 A	0.9	230.5	240.9	03./	JY.4	0.0	87.3	44.0	1.0	
91.45	27.88	37933.0	351_8	0.7	255 2	251.4 253 R	75 0	40.0	0.0	93.U 02 1	44.U	1.0	
92.27	28.12	40406.2	393.9	1.0	257.7	256.3	80.8	49.3	0.0	93.7	<u>44</u> .0	1.0	
93.09	28.38	40770.3	372.9	0.9	260.1	258.7	81.5	49.5	0.0	93.9	44.0	1.0	
93.91	28.62	37213.2	303.2	0.8	262.5	261.2	74.4	45.0	0.0	91.1	44.0	1.0	
94.73	28.88	· 26986.5	-304.1	1.1	264.9	263.6	54.0	32.5	0.0	<b>81.8</b> ··	42.0	1.0	
95.55	29.12	9434.2	255.6	2.7	267.2	266.1	37.7	22.6	712.1	51.5	36.0	6.0	
96.37	29.38	4462.8	83.8	1.9	269.3	268.5	14.9	8.9	0.0	30.0	32.0	1.0	
97.19	29.62	4671.0	94.4	2.0	271.4	271.0	18.7	11.1	330.3	31.1	32.0	6.0	

.







Client: Sounding: Date:

 $\mathcal{C}$ 

(L)

KLEINFELDER 06-SC-131 20-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone	Distance	l ast Time	Shear Me	Vo Volooite	0	
Depth		Interval For	Sileal Wa	we velocity		ponding
		X-Over			Deptn	increment
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	· (ft)
				1		
1.70	1.79					
2.70	2.76	7.7	+ 126	412	1.7 - 2.7	5.6 - 8.9
3.70	3.74	6.1	161	530	2.7 - 3.7	8.9 - 12.1
4.70	4.73	6.1	162	533	3.7 - 4.7	12.1 - 15.4
5.70	5.73	6.1	<b>⊯</b> 163	535	4.7 - 5.7	15.4 - 18.7
6.70	6.72	4.4	226	743	5.7 - 6.7	18.7 - 22.0
7.70	7.72	5.6	178	584	6.7 - 7.7	22.0 - 25.3
8.70	8.72	8.5	117	385	7.7 - 8.7	25.3 - 28.5
9.70	9.72	7.0	143	468	8.7 - 9.7	28.5 - 31.8
10.70	10.71	8.6	¥ 1 6	381	9.7 - 10.7	31.8 . 35 1
11.70	11.71	7.6	151	431	10.7 - 11.7	35.1 - 38.4
12.70	12.71	5.8	172	565	11.7 - 12.7	38.4 . 41.7
13.70	13.71	5.4	185	607	12.7 - 13.7	41.7 - 44.9
14.70	14.71	5.0	200	656	13.7 - 14.7	44.9 48.2
15.70	15.71	5.0	¥ 200	656	14.7 - 15.7	48.2 - 51.5
16.70	16.71	5.8	172	565	15.7 - 16.7	515 . 548
17.70	17.71	6.1	164	538	16.7 - 17.7	54.8 58.1
18.70	18.71	5.9	169	556	17.7 - 18.7	58.1 - 61.4
19.70	19.71	6.2	161	529	18.7 - 19.7	61.4 . 64.6
20.70	20.71	6.2	* 161	529	19.7 - 20.7	64.6 - 67.9
21.70	21.71	5.4	185	607	20.7 - 21.7	67.9 - 71.2
22.70	22.71	4.6	217	713	21.7 - 22.7	71.2 - 74.5
23.70	23.71	4.2	238	781	22.7 - 23.7	74.5 - 77.8
24.70	24.71	3.4	294	965	23.7 - 24.7	77.8 - 81.0
25.70	25.71	4.2	× 238	781	24.7 - 25.7	81.0 - 84.3
26.70	26.71	3.2	312	1025	25.7 - 26.7	84.3 - 87.6
27.70	27.71	4.6	217	713	26.7 - 27.7	87.6 - 90.9
28.70	28.71	3.2	312	1025	27.7 - 28.7	90.9 - 94.2
29.70	29.71	4.0	250	820	28.7 - 29.7	94.2 - 97.4
			250 620		~a ~	
					<b>*</b> * *	
		1				
		1				1

•	Conele Interp Run No	c Inc retation : 96-09	CPT Interp Output - Re 13-0839-273	retation elease 1.0 30	0.07	•				Page	: 1		د بې ۲۰ په ۲۰۹۹ د په ورونه روس رو و ژه و ۲۰	440 440 58 House 5 Toto
	Job No	: 96-30	9 feider									n i gir N	يېلېندن د ^{يې} لې رون	
	Projec	t: 115 S	ection 4											14.11 14.11
í.	Site:	115,	\$4:115,06-9	sc-138									*	••••
	Locati	on:S.Tem 20 т	ple Struct							1				2 5
	CPT Da	te: 96/30	/07										•	
	CPT Ti	me: 16:05	.70											•
	CPT F1	10: KAU65	158.COR											
	Water	Table (m	):	2.00	(ft):	6.6								•
	Averag Su Nki	ging Incr t used:	ement (m):	0.25	•								• .	
	Phi Me	ethod :		Robertso	n and Camp	anella, 1º	983							
	Dr Me	ethod:	hte Acciana	Jamiolko Ito Soil	wski - All	Sands								
			·····		201185									
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
	0.41	0.12	12688.0	60.4	0.5	2.4	 0 0	25 4	 50 8	0 0	 05 0		• • • • • •	
	1.23	0.38	3387.2	109.1	3.2	7.1	0.0	16.9	33.9	270.4	0.0	0.0	10.0	
	2.05	0.62	1514.3	45.4	3.0	11.6	0.0	7.6	15.1	120.2	0.0	0.0	10.0	
	3.69	1.12	928.2	34.2	3.7	20.6	0.0	4.8 9.3	9.6 18.6	75.4 72.6	0.0	0.0	10.0	
	4.51	1.38	1009.9	30.8	3.0	25.0	0.0	6.7	13.2	78.8	0.0	0.0	6.0	
	5.33	1.62	480.0 866 8	13.6	2.8	29.4	0.0	4.8	8.7	36.0	0.0	0.0	6.0	
	6.97	2.12	1018.8	25.8	2.5	<b>37.</b> 1	1.2	5.0	8.2	78.4	0.0	0.0	6.0 6 0	
	7.79	2.38	1693.8	25.0	1.5	39.2	3.7	6.8	10.6	132.1	30.0	38.0	6.0	
	8.01 9.43	2.88	1974.5	16.U 13.1	0.8	41.2	6.1	7.9	12.0	154.2	33.5	38.0	6.0	•
	10.25	3.12	1788.7	29.7	1.7	45.3	11.0	7.2	10.4	138.6	30.0	38.0	6.0	
	11.07	3.38	1320.3	15.5	1.2	47.4	13.5	5.3	7.5	100.8	30.0	36.0	6.0	
111 - <b>X</b>	12.71	3.88	1458.6	19.4	1.2	49.4 51.5	15.9	4.8	6.7 8 0	91.5	30.0	34.0	6.0	
4	13.53	4.12	5306.8	68.5	1.3	53.6	20.8	17.7	23.6	0.0	58.1	42.0	1.0	
$\sim$	14.35	4.38	1998.6 1817 4	36.3	1.8	55.7	23.3	8.0	10.5	153.6	30.0	38.0	6.0	
V. je	15.99	4.88	1353.9	22.2	1.6	59.8	25.0	6.8	9.4	138.7	30.0 0.0	36.0 0.0	6.0 6.0	
	16.81	5.12	2451.6	65.7	2.7	61.8	30.7	12.3	15.3	188.7	0.0	0.0	6.0	
	18.45	5.62	3995.7	40.5	1.0	66.1	35.1 35.6	14.3	17.5	0.0	49.5	40.0	1.0	
	19.27	5.88	4848.6	48.7	1.0	68.3	38.0	16.2	19.1	0.0	40.9 52.0	40.0	1.0	
	20.09 20.92	6.12	1209.1	26.2	2.2	70.4	40.5	6.0	7.1	87.9	0.0	0.0	6.0	
	21.74	6.62	495.1	3.8	0.8	72.4	42.9	2.5	2.8	28.3	0.0	0.0	1.5	
	22.56	6.88	437.7	3.7	0.8	73.1	47.8	2.2	2.5	25.3	0.0	0.0	1.5	
	24.20	7.12	390.6	2.0 3.2	0.7	73.8	50.3 52 7	1.8	2.1	19.6	0.0	0.0	1.5	
	25.02	7.62	487.2	11.0	2.3	75.8	55.2	3.2	3.7	28.5	0.0	0.0	1.5	
	25.84	7.88	1070.6	20.8	1.9	77.9	57.6	5.4	5.9	74.8	0.0	0.0	3.0	
	27.48	8.38	460.5	4.7	1.0	81.3	62.5	4.1 2.3	4.5	38.3 25.3	0.0	0.0	1.5	
	28.30	8.62	479.2	3.2	0.7	81.9	65.0	2.4	2.6	26.6	0.0	0.0	1.5	
	29.12	8.88 9.12	395.5 400.7	3.0	0.9	82.6 83 3	67.4	2.0	2.1	19.6 10.8	0.0	0.0	1.0	
	30.76	9.38	381.1	2.5	0.7	84.0	72.3	1.9	2.0	18.0	0.0	0.0	1.0	
	31.58	9.62	420.7	2.4	0.6	84.6	74.8	2.1	2.2	20.9	0.0	0.0	1.0	
•	33.22	10.12	420.3	2.9	0.7	86.0	79.7	2.1	2.3	21.1	0.0	0.0	1.0	
	34.04	10.38	442.8	3.4	0.8	86.7	82.2	2.2	2.3	21.9	0.0	0.0	1.5	
	34.86 35.68	10.62 10.88	484.4 1822.3	2.9	0.6	87.3 88 7	84.6 87 1	2.4 7 7	2.5 7∡	25.0 131 7	0.0	0.0	1.5	
	36.50	11.12	1202.5	19.1	1.6	90.7	89.5	6.0	6.2	81.8	0.0	0.0	3.0	
	37.32	11.38	2802.7	33.2	1.2	92.8	92.0	9.3	9.5	0.0	31.9	36.0	1.0	
	38.96	11.88	650.4	2.0	2.1	95.0 96.3	94.4 96:0	5.8	5.8 3.2	76.9 36.6	0.0	0.0 0.0	3.0	
	39.78	12.12	1938.2	15.8	0.8	97.7	99.3	7.8	7.7	139.3	30.0	32.0	6.0	
(,	40.60	12.38	2666.3	32.1	1.2	99.7	101.8	10.7	10.5	197.2	30.0	34.0	6.0	
	41.42	12.88	1265.6	12.1	1.0	103.8	104.2	5.1	4.9	84.4	30.0	30.0	3.0	

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0839-2730 CPT File: KA06S138.COR

	•••••												e
Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hvd. Pr.	N60	(N1)60	Su	Dr	Dhi	000	• •
(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	ue/ft)	(kPa)		(deg )		
						(		W3/IL/	(KPa)		(deg.)	(Fatio)	
43 06	13 12	1200 8	17 2	1 7	105 0	100 1	E 9						
43.00	17 78	887 0	17.1	1.5	103.7	109.1	3.2	4.9	80.8	50.0	30.0	3.0	
43.00	17 43	007.7	12.1	1.4	107.9	111.0	4.4	4.2	53.5	0.0	0.0	1.5	
44.70	13.02	937.4	9.6	1.0	110.0	114.0	4.7	4.4	57.1	0.0	0.0	3.0	
45.52	13.88	5059.9	93.8	<b>1.9</b>	112.1	116.5	16.9	15.6	0.0	46.1	38.0	1.0	
46.34	14.12	1060.4	19.1	1.8	114.2	118.9	5.3	4.9	66.2	0.0	0.0	3.0	
47.16	14.38	6585.7	79.6	1.2	116.3	121.4	22.0	10 0	0.0	53 1	40.0	3.0	
47.98	14.62	2474.2	49.3	2 0	118 /	127 0	0.0		470 (	33.1	40.0	1.0	
48.80	14.88	1437.1	37.9	2.6	120 4	124 7	7.7	6.Y	1/6.0	30.0	34.0	6.0	
49.62	15 12	2362 0	25.5	1 1	. 122.5	120.3	1.2	0.4	¥2.2	0.0	0.0	3.0	
50 44	15 79	1077 1	24.5		122.5	120.0	9.4	8.3	167.5	30.0	32.0	6.0	
51 34	15.30	10//.1	20.5	1.4,	124.5	131.2	7.5	6.6	129.7	30.0	32.0	6.0	
51.20	15.02	1//1.0		1.9	126.6	133.7	7.1	6.2	120.9	30.0	30.0	3.0	
52.00	13.00	1018.4	5.4	0.5	128.6	136.1	4.1	3.5	60.3	30.0	30.0	1.5	
52.90	16.12	825.3	4.0	0.5	130.7	138.6	3.3	2.8	44.5	30.0	30.0	1.5	
53.72	16.38	<b>9</b> 59.6	6.6	0.7	132.7	141.0	3.8	3.3	54.9	30.0	30.0	1 5	
54.54	16.62	815.5	4.8	0.6	134.8	143.5	3.3	2.7	43.0	30.0	30.0	1.5	
55.36	16.88	853.3	4.0	0.5	136.8	145.9	3 4	2 0	45 6	30.0	30.0	1.3	
56.18	17.12	901.7	6.6	0.7	138.9	148 4	3 4	3 0	40.0	20.0	30.0	1.5	
57.00	17.38	927 7	7 8	0.8	140.0	150 0	77	3.0	47.2	30.0	30.0	1.5	
57 82	17 62	071 /	7 7	0.0	147.0	457 7	3.7	3.1	50.9	30.0	50.0	1.5	
58 64	17 99	070 0	7 0	0.0	143.0	155.5	3.9	3.2	54.0	30.0	30.0	1.5	
50.04	19 12	970.0	1.0	0.0	145.0	155.7	3.9	3.2	53.5	30.0	30.0	1.5	
40 39	10.12	1024./	13.3	1.2	147.1	158.2	5.3	4.3	60.0	0.0	0.0	1.5	
00.20	10.30	1054.1	11.2	1.1	149.1	160.6	4.2	3.4	59.5	30.0	30.0	1.5	
61.10	18.62	1006.0	7.0	0.7	151.2	163.1	4.0	3.2	55.3	30.0	30.0	1.5	
61.93	18.88	1041.0	9.0	0.9	153.2	165.5	4.2	3.3	57.8	30.0	30 0	1 5	
62.75	19.12	1124.3	14.2	1.3	155.3	168.0	4.5	3.5	64.1	30.0	30.0	1.5	
63.57	19.38	1118.6	25.8	2.3	157.3	170.4	5.6	4 4	63 3	0.0	30.0	1.5	
64.39	19.62	1979.1	69.7	3.5	159 3	172 0	13.2	10.2	171 0	0.0	0.0	1.5	
65.21	19.88	2367.1	53.2	2 2	161 /	175 /	13.2	77	131.0	0.0	0.0	3.0	
66.03	20 12	3337 2	51 0	1 4	147 /	173.4	9.5	(.5	102.4	30.0	32.0	6.0	
66 85	20.38	8501 1	17/ 7	1.0	103.4	177.8	13.3	10.2	239.7	30.0	32.0	6.0	
67 67	20.30	2712 4	134.7	1.0	105.0	180.3	28.3	21.6	0.0	55.4	38.0	1.0	
49 /0	20.02	2312.0	20.0	2.4	167.7	182.7	9.3	7.0	157.0	30.0	30.0	3.0	
00.49	20.88	2225.6	55.5	2.5	169.7	185.2	11.1	8.4	149.7	0.0	0.0	3.0	
69.31	21.12	1620.0	27.4	1.7	171.8	187.6	6.5	4.8	100.9	30.0	30.0	3 0	
70.13	21.38	5031.0	127.9	2.5	173.8	190.1	20.1	14.9	373.4	39.7	36.0	6.0	
70.95	21.62	7114.4	158.0	2.2	175.9	192.5	23.7	17 5	0.0	40 /	79.0	1.0	
71.77	21.88	5275.3	108.1	2.1	178.1	195.0	17 6	12 0	0.0	40.7	74 0	1.0	
72.59	22.12	19441.4	176.1	0.9	180 4	107 /	79.0	78.7	0.0	40.7	30.0	1.0	
73.41	22.38	11642.2	147.3	1.3	182 7	100 0	30.7	20.3	0.0	(7.9	42.0	1.0	
74.23	22.62	2257 0	51 6	2 3	19/ 0	177.7	29.1	21.1	0.0	63.0	40.0	1.0	
75 05	22 88	1176 5	10 7	2.5	104.7	202.3	9.0	0.2	149.7	30.0	30.0	3.0	
75 87	27 12	1/57 0	17./	0.9	107.0	204.8	4.7	3.4	62.8	30.0	30.0	1.5	
73.07	23.12	1455.0	17.4	1.2	189.0	207.2	5.8	4.1	84.6	30.0	30.0	1.5	
70.09	23.36	1652.8	17.8	1.1	191.1	209.7	6.6	4.7	100.2	30.0	30.0	3.0	
//.51	23.62	18/6.1	31.7	1.7	193.1	212.1	7.5	5.3	117.7	30.0	30.0	3.0	
78.33	23.88	2094.0	46.0	2.2	195.2	214.6	8.4	5.9	134.7	30.0	30.0	3.0	
79.15	24.12	2062.1	42.1	2.0	197.2	217.0	8.2	5.7	131 8	30.0	30.0	3.0	
79.97	24.38	2392.3	58.5	2.4	199.3	210 5	0 6	6.6	157 0	20.0	70.0	3.0	
80.79	24.62	2109.6	38.3	1.8	201.3	222 0	8 4	5.8	13/.9	30.0	30.0	3.0	
81.61	24.88	3016.3	56.4	1.9	203 3	22/ /	12 1	9.0	307 1	30.0	30.0	5.0	
82.43	25.12	4773.7	102.9	22	205 4	224 0	10.1	17 0	7/7 7	30.0	32.0	6.0	
83.25	25 38	11203 4	170 8	1 5	207.4	220.7	19.1	15.0	347.3	35.8	54.0	6.0	
84 07	25 62	15085 1	8/ 2	0.5	207.0	229.3	28.0	19.0	0.0	60.1	40.0	1.0	
8/ 90	25.02	2/29 /	04.2	0.5	209.9	251.8	32.0	21.6	0.0	70.1	40.0	1.0	
04.07	23.00	2420.4	40.5	1.7	212.2	234.2	9.7	6.5	158.6	30.0	30.0	3.0	
65.71	20.12	1516.4	8.3	0.5	214.2	236.7	6.1	<b>4.1</b> ·	85.2	30.0	30.0	1.5	
86.53	26.38	1927.5	24.3	1.3	216.3	239.1	7.7	5.1	117.8	30.0	30.0	3.0	
87.35	26.62	1636.8	16.8	1.0	218.3	241.6	6.5	4.3	94.2	30.0	30.0	1.5	
88.17	26.88	1924.1	21.3	1.1	220.4	244.0	7.7	5.1	116.8	30.0	30.0	3.0	
88.99	27.12	1993.4	22.1	1.1	222.4	246.5	8.0	5.2	122 0	30.0	30.0		
89.81	27.38	1958.4	35.4	1.8	224 4	268 0	78	5 1	110 0	70.0	70.0	3.0	
90.63	27.62	2427 5	44.2	1 8	224 5	254 /	0.7	47	164 0	30.0	30.0	3.0	
91.45	27.88	3554 8	62 4	1 8.	228 5	257 0	7.1	0.3	120.0	20.0	30.0	5.0	
02 27	28 12	5547 4	00 5	1 4	220.7	233.0	14.2	7.2	247.0	20.0	32.0	6.0	
07 00	20.12	JJ43.4 37/1 4	70.J	1.0	230./	220.3	18.5	11.9	0.0	58.4	34.0	1.0	
73.07	20.30	2341.1	46.4	1.8	252.8	258.7	9.4	6.0	148.0	30.0	30.0	3.0	
Y3.91	20.02	1881.1	50.2	1.6	234.8	261.2	7.5	4.8	110.8	30.0	30.0	1.5	
y4.75	20.08	2452.6	66.3	2.7	236.9	263.6	12.2	7.7	154.6	0.0	0.0	3.0	
95.55	29.12	2630.3	70.5	2.7	238.9	266.1	13.2	8.3	170.0	0.0	0.0	3.0	
96.37	29.38	2146.9	60.3	2.8	241.0	268.5	10.7	6.8	131.0	0.0	0.0	3.0	
97.19	29.62	2191.0	43.5	2.0	243.0	271.0	8.8	5.5	134.2	30.0	30.0	3.0	
98.01	29.88	2384.3	48.4	2.0	245.0	273 5	9.5	6.0	149.3	30.0	30.0	3.0	
98.83	30.12	1827.0	33.5	1.8	247.1	275 9	7.3	4.5	104 3	30.0	30.0	1 5	
									10413	30.0	30.0		

•

.

Page: 2



a a ar ar ar a

ConeTec Inc. - CPT Interpretation Run No: 96-0913-0839-2730 CPT File: KA06S138.COR

÷	Depth (ft)	Depth (m)	AvgQt (kPa)	Avgfs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
	99.65	30.38	2292.1	64.2	2.8	249.1	278.4	11.5	7.1	141.2	0.0	0.0	3.0
	100.47	30.62	3316.5	53.0	1.6	251.2	280.8	13.3	8.2	222.8	30.0	30.0	3.0
	101.29	30.88	4179.0	72.9	1.7	253.3	283.3	13.9	8.6	0.0	30.0	32.0	1.0
	102.11	31.12	15568.1	184.5	1.2	255.5	285.7	38.9	23.8	0.0	66.5	40.0	1.0
	102.94	31.38	6687.5	156.4	2.3	257.7	288.2	26.7	16.3	491.3	42.2	34.0	6.0
	103.76	31.62	3033.5	48.8	1.6	259.8	290.6	12.1	7.4	198.6	30.0	30.0	3.0
	104.58	31.88	2509.3	29.7	1.2	261.8	293.1	10.0	6.1	156.4	30.0	30.0	3.0
	105.40	32.12	2402.7	40.8	1.7	263.8	<b>295.</b> 5	9.6	5.8	147.5	30.0	30.0	3.0

Page: 3





A state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta



Client: Sounding: Date: KLEINFELDER 06-SC-138 30-Jul-96

Source: Offset (m): Cone: Geophone:

G

Beam & Hammer 0.56 AD 041 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For X-Over	Shear Way	ve Velocity	Corres Depth I	ponding ncrement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
0.95	1.10					
1.95	2.03	9.5	¥ 97	320	1.0 - 2.0	3.1 - 6.4
2.95	3.00	5.5	177	581	2.0 - 3.0	6.4 - 9.7
3.95	3.99	5.4	183	600	3.0 - 4.0	9.7 - 13.0
4.95	4.98	5.0	¥ 198	651	4.0 - 5.0	13.0 - 16.2
5.95	5. <del>9</del> 8	4.9	203	666	5.0 - 6.0	16.2 - 19.5
6.95	6.97	8.5	117	385	6.0 - 7.0	19.5 - 22.8
7.95	7.97	9.3	107	352	7.0 - 8.0	22.8 - 26.1
8.95	8.97	6.5	154	504	8.0 - 9.0	26.1 - 29.4
9.95	9.97	9.2	¥ 109	356	9.0 - 10.0	29.4 - 32.6
10.95	10.96	8.3	120	395	10.0 - 11.0	<b>32.6</b> - <b>3</b> 5.9
11.95	11.96	5.9	169	555	11.0 - 12.0	35.9 - 39.2
12.95	12.96	5.4	185	607	12.0 - 13.0	39.2 - 42.5
13.95	13.96	5.2	192	630	13.0 - 14.0	42.5 - 45.8
14.95	<b>14.96</b>	4.8	' ¥∕ 208	683	14.0 - 15.0	45.8 - 49.0
15.95	15.96	5.3	189	619	15.0 - 16.0	49.0 - 52.3
16.95	16.96	6.7	149	489	16.0 - 17.0	52.3 - 55.6
17.95	17.96	6.2	161	529	17.0 - 18.0	55.6 - 58.9
18.95	18.96	6.1	164	538	18.0 - 19.0	58.9 - 62.2
19.95	19.96	6.6	<b>≁ 151</b>	497	19.0 - 20.0	62.2 - 65.5
20.95	20.96	5.0	200	656	20.0 - 21.0	65.5 - 68.7
21.95	21.96	5.2	192	631	21.0 - 22.0	68.7 - 72.0
22.95	22.96	5.0	200	656	22.0 - 23.0	72.0 - 75.3
23.95	<b>23.96</b>	5.2	192	631	23.0 - 24.0	75.3 - 78.6
24.95	24.96	4.8	¥ 208	683	24.0 - 25.0	78.6 - 81.9
25.95	25.96	5.1	196	643	25.0 - 26.0	81.9 - 85.1
26.95	26.96	5.2	192	631	26.0 - 27.0	85.1 - 88.4
27.95	27.96	4.8	208	683	27.0 - 28.0	88.4 - 91.7
28.95	28.96	5.1	196	643	28.0 - 29.0	91.7 - 95.0
29.95	29.96	5.2	[,]	631	29.0 - 30.0	95.0 - 98.3
30.95	30.96	4.8	208	683	30.0 - 31.0	98.3 - 101.5
31.95	31.95	5.5	182	596	31.0 - 32.0	101.5 - 104.8
32.95	32.95	5.9	169	556	32.0 - 33.0	104.8 - 108.1
33.95	33.95	5.2	192	631	33.0 - 34.0	108.1 - 111.4

	ConeTe	c inc	CPT Interp	retation		•				Page	: 1			
	Interp	retation	Output - R	elease 1.00	0.07									:
	Run No	): 90-08 96-30	04-2149-43 0	10								· · •		
6	Client	: Klein	felder			•		÷.,		بادی	,			
	Projec	t: 115 S	ection 4					-	. :	· · ·				
Å '	Site:	I15, S	S4: S Temp	le, 06-SC-1	39					1 A				· · · · · ·
	Locati	on: S Tem	ple Struct.	•				1 ( ) 1 ( )					•	···* *.
	Cone:	20 1	UN A U4U						•				_	-
	CPT Da	me: 16:10	/00											
	CPT Fi	le: KA06S	139.COR	•										÷.,
		 T-blo (-)		2 00					•••••		· · · · · · · · ·			<b>-</b> .
	Avera	aina Incre	ement (m):	0.25	(11):	0.0								
	Su Nk	t used:	······	12.50										
	Phi M	ethod :		Robertson	and Cam	panella, 1º	983							
	Dr M Used	ethod : Unit Weigł	nts Assigne	Jamiolkow d to Soil	ıski - Al Zones	l Sands								
	Denth			Ave E c	A.v.o.D.f		Do		(11)40					-
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)	
	0.41	0.12	3813.4	35.7	0.9	2.3	0.0	12.7	25.4	0.0	93.6	50.0	1.0	-
	1.23	0.38	2698.8	21.5	0.8	6.9	0.0	9.0	18.0	0.0	68.0	48.0	1.0	
	2.05	0.62	1262.0	13.6	1.1	11.5	0.0	5.0	10.1	100.0	38.9	42.0	10.0	
	2.87	0.88	1155.9	20.7	1.8	16.0 20.5	0.0	5.7	11.5	89.4 47 3	0.0	0.0	10.0	
	4.51	1.38	669.7	12.0	1.8	25.0	0.0	3.3	6.6	51.6	0.0	0.0	6.0	•
	5.33	1.62	700.1	14.2	2.0	29.5	0.0	4.7	8.4	53.7	0.0	0.0	6.0	
	6.15	1.88	399.5	4.2	1.0	33.3	0.0	2.0	3.4	29.3	0.0	0.0	3.0	
	6.97	2.12	786.7	12.5	1.6	35.9	1.2	3.9	6.4	60.0	0.0	0.0	6.0	
	7.79 8.61	2.38	1920.7	15.1	0.7	37.9	5.7	7.7	12.2	150.8	34.0	38.0	6.0	
	9.43	2.88	2158.6	41.8	1.9	40.1	8.6	13.2	13 0	U.U 168 6	23.9 35 7	42.0	1.0	
	10.25	3.12	2100.5	56.4	2.7	44.2	11.0	10.5	15.5	163.6	0.0	0.0	6.0	
	11.07	3.38	2371.6	57.4	2.4	46.3	13.5	9.5	13.7	184.9	37.1	38.0	6.0	
	11.89	3.62	1932.2	50.5	2.6	48.3	15.9	9.7	13.6	149.4	C.O	0.0	6.0	
P. C.	12.71	3.88	1762.7	51.9	2.9	50.4	18.4	8.8	12.2	135.5	0.0	0.0	6.0	
1 Contraction	14.35	4.12	3501.5	67.5	1.1	54.6	20.0	14.7	19.9	273.0	<b>55.</b> 1	42.0	1.0	
1 Carlos	15.17	4.62	2459.6	62.0	2.5	56.6	25.8	9.8	12.8	190.2	35.2	38.0	6.0	
1. S. S. S. S. S. S. S. S. S. S. S. S. S.	15.99	4.88	1494.5	39.5	2.6	58.7	28.2	7.5	9.5	112.6	0.0	0.0	6.0	
	16.81	5.12	1234.7	27.4	2.2	60.7	30.7	6.2	7.8	91.5	0.0	0.0	6.0	
	17.03	5.50	1030.5	51.8	2.1	62.8	33.1	7.3	9.0	138.8	30.0	36.0	6.0	
	19.27	5.88	7058.1	60.1	0.0	67 1	33.0	13.3	10.2	0.0	41.2	40.0	1.0	
	20.09	6.12	5301.7	83.8	1.6	69.3	40.5	7.7	20.8	0.0	54.3	40.0	1.0	
	20.92	6.38	1158.6	26.0	2.2	71.5	42.9	5.8	6.7	83.5	0.0	0.0	6.0	
	21.74	6.62	.1143.7	11.9	1.0	73.5	45.4	4.6	5.2	82.0	30.0	32.0	6.0	
	22.56	6.88	798.3	4.1	0.5	75.6	47.8	3.2	3.6	54.0	30.0	30.0	3.0	
	23.30	7.38	522.9	2.0	0.3	70.9 77.6	52 7	3.2	3.5	40.7	0.0	0.0	3.0	
	25.02	7.62	751.7	12.2	1.6	78.9	55.2	3.8	4.1	49.4	0.0	0.0	3.0	
	25.84	7.88	1188.5	15.3	1.3	81.0	57.6	4.8	5.2	84.0	30.0	32.0	6.0	•
	26.66	8.12	808.6	4.1	0.5	83.0	60.1	3.2	3.5	53.2	30.0	30.0	3.0	
	27.40	8 62	647.4 530 /	2.0	0.5	84.4	62.5	3.2	5.4	40.0	0.0	0.0	1.5	
	29.12	8.88	465.5	2.0	0.4	85.7	67.4	2.7	2.0	25 0	0.0	0.0	1.5	
	29.94	9.12	463.5	2.0	0.4	86.4	69.9	2.3	2.4	24.6	0.0	0.0	1.5	
	30.76	9.38	429.7	2.0	0.5	87.1	72.3	2.1	2.3	21.6	0.0	0.0	1.0	
	31.58	9.62	441.4	2.0	0.5	87.8	74.8	2.2	2.3	22.3	0.0	0.0	1.5	
	32.40	9.00	403.0	2.0	0.4	80 1	70.7	2.3	2.4	24.0	0.0	0.0	1.5	
	34.04	10.38	464.1	2.0	0.4	89.8	82.2	2.3	2.4	23.5	0.0	0.0	1.5	
	34.86	10.62	529.3	2.7	0.5	90.5	84.6	2.6	2.7	28.3	0.0	0.0	1.5	
	35.68	10.88	2527.2	34.1	1.3	91.8	87.1	10.1	10.3	187.9	30.0	36.0	6.0	
	36.50	11.12	981.7	14.2	1.4	93.9	89.5	4.9	5.0	63.9	0.0	0.0	3.0	
	3/.32 38 1/	11.30	Q52 1	20.1 12 /	U.Y 1 7	90.U 02.1	92.U 0/ /	Y.2 / 9	¥.2 4 7	U.U • 04	51.1	<b>36.</b> U	1.0	
	38.96	11.88	641.6	2.4	0.4	. 99_4	96.9	. 3.2	3.1	· 35.6	0.0	. 0.0	1.5	
	39.78	12.12	2118.7	20.5	1.0	100.8	99.3	8.5	8.3	153.5	30.0	34.0	6.0	• •
(	40.60	12.38	1232.6	16.6	1.3	102.8	101.8	4.9	4.8	82.2	30.0	30.0	3.0	
1	41.42	12.62	1108.5	10.9	1.0	104.9	104.2	4.4	4.2	72.0	30.0	30.0	3.0	
. 💙	42.24	12.88	1193.9	12.3	1.0	106.9	106.7	4.8	4.5	78.4	30.0	50.0	5.0	

.

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2149-4316 CPT File: KA06S139.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (bloi	(N1)60 ws/ft)	Şu (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
43.06	13.12	1150.9	8.5	0.7	109.0	109.1	4.6	4.3	74.6	30.0	30.0	3.0	• .
43.88	13.38	751.1	2.7	0.4	110.3	111.6	3.8	3.5	42.3	0.0	0.0	1.5	
44.70	13.62	942.3	6.3	0.7	111.7	114.0	3.8	3.5	57.3	30.0	30.0	3.0	
42.22	13.00	3297.0 016 N	17 5	1.5	115.8	116.5	13.2	12.1	245.4	33.6	36.0	6.0	
47.16	14.38	4385 6	68.4	1.7	117.0	121 /	4.0	4.2	24.2	0.0	0.0	1.5	
47.98	14.62	3095.3	39.2	1.3	120 1	121.4	14.0	2.2	0.0	41.3	38.0	1.0	
48.80	14.88	1396.4	31.2	2.2	122.2	126.3	7.0	6.2	91.8	0.0	0.0	1.U 3 N	
49.62	15.12	2444.9	26.8	1.1	124.2	128.8	9.8	8.6	175.4	30.0	32.0	6.0	•
50.44	15.38	1301.7	15.6	1.2	126.3	131.2	5.2	4.5	83.5	30.0	30.0	3.0	•
51.26	15.62	1447.2	15.6	1.1	128.3	133.7	5.8	5.0	94.8	30.0	30.0	3.0	
52.08	15.88	816.0	2.0	0.2	129.7	136.1	4.1	3.5	44.0	0.0	0.0	1.5	
57 72	10.12	903.0	2.0	0.2	131.1	138.6	3.6	3.1	50.9	30.0	30.0	1.5	
54.54	16.62	917.3	2.1	0.3	135.1	141.0	3.7	3.2	52.9	30.0	30.0	1.5	
55.36	16.88	778.1	2.0	0.3	136.5	145.9	3.0	3.1	30 7	30.0	30.0	1.5	•
56.18	17.12	878.9	2.0	0.2	137.2	148.4	4.4	3.7	47.5	0.0	0.0	1.5	
57.00	17.38	998.3	2.0	0.2	138.5	150.8	4.0	3.3	56.7	30.0	30.0	1.5	
57.82	17.62	1017.7	2.0	0.2	140.6	153.3	4.1	3.4	57.9	30.0	30.0	1.5	
58.64	17.88	1030.9	2.2	0.2	142.6	155.7	4.1	3.4	58.6	30.0	30.0	1.5	
29.40	18.12	1061.6	2.0	0.2	144.7	158.2	4.2	3.5	60.7	30.0	30.0	1.5	
60.28 41 10	10.00	1048.5	2.1	0.3	146.7	160.6	4.2	3.4	59.3	30.0	30.0	1.5	
61 03	18.88	1040.4	2.1 4 1	0.2	140.0	103.1	4.2	5.4	58.8	30.0	30.0	1.5	
62.75	19.12	1282.4	10_8	0.4	152.9	165.0	4.2	3.5	76.0	30.0	30.0	1.5	
63.57	19.38	1402.3	16.3	1.2	154.9	170.4	5.6	4.4	86.2	30.0	30.0	3.0	
64.39	19.62	1801.1	36.1	2.0	157.0	172.9	7.2	5.6	117.7	30.0	30.0	3.0	
65.21	19.88	1860.5	44.6	2.4	159.0	175.4	9.3	7.2	122.1	0.0	0.0	3.0	
66.03	20.12	1858.3	27.8	1.5	161.1	177.8	7.4	5.7	121.6	30.0	30.0	3.0	
00.00	20.38	2231.4	19.2	0.9	163.1	180.3	8.9	6.8	151.0	30.0	30.0	3.0	
01.01 48 /0	20.02	1342.5	3.7	0.3	165.2	182.7	5.4	4.1	79.6	30.0	30.0	1.5	
60.49	20.00	4822 2	21.Y 61 1	1.1	167.2	185.2	7.6	5.8	124.6	30.0	30.0	3.0	
70.13	21.38	6471.4	74 9	1 2	107.4	10/.0	17.1	12.8	0.0	48.8	38.0	1.0	
70.95	21.62	4755.7	65.0	1.4	173.8	190.1	15 0	10.1	0.0	4/.1	38.0	1.0	
71.77	21.88	11362.1	210.3	1.9	176.0	195.0	37.9	27.9	0.0	62 R	24.U 40 0	1.0	
72.59	22.12	18638.9	191.9	1.0	178.3	197.4	37.3	27.3	0.0	76.8	42.0	1.0	
73.41	22.38	17435.4	192.2	1.1	180.7	199.9	34.9	25.4	0.0	74.7	42.0	1.0	
74.23	22.62	17547.8	302.1	1.7	183.0	202.3	43.9	31.7	0.0	74.7	42.0	1.0	
75.05	22.00	22555.2	366.0	1.6	185.3	204.8	56.3	40.5	0.0	81.7	42.0	1.0	
75.07	23.12	23143.0 15230 /	204.0	1.1	187.7	207.2	46.3	33.1	0.0	82.3	42.0	1.0	
77.51	23.62	39469.3	170 4	0.4	190.0	209.7	5U.8	36.1	0.0	70.2	42.0	1.0	
78.33	23.88	44328.6	174.5	0.4	194.9	214 6	73.0	51 8	0.0	95.0	40.0	1.0	
79.15	24.12	39975.7	180.6	0.5	197.5	217.0	66.6	46.4	0.0	95.0	46.0	1.0	
79.97	24.38	36575.4	152.1	0.4	200.0	219.5	61.0	42.2	0.0	94.5	44.0	1.0	
80.79	24.62	37868.8	217.7	0.6	202.5	222.0	63.1	43.4	0.0	95.0	44.0	1.0	
81.61	24.88	36468.3	215.8	0.6	205.1	224.4	60.8	41.5	0.0	94.1	44.0	1.0	
02.4J 83 25	25.12	43743.7	1//.1	0.4	207.6	226.9	72.9	49.5	0.0	95.0	46.0	1.0	
84 07	25.62	39473 N	254 3	0.4	210.2	229.3	70.8	47.8	0.0	95.0	46.0	1.0	
84.89	25.88	39649.8	151.5	0.4	215.3	234.2	66 1	44.1	0.0	95.0	44.0	1.0	
85.71	26.12	28265.0	83.9	0.3	217.8	236.7	47.1	31.2	0.0	85.9	44.0	1.0	
86.53	26.38	4137.3	96.8	2.3	220.1	239.1	16.5	10.9	294.2	30.7	32.0	6.0	
87.35	26.62	2053.1	7.7	0.4	222.2	241.6	6.8	4.5	0.0	30.0	30.0	1.0	
88.17	26.88	1989.5	11.2	0.6	224.4	244.0	6.6	4.3	0.0	30.0	<b>30.</b> 0	1.0	
88.99	27.12	2123.8	20.2	1.0	226.5	246.5	8.5	5.5	132.1	30.0	30.0	3.0	
07.01 00 47	27.30	2210 2	31./ 21.4	1.5	220.6	248.9	10.0	6.5	162.0	30.0	30.0	3.0	
91.45	27,88	2615.0	21.0	0.0	232 7	251.4	ö.ö	5.7	158.3	50.0	<b>30.0</b>	3.0	
92.27	28,12	4320.0	123.5	2.9	234_8	256.3	17 3	11 0	306.3	30.0	30.0	1.U A 0	
93.09	28.38	4376.8	106.8	2.4	236.9	258.7	17.5	11.1	310.5	31.2	32.0	6.0	
93.91	28.62	2367.7	41.9	1.8	238.9	261.2	9.5	6.0	149.4	30.0	30.0	3.0	
94.73	28.88	2291.7	42.5	1.9	241.0	263.6	9.2	5.8	143.0	30.0	30.0	3.0	
95.55	29.12	2166.4	57.1	2.6	243.0	266.1	10.8	6.8	132.6	0.0	0.0	3.0	
96.37	29.38	2244.9	43.5	1.9	245.1	268.5	9.0	5.6	138.5	30.0	30.0	3.0	
97.19	29.62	2250.2	54.7	1.6	247.1	271.0	8.9	5.6	137.0	30.0	30.0	3.0	
90.01 02 97	27.00 30 17	2003.2	24.0 /g 7	50	249.2	275 0	0.3	2.1	155 7	30.0	30.0	1.5	
70.03	JU. 16	2413.1	-0.3	2.0		613.7	7.7	0.1		30.0	30.0	2.0	

.

.



.

Conele Run No CPI Fi	c Inc ( : 96-08( le: KA06S*	CPT Interpr 04-2149-431 139.COR	etation 6						Page	: 3		
Depth (ft)	Depth (m)	Avgût (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	2485.4	84.0	3.4	253.3	278.4	12.4	7.6	156.3	0.0	0.0	3.0

н. С

. .







Client: Sounding: Date: KLEINFELDER 06-SC-139 21-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone	Distance	Last Time	Shear Wa	ve Velocity	Corres	nonding
Depth		interval For			Depth	ncrement
		X-Over				
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
0.85	1.02					
1.85	1.93	6.3	⊥ 145 ⊥	477	0.9 - 1.9	2.8 - 6.1
2.85	2.90	5.6	173	569	1.9 - 2.9	6.1 - 9.4
3.85	3.89	5.5	179	588	2.9 - 3.9	9.4 - 12.6
4.85	4.88	5.4	184	603	3.9 - 4.9	12.6 - 15.9
5.85	5.88	5.0	× 199	653	4.9 ⁵ ⁴ 5.9	15.9 - 19.2
6.85	6.87	5.9	169	554	5.9 - 6.9	19.2 - 22.5
7.85	7.87	6.8	147	481	6.9 - 7.9	22.5 - 25.8
8.85	8.87	8.9	112	368	7.9 - 8.9	25.8 - 29.0
9.85	9.87	8.4	119	390	8.9 - 9.9	29.0 - 32.3
10.85	10.86	7.5	<b>⊀ 133</b>	437	9.9 - 10.9	32.3 - 35.6
11.85	11.86	6.2	161	529	10.9 - 11.9	35.6 - 38.9
12.85	12.86	6.5	154	504	11.9 - 12.9	38.9 - 42.2
13.85	13.86	5.1	196	643	12.9 - 13.9	42.2 - 45.4
14.85	14.86	5.5	182	596	13.9 - 14.9	45.4 - 48.7
15.85	15.86	5.3	¥ 189	619	14.9 - 15.9	48.7 - 52.0
16.85	16.86	5.6	178	586	15.9 - 16.9	52.0 - 55.3
17.85	17.86	6.9	145	475	16.9 - 17.9	55.3 - 58.6
18.85	18.86	6.3	159	521	17.9 - 18.9	58.6 61.8
19.85	19.86	5.6	178	586	18.9 - 19.9	61.8 - 65.1
20.85	20.86	6.7	× 149	489	19.9 - 20.9	65.1 - 68.4
21.85	21.86	4.3	230	754	20.9 - 21.9	68.4 - 71.7
22.85	22.86	4.1	244	800	21.9 - 22.9	71.7 - 75.0
23.85	23.86	3.3	303	994	22.9 - 23.9	75.0 - 78.2
24.85	24.86	3.7	270	886	23.9 - 24.9	78.2 - 81.5
25.85	25.86	3.6	<b>→ 278</b>	911	24.9 - 25.9	81.5 - 84.8
26.85	26.86	4.3	233	763	25.9 - 26.9	84.8 - 88.1
27.85	27.86	4.9	204	669	26.9 - 27.9	88.1 - 91.4
28.85	28.86	4.3	233	763	27.9 - 28.9	91.4 - 94.7
29.85	29.86	5.4	185	607	28.9 - 29.9	94.7 - 97.9
		ł			29. <del>4</del>	1

			•											
	ConeTe	c Inc	CPT Interpr	etation	0.07					Page	: 1			3. a 📷
	Run No	retation ( : 96-08	ойтрит - ке 04-2150-029	elease 1.V 99	U.U/ .								د کرد . درجی به ایک	an sair
	Job No:	: 96-30	9	•				. · ·		:	· ·		a a a a a a a a a a a a a a a a a a a	STATES
	Client	: Klein	felder				4 y 24	5. <b>*</b> • * •	т. н. н. н. С	• • • •		t data da la c	1. 100 A.F.S.	
	Project	t: 115 S	ection 4	06-50-15	τ								- <b>1</b>	
/	locatio	n: 1000 N	J Structure	00 30 10.	5			$T_{i,j} = 0$				·	5.30	°ina ¥.
	Cone:	20 T	ON A 040						•			2 x - 1		99 - A.
	CPT Dat	te: 96/18,	/06										•	
	CPT Tin	ne: 15:30   . KANAS'	153 000	· •									•••••	
-														-
	Water	Table (m)	):	2.00	(ft):	6.6								
	Averag	ging Incre	ement (m):	U.25 12 50										· .
	Phi Me	ethod :		Robertso	n and Camp	banella, 1	983						•	
	Dr Me	thod :		Jamiolko	wski - All	Sands		<i>t</i>						•
	Used L	Jnit Weigl	hts Assigne	d to Soll	Zones									-
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (bloi	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
-			E407 4			2 7		47 7	7/ 4	0.0	05 0		• • •	-
	0.41	0.12	4971.7	127.3	2.6	2.3 6.9	0.0	19.9	39.8	397.2	85.6	50.0	10.0	
	2.05	0.62	2232.3	92.7	4.2	11.4	0.0	14.9	29.8	177.7	0.0	0.0	10.0	
	2.87	0.88	1467.2	39.3	2.7	15.9	0.0	7.3	14.7	116.1	0.0	0.0	10.0	
	3.69	1.12	2037.4	110 6	5.0	20.4 26 8	0.0	13.0	43 5	101.4	0.0	0.0	10.0	~ .
	5.33	1.62	1586.5	95.5	6.0	29.2	0.0	15.9	28.7	124.6	0.0	0.0	10.0	
	6.15	1.88	1212.5	67.3	5.5	33.6	0.0	12.1	20.5	94.3	0.0	0.0	6.0	
	6.97	2.12	1165.0	45.7	3.9	36.7	1.2	11.7	18.8	90.2	0.0	0.0	6.0	•
	7.79 8.61	2.38	3734.1	61.1	2.5		5.7 6.1	12.4	19.1	0.0	51.9	42.0	0.U 1.0	
	9.43	2.88	10229.0	77.3	0.8	43.0	8.6	25.6	38.1	0.0	80.0	46.0	1.0	
	10.25	3.12	13744.5	94.7	0.7	45.4	11.0	27.5	39.9	0.0	87.7	46.0	1.0	
	11.07	3.58	16558./	/0.8 63 1	0.5	47.8	13.5	32.7	46.5	0.0	92.0	48.U 48.0	1.0	
	12.71	3.88	18818.1	53.9	0.3	52.7	18.4	37.5	50.8	0.0	94.6	48.0	1.0	
	13.53	4.12	12414.9	33.6	0.3	55.1	20.8	24.8	32.7	0.0	82.0	46.0	1.0	
	14.35	4.38	1017.0	49.2	4.8	57.3	23.3	10.2	13.2	74.9	0.0	0.0	6.0	
	15.17	4.82	831.9	15.5	1.2	61.3	28.2	4.2	5.2	59.4	0.0	0.0	3.0	
	16.81	5.12	1615.1	16.2	1.0	63.3	30.7	6.5	7.9	121.7	30.0	34.0	6.0	
	17.63	5.38	1502.6	15.6	1.0	65.4	33.1	6.0	7.3	112.3	30.0	34.0	6.0	
	18.45	5.88	665 2	9.0	1.2	07.4 60 5	32.0 38.0	3.9 र र	4.0	53.0 44 6	0.0	0.0	3.0	
	20.09	6.12	600.9	5.1	0.9	70.8	40.5	3.0	3.5	39.2	0.0	0.0	3.0	
	20.92	6.38	566.6	5.5	1.0	71.5	42.9	2.8	3.3	36.2	0.0	0.0	3.0	
	21.74	6.62	498.8	3.9	0.8	72.2	45.4	2.5	2.9	30.5 35 /	0.0	0.0	1.5	
	22.30	7.12	574.7	3.9	0.7	73.5	50.3	2.9	3.3	36.1	0.0	0.0	1.5	
	24.20	7.38	1297.3	8.2	0.6	74.9	52.7	5.2	5.9	93.6	30.0	32.0	6.0	
	25.02	7.62	1284.6	8.7	0.7	76.9	55.2	5.1	5.7	92.2	30.0	32.0	6.0	
	22.64	8.12	1614.2	22.2	1.4	81.2	60.1	6.5	7.0	117.8	30.0	32.0	6.0	
	27.48	8.38	2118.4	21.6	1.0	83.2	62.5	8.5	9.1	157.8	30.0	34.0	6.0	
	28.30	8.62	1424.1	29.3	2.1	85.3	65.0	7.1	7.5	101.9	0.0	0.0	6.0	
	29.12	0.00 9 12	907.U	8.U 13.1	U.8 1.1	د./ة ۵/۵۶	07.4 69.9	5.9 4.9	5.1	85.5	30.0	30.0	3.0	
	30.76	9.38	802.9	4.1	0.5	91.4	72.3	3.2	3.3	51.1	30.0	30.0	3.0	
	31.58	9.62	865.6	24.0	2.8	93.4	74.8	5.8	5.8	55.8	0.0	0.0	3.0	
	32.40	9.88	703.4 3802 0	<b>د.ه</b> 75.0	2.0	92.5 97.5	79.7	5.0 15.2	15.1	47.5 290_1	39.9	38.0	6.0	
	34.04	10.38	1398.7	11.9	0.9	99.6	82.2	5.6	5.5	97.4	30.0	30.0	3.0	
	34.86	10.62	5705.5	71.4	1.3	101.7	84.6	19.0	18.5	0.0	50.9	40.0	1.0	•
	35.68	10.88	9340.9	150.2	1.6	103.9	87.1 20 E	51.1	29.9	U.U 130 2	64.8 n n	42.0	1.0	
	30.50	11.12	1932.5 8251.3	55.5 130.3	<b>2.</b> 9 1.6	108.1	92.0	27.5	25.9	0.0	60.7	40.0	1.0	
	38.14	11.62	1246.9	30.5	2.4	110.2	94.4	6.2	5.8	83.4	0.0	0.0	3.0	
	38.96	11.88	826.4	5.1	0.6	112.3	96.9	3.3	3.1	49.4	30.0	30.0	1.5	•
	39.78	12.12	793.9	3.1	0.4	113.6	99.3 101 R	4.U 3 A	5.0	40.2	30.0	30.0	1.5	
	40.60 41.42	12.50	922.0	5.9	0.6	117.0	104.2	3.7	3.3	56.1	30.0	30.0	1.5	
						440.4	104 7		3 0	48.8	30.0	30.0	1.5	

C

ConeTec Inc. - CPT Interpretation Rwm No: 96-0804-2150-0299 CPT File: KA06s153.COR

.

.

Depth (ft)	Depth (m)	AvgQt (kPa)	Avgfs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
43.06	13.12	876.3	5.6	0.6	121.1	109.1	3.5	3.1	51.7	30.0	30.0	1 5	
43.88	13.38	865.4	6.5	0.7	123.2	111.6	3.5	3.1	50.5	30.0	30.0	1.5	
44.70	13.62	919.5	7.0	0.8	125.2	114.0	3.7	3.2	54.4	30.0	30.0	1.5	
42.32	14.12	903.9	10 5	1 1	127.3	116.5	3.9	3.4	59.2	30.0	30.0	1.5	
47.16	14.38	1001.4	12.6	1.3	131.4	121 4	4.7	4.U / 3	55.0	0.0	0.0	1.5	
47.98	14.62	1429.8	23.5	1.6	133.4	123.9	5.7	4.8	93.8	30.0	30.0	1.5	
48.80	14.88	2819.6	37.5	1.3	135.4	126.3	11.3	9.5	204.6	30.0	34.0	6.0	
49.02 50 44	15.12	2625 7	62.1	1.1	137.6	128.8	18.8	15.7	0.0	46.3	38.0	1.0	
51.26	15.62	4655.9	72.1	1.5	139.7	131.2	10.5	8.7	188.4	30.0	32.0	6.0	
52.08	15.88	3466.6	53.2	1.5	143.9	136.1	41.6	9.4	0.0	40.4	36.0	1.0	
52.90	16.12	4010.3	41.7	1.0	146.1	138.6	13.4	10.8	0.0	35.6	36.0	1.0	
55.72	16.38	5154.7	68.2	1.3	148.3	141.0	17.2	13.8	0.0	42.6	36.0	1.0	
55.36	16.02	5240.0 3010 1	105.5	2:0	150.5	143.5	17.5	13.9	0.0	42.9	36.0	1.0	
56.18	17.12	2420.7	24.0	1.0	152.0	142.9 148 4	13.1	10.5	0.0 140 /	34.4	34.0	1.0	
57.00	17.38	1653.2	8.9	0.5	156.8	150.8	6.6	5.2	107.6	30.0	30.0	5.0	
57.82	17.62	1774.5	31.5	1.8	158.8	153.3	7.1	5.5	117.0	30.0	30.0	3.0	
50.64	17.88	2082.5	17.7	0.9	160.9	155.7	8.3	6.4	141.3	30.0	30.0	3.0	
60.28	18.38	4413.7	43.2	1.0	165.2	128.2	167	6.U	0.0	30.0	32.0	1.0	
61.10	18.62	3059.7	57.1	1.9	167.3	163.1	12.2	9.3	218 3	30.0	34.0	1.0	
61.93	18.88	6772.3	157.5	2.3	169.3	165.5	27.1	20.4	515.0	48.6	38.0	6.0	
62.75	19.12	6156.4	116.0	1.9	171.4	168.0	20.5	15.3	0.0	45.6	38.0	1.0	
64 30	19.38	2000 7	11/.1	2.1	173.6	170.4	19.0	14.1	0.0	43.3	36.0	1.0	
65.21	19.88	1392.9	4 0	2.0	1/5./	172.9	12.0	8.9	212.1	30.0	32.0	6.0	
66.03	20.12	1419.5	2.9	0.2	179.8	177.8	J.0 5 7	4.1	85.2 8/ 0	30.0	30.0	1.5	
66.85	20.38	1322.5	3.3	0.2	181.9	180.3	5.3	3.8	76.8	30.0	30.0	1.5	
67.67	20.62	1414.4	3.0	0.2	183.9	182.7	5.7	4.1	83.8	30.0	30.0	1.5	
68.49 60 31	20.88	1501.3	2.7	0.2	186.0	185.2	6.0	4.3	90.4	<b>30</b> .0	30.0	1.5	
70.13	21.38	3516.8	29.2	0.5	188.0	187.6	6.3	4.5	96.1	30.0	30.0	3.0	
70.95	21.62	2344.1	36.7	1.6	192.2	192.5	9.4	0.J 6.6	U.U 156 7	30.0	32.0	1.0	
71.77	21.88	1566.4	8.9	0.6	194.3	195.0	6.3	4.4	94.2	30.0	30.0	3.0	
72.59	22.12	1383.5	7.6	0.5	196.3	197.4	5.5	3.9	79.2	30.0	30.0	1.5	
74.23	22.38	1798.6	13.7	8.0	198.4	199.9	7.2	5.0	112.0	30.0	30.0	3.0	
75.05	22.88	1613.2	4.0	0.8	200.4	202.3	0.9	4.8	106.1	30.0	30.0	3.0	
75.87	23.12	1735.4	9.5	0.5	204.5	207.2	6.9	4.4	105 0	30.0	30.0	1.5	
76.69	23.38	3212.5	22.0	0.7	206.6	209.7	10.7	7.3	0.0	30.0	32.0	1.0	
77.51	23.62	3606.1	58.4	1.6	208.8	212.1	12.0	8.1	0.0	30.0	32.0	1.0	
70.33	25.00	2308.0	20.6	0.9	210.9	214.6	9.2	6.2	150.6	30.0	30.0	3.0	
79.97	24.38	1834.4	13.3	0.0	213.0	217.0	6.8	4.6	101.8	30.0	30.0	1.5	
80.79	24.62	3063.1	50.1	1.6	217.0	219.5	12.3	4.9 8.1	209.9	30.0	30.0	3.0	
81.61	24.88	2342.7	34.6	1.5	219.1	224.4	9.4	6.2	151.9	30.0	30.0	3.0	
82.43	25.12	2166.2	12.6	0.6	221.2	226.9	7.2	4.8	0.0	30.0	30.0	1.0	
84.07	25.62	1394.9	5.0	0.2	225.5	229.3	5.7	3.7	77.4	30.0	30.0	1.5	÷
84.89	25.88	3800.3	53.6	1.4	227.5	234.2	J.0 12 7	3.0 8 2	/5.0	30.0	30.0	1.5	
85.71	26.12	4391.5	85.9	2.0	229.6	236.7	17.6	11.3	314.0	31.8	32.0	6.0	
86.53	26.38	2055.8	27.0	1.3	231.6	239.1	8.2	5.3	126.8	30.0	30.0	3.0	
86 17	26.62	2114.0	28.2	1.3	233.7	241.6	8.5	5.4	131.1	30.0	30.0	3.0	
88.99	27.12	4292.5	62.4	15	237.8	244.U 244.5	8.5	5.3	127.0	30.0	30.0	3.0	
89.81	27.38	5796.9	129.1	2.2	239.9	248.0	23.2	9.1 14 7	U.U 424 4	30.0	32.0	1.0	
90.63	27.62	2503.3	61.9	2.5	242.0	251.4	10.0	6.3	160.8	30.0	30.0	0.U 3. N	
91.45	27.88	2325.1	23.0	1.0.	244.0	253.8	9.3	5.8	146.2	30.0	30.0	3.0	
92.21 93 NO	20.12	0112.5	55.8 20 7	0.9	246.2	256.3	15.3	9.5	0.0	40.3	34.0	1.0	
93.91	28.62	2793.9	54.2	1.9	240.4 250 4	228./ 261 2	14.7	9.1	254.1	30.0	32.0	6.0	
94.73	28.88	4662.8	61.0	1.3	252.5	263.6	15.5	. 9.6	0.0	32.1	32.0	3.0	
95.55	29.12	3036.6	33.9	1.1	254.7	266.1	10.1	6.2	0.0	30.0	30.0	1.0	
96.37	29.38	4013.7	40.4	1.0	256.9	268.5	13.4	8.2	0.0	30.0	32.0	1.0	
97.19 08.01	27.02	8101.4 8857 4	100.9	2.3	259.1	271.0	27.0	16.4	0.0	47.6	36.0	1.0	
98.83	30.12	4691.1	111.5	2.4	261.2	213.3	37.4 18 8	21.5	000.0 332 2	50.0 31 7	36.0	6.0 6.0	
						<b></b> 7			JJC. C	31.7	ີລະ.ບ	0.0	

.

.



case it dialla it it is

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-0299 CPT File: KA06S153.COR

	Depth	Depth	AvgQt	Avgfs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	ws/ft)	(kPa)	(%)	(deg.)	(ratio)
,	99.65	30.38	5788.0	102.0	1.8	265.3	278.4	19.3	11.6	0.0	37.6	34.0	1.0
	100.47	30.62	4014.0	70.3	1.8	267.5	280.8	13.4	8.0	0.0	30.0	32.0	1.0
	101.29	30.88	3247.8	41.2	1.3	269.7	283.3	10.8	6.5	0.0	30.0	30.0	1.0
	102.11	31.12	3494.2	44.6	1.3	271.8	285.7	11.6	6.9	0.0	30.0	30.0	1.0
	102.94	31.38	3265.5	32.9	1.0	274.0	288.2	10.9	6.4	0.0	30.0	30.0	1.0
	103.76	31.62	3447.8	55.0	1.6	276.1	290.6	13.8	8.1	230.5	30.0	30.0	3.0
	104.58	31.88	3051.7	46.1	1.5	278.2	293.1	12.2	7.2	198.4	30.0	30.0	3.0
	105.40	32.12	3116.4	37.7	1.2	280.3	295.5	10.4	6.1	0.0	30.0	30.0	1.0
	106.22	32.38	3035.2	55.0	1.8	282.4	298.0	12.1	7.1	196.4	30.0	30.0	3.0
	107.04	32.62	8522.1	120.6	1.4	284.6	300.4	21.3	12.4	0.0	47.7	36.0	1.0
	107.86	32.88	2840.1	49.9	1.8	286.7	302.9	11.4	6.6	180.0	30.0	30.0	3.0
	108.68	33.12	2776.4	33.9	1.2	288.8	305.3	11.1	6.4	174.6	30.0	30.0	3.0
	109.50	33.38	12821.5	223.7	1.7	290.9	307.8	42.7	24.5	0.0	59.1	38.0	1.0
	110.32	33.62	24136.5	349.3	1.4	293.1	310.2	60.3	34.5	0.0	77.1	42.0	1.0
	111.14	33.88	27327.6	274.5	1.0	295.5	312.7	54.7	31.1	0.0	80.6	42.0	1.0
	111.96	34.12	22855.0	278.8	1.2	297.9	315.1	45.7	25.9	0.0	75.3	40.0	1.0
	112.78	34.38	33423.3	292.4	0.9	300.3	317.6	66.8	37.8	0.0	86.1	42.0	1.0
	113.60	34.62	26787.9	245.0	0.9	302.8	320.1	53.6	30.1	0.0	79.6	42.0	1.0

Page: 3







Client: Sounding: Date: KLEINFELDER 06-SC-153 18-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone Depth	Distance	Last Time Interval For	Shear Wa	ve Velocity	Corres	sponding
		X-Over	•		Dopar	
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
				1		
1.50	1.60				i	
2.50	2.56	6.3	<i>i</i> ≠ 153	500	1.5 - 2.5	4.9 - 8.2
3.50	3.54	5.0	197	645	2.5 - 3.5	8.2 - 11.5
4.50	4.53	4.4	225	738	3.5 - 4.5	11.5 - 14.8
5.50	5.53	8.7	¥ 114	375	4.5 - 5.5	14.8 - 18.0
6.50	6.52	7.2	139	457	5.5 - 6.5	18.0 - 21.3
7.50	7.52	.2	122	401	6.5 - 7.5	21.3 - 24.6
8.50	3.52	J.5	181	595	7.5 - 8.5	24.6 - 27.9
<del>9</del> .50	9.52	5.6	178	585	8.5 - 9.5	27.9 - 31.2
10.50	10.51	5.1	× 196	642	9.5 - 10.5	31.2 - 34.4
11.50	11.51	4.9	204	669	10.5 - 11.5	34.4 - 37.7
12.50	12.51	5.6	178	585	11.5 - 12.5	37.7 - 41.0
13.50	13.51	7.1	141	462	12.5 - 13.5	41.0 - 44.3
14.50	14.51	6.6	151	497	13.5 - 14.5	44.3 - 47.6
15.50	15.51	5.8	<b>→ 172</b>	565	14.5 - 15.5	47.6 - 50.9
16.50	16.51	4.4	227	745	15.5 - 16.5	50.9 - 54.1
17.50	17.51	4.8	208	683	16.5 - 17.5	54.1 - 57.4
18.50	18.51	5.0	200	656	17.5 - 18.5	57.4 - 60.7
19.50	<b>19</b> .51	4.4	227	745	18.5 - 19.5	60.7 - 64.0
20.50	20.51	5.0	<b>≁ 200</b>	656	19.5 - 20.5	64.0 - 67.3
21.50	21.51	5.8	172	565	20.5 - 21.5	67.3 - 70.5
22.50	22.51	5.2	192	631	21.5 - 22.5	70.5 - 73.8
23.50	23.51	5.6	179 ⁻	586	22.5 - 23.5	73.8 - 77.1
24.50	24.51	4.6	217	713	23.5 - 24.5	77.1 - 80.4
25.50	25.51	4.8	¥ 208	683	24.5 - 25.5	80.4 - 83.7
26.50	26.51	5.0	200	656	25.5 - 26.5	83.7 - 86.9
27.50	27.51	4.7	213	698	26.5 - 27.5	86.9 - 90.2
28.50	28.51	4.4	227	745	27.5 - 28.5	90.2 - 93.5
29.50	29.51	3.9	256	841	28.5 - 29.5	93.5 - 96.8
30.50	30.51	3.9	<b>≁ 256</b>	841	29.5 - 30.5	96.8 - 100.1
31.50	31.50	3.9	256	841	30.5 - 31.5	100.1 - 103.3
32.50	32.50	4.0	250	820	31.5 - 32.5	103.3 - 106.6
33.50	33.50	3.6	278	911	32.5 - 33.5	106.6 - 109.9
34.50	34.50	3.0	333	1093	33.5 - 34.5	109.9 - 113.2

			•							•				
•	ConeTe	c inc	CPT Interpr Output - Re	retation elease 1.0	0.07	•				Page	: 1			
	Run No	: 96-08	04-2150-060	57										
	Job No	: 96-30	9								• • • •			
6	Client	: Klein	felder								5. A	•	19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar 19 mar	the sugar
1	Projec	t: I15 S	ection 4		•				,				·	2.33
h	Site:	I15,	s4: 400 s,	06-SC-157										
	Locati	on: 400 S	Structure									10 C	·	
N_	Cone:	20 T	ON A 040				•							• · · · ·
	CPT Da	te: 96/25	/06										•	
	CPT Ti	me: 20:14		· · .										
	CPT Fi	le: KAO6S	157.COR											
										••••••				•
	Water	Table (m	):	2.00	(ft):	6.6								
	Avera	ging Incr	ement (m):	0.25										
	SU NK			12.50										
		ethod :		Robertson	n and Cam	panella, 19	985							
	Used t	Unit Weid	hts Assigne	d to Soil	700es	t sands								
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCP	
	(ft)	(m)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(blo	s/ft)	(kPa)	(%)	(deg.)	(ratio)	
	0.41	0.12	1675.7	2.0	0.1	2.3	0.0	5.6	11.2	0.0	70.1	50.0	1.0	
	1.23	0.38	1548.1	2.0	0.1	6.9	0.0	6.2	12.4	123.3	52.2	46.0	10.0	
	2.05	0.62	2204.9	4.8	0.2	11.4	0.0	7.3	14.7	0.0	55.0	44.0	1.0	
	2.87	0.88	1272.3	19.9	1.6	16.0	0.0	6.4	12.7	100.5	0.0	0.0	10.0	
	3.09	1.12	(33.3	12.0	1.7	20.5	0.0	3.8	7.6	58.8	0.0	0.0	6.0	
	4.51	1.38	1500.0	19.0	1.5	25.0	0.0	6.0	11.7	118.0	32.8	40.0	10.0	
	2.33	1.02	1/9/./	15.9	0.9	29.5	0.0	7.2	13.0	141.5	35.6	<b>40</b> .0	10.0	
	6 07	2 12	1506.5	14.9	1.0	54.U 77 7	0.0	6.0	10.1	117.8	30.0	38.0	6.0	
	7 70	2.12	3584 3	27 /	0.9	37.3	1.2	0.0	<b>9.</b> 0	117.0	30.0	38.0	6.0	
	8.61	2.62	10410 4	50 1	0.0	37.4	3./	20.9	10.0	0.0	51.2	42.0	1.0	
	9.43	2.88	9637.6	55 8	0.5	41.7	0.1	20.0	31.0	0.0	81.0	46.0	1.0	•
	10.25	3.12	10431.6	60.0	0.6	44.0	11 0	24.1	30.5	0.0	76.0	46.0	1.0	
	11.07	3.38	13562.4	63.4	0.5	48.8	13.5	27.1	38.0	0.0	86 3	40.0	1.0	
	11.89	3.62	13117.7	28.9	0.2	51.2	15.9	26.2	35.0	0.0	8/ 6	40.0	1.0	
1.	12.71	3.88	7090.4	7.9	0.1	53.6	18.4	17.7	23.7	0.0	66.4	40.0	1.0	
(* [*] -	13.53	4.12	1905.1	18.6	1.0	55.8	20.8	7.6	10.0	146.3	30.0	36.0	6.0	
	14.35	4.38	1343.5	24.0	1.8	57.8	23.3	6.7	8.6	101.0	0.0	0.0	6.0	
( )	15.17	4.62	1021.8	14.3	1.4	59.9	25.8	5.1	6.5	74.9	0.0	0.0	6.0	
New P	15.99	4.88	962.8	19.5	2.0	61.9	28.2	4.8	6.0	69.8	0.0	0.0	6.0	
	16.81	5.12	1078.4	29.0	2.7	64.0	30.7	5.4	6.6	78.7	0.0	0.0	6.0	
	17.05	5.30	972.0	20.0	2.9	66.0	35.1	6.5	7.8	69.8	0.0	0.0	6.0	
	10.43	5.88	0/4.J 737 8	17.4	2.0	08.1	55.6	4.4	5.2	61.7	0.0	0.0	3.0	
	20.00	6 12	455 8	6.5	1.2	70.1	38.0	3.0	4.5	49.6	0.0	0.0	3.0	
	20.92	6.38	599.3	6.0	1.0	71.5	40.5	2.3	2.0	27.5	0.0	0.0	1.5	
	21.74	6.62	1149.9	15.8	1.0	73.5	42.9	5.0	3.5	30./ 92 F	0.0	0.0	3.0	
	22.56	6.88	2933.6	19.2	0.7	75.6	47.8	0.8	11 0	02.5	36 1	78.0	0.0	
	23.38	7.12	1841.0	33.7	1.8	77.7	50.3	7 4	8.2	137 0	30.1	36.0	1.0	
	24.20	7.38	1633.5	28.5	1.7	79.8	52.7	6.5	7.2	120.1	30.0	37.0	6.0	
	25.02	7.62	3029.1	47.5	1.6	81.8	55.2	12.1	13.1	231.4	35.9	38.0	6.0	
	25.84	7.88	894.0	7.7	0.9	83.9	57.6	4.5	4.8	60.2	0.0	0.0	3.0	•
	26.66	8.12	1302.7	14.9	1.1	85.9	60.1	5.2	5.5	92.5	30.0	32.0	6.0	
	27.48	8.38	1243.4	16.2	1.3	88.0	62.5	5.0	5.2	· 87.4	30.0	30.0	3.0	
	28.30	8.62	993.0	11.6	1.2	90.0	65.0	5.0	5.1	67.0	0.0	0.0	3.0	
	29.12	8.88	947.8	10.1	1.1	92.1	67.4	4.7	4.8	63.1	0.0	0.0	3.0	
	29.94	9.12	2091.0	34.8	1.7	94.1	69.9	8.4	8.4	154.2	30.0	34.0	6.0	
	JU./O	9.30	900.8	11.3	1.2	96.2	72.3	4.5	4.5	59.1	0.0	_0.0	3.0	•
	31.30	7.02	1000 0	39.0	1.0	90.2	74.8	8.0	8.5	157.6	30.0	54.0	6.0	
	32.40	10 12	1757.0	J0.4 75 5	2.0	100.2	77.5	ö.U	1.8	145.7	50.0	52.0	6.0	
	36 04	10.12	1028 5	10 4	10	102.3	17.1	r.U	0.0	120.0	50.0	32.0	0.0	
	34.86	10.62	923.4	6.5	0.7	104.3	84 4	3.1	4.Y 3.5	0/.4 58 a	U.U 300	U.U 300	3.0	
	35.68	10.88	931.8	2.6	0.3	108 4	87.1	3.7	3.5	58.0	30.0	30.0	3.0	
	36.50	11.12	751.5	3.1	0.4	109.8	89.5	3.8	3.5	44.2	0.0	0.0	1.5	
	37.32	11.38	811.7	8.5	1.1	111.2	92.0	4.1	3.8	48.7	0.0	0.0	1.5	
	38.14	11.62	889.3	6.4	0.7	113.2	94.4	3.6	3.3	54.5	30.0	30.0	1.5	
	38.96	11.88	1049.5	7.4	0.7	115.3	96.9	4.2	. 3.8	67.0	30.0	30.0	3.0	
	39.78	12.12	919.8	7.2	0.8	117.3	99.3	3.7	3.3	56.3	30.0	30.0	1.5	
1	40.60	12.38	843.0	5.7	0.7	119.3	101.8	3.4	3.0	49.8	30.0	30.0	1.5	
1.	41.42	12.62	884.3	5.7	0.6	121.4	104.2	3.5	3.1	52.7	30.0	30.0	1.5	
1	42.24	12.88	963.3	6.8	0.7	123.4	106.7	3.9	3.4	58.7	30.0	30.0	1.5	

.

۰.

.

•

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-0667 CPT File: KA06S157.COR

·

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blow	(N1)60 ks/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
43.06	13.12	897.9	7.7	0.9	125.5	109.1	4.5	3.9	53.1	0.0	0.0	1.5
43.88	13.38	994.6	7.5	0.7	127.5	111.6	4.0	3.4	60.4	30.0	30.0	1.5
44.70	13.88	1052.1	10.4	1.0	131.6	116.5	4.0	3.6	64.3	30.0	30.0	1.5
46.34	14.12	2062.4	35.6	1.7	133.7	118.9	8.2	7.0	144.8	30.0	32.0	6.0
47.16	14.38	2897.4	44.5	1.5	135.7	121.4	11.6	9.7	211.2	30.0	34.0	6.0
47.98	14.62	2720.3	37.0	1.4	137.8	123.9	10.9	9.1	196.7	30.0	32.0	6.0
48.80	14.88	1719.0	22.9	1.3	139.8	126.3	6.9	5.7	116.2	30.0	30.0	3.0
49.62	15.12	4474.2	84.4	1.9	141.9	128.8	14.9	12.3	0.0	39.2	36.0	1.0
50.44	15.38	5099.8	113.6	2.2	144.0	131.2	20.4	16.6	-386.0	42.7	36.0	6.0
52.08	15.88	1847.5	30.6	1.0	140.2	135.7	20.7	5.9	125.0	40.1	30.0	1.0
52.90	16.12	10330.1	120.4	1.2	150.4	138.6	25.8	20.6	0.0	62.4	40.0	1.0
53.72	16.38	14625.3	202.2	1.4	152.7	141.0	36.6	29.0	0.0	72.1	42.0	1.0
54.54	16.62	19423.4	231.4	1.2	155.0	143.5	48.6	38.2	0.0	80.0	42.0	1.0
55.36	16.88	22839.7	443.8	1.9	157.3	145.9	57.1	44.6	0.0	84.5	44.0	1.0
56.18	17.12	2/204.5	455.5	1.7	159.6	148.4	68.0	52.7	0.0	89.3	44.0	1.0
57 82	17.50	20075.4	361 7	1.6	164.2	150.0	55 7	42 5	0.0	00./ 83 1	44.0	1.0
58.64	17.88	5825.8	144.4	2.5	166.4	155.7	23.3	17.7	440.3	44.5	36.0	6.0
59.46	18.12	5455.6	144.4	2.6	168.4	158.2	21.8	16.5	410.3	42.4	36.0	6.0
60.28	18.38	8847.3	190.7	2.2	170.5	160.6	29.5	22.1	0.0	56.1	38.0	1.0
61.10	18.62	11837.3	297.1	2.5	172.7	163.1	39.5	29.4	0.0	64.3	40.0	1.0
61.93	18.88	16366.2	367.9	2.2	174.9	165.5	54.6	40.4	0.0	73.4	42.0	1.0
62.75	19.12	17256.9	339.0	2.0	177.1	168.0	57.5	42.3	0.0	74.7	42.0	1.0
64.39	19.62	31301.5	474.8	1.5	181.7	172.9	78.3	42.7	0.0	07.0	44.U 44.O	1.0
65.21	19.88	29960.6	588.1	2.0	184.0	175.4	74.9	54.0	0.0	90.0	44.0	1.0
66.03	20.12	22734.4	532.4	2.3	186.3	177.8	75.8	54.3	0.0	81.9	42.0	1.0
66.85	20.38	27330.0	462.3	1.7	188.5	180.3	68.3	48.7	0.0	87.0	44.0	1.0
67.67	20.62	22991.2	343.4	1.5	190.8	182.7	57.5	40.7	0.0	81.9	42.0	1.0
68.49	20.88	22830.4	299.1	1.2	195.1	185.2	51.7	36.4	0.0	85.0	44.0	1.0
70 13	21.12	15258 2	54 0	0.0	195.0	10/.0	40.0	21.0	0.0	61.9 40 4	42.0	1.0
70.95	21.62	9881.9	287.1	2.9	200.2	192.5	30.5	27.3	759.1	57 0	38.0	6.0
71.77	21.88	5266.6	134.5	2.6	202.3	195.0	21.1	14.5	389.6	38.8	34.0	6.0
72.59	22.12	2983.6	56.9	1.9	204.3	197.4	11.9	8.2	206.5	30.0	32.0	6.0
73.41	22.38	2653.4	41.2	1.6	206.4	199.9	10.6	7.2	179.8	30.0	30.0	3.0
74.23	22.62	10585.2	194.0	1.8	208.5	202.3	35.3	23.9	0.0	58.4	38.0	1.0
75.05	22.88	16857.9	230.7	1.4	210.7	204.8	42.1	28.4	0.0	71.6	42.0	1.0
75.07	23.12	20060 6	326.2	1.7	213.0	207.2	50 2	22.3	0.0	04./ 74.7	40.0	1.0
77.51	23.62	18364.1	273.4	1.5	217.6	212.1	45.9	30.5	0.0	73.6	42.0	1.0
78.33	23.88	12179.0	356.2	2.9	219.8	214.6	48.7	32.2	939.6	61.6	40.0	10.0
79.15	24.12	13127.0	380.0	2.9	221.8	217.0	52.5	34.5	1015.0	63.7	40.0	10.0
79.97	24.38	5471.6	114.6	2.1	223.9	219.5	18.2	11.9	0.0	38.4	34.0	1.0
80.79	24.62	10204.3	292.1	2.9	226.0	222.0	40.8	26.6	780.5	56.2	38.0	6.0
81.61	24.88	1910.9	40.4	2.1	228.1	224.4	7.6	5.0	116./	30.0	30.0	3.0
83 25	25 38	1767.2	12.2	0.7	230.1	220.9	7.9	2.1	102 4	30.0	30.0	3.0
84.07	25.62	2080.4	18.5	0.9	234.2	231.8	8.3	5.3	129.2	30.0	30.0	3.0
84.89	25.88	2319.9	54.6	2.4	236.3	234.2	9.3	5.9	148.0	30.0	30.0	3.0
85.71	26.12	2472.7	79.2	3.2	238.3	236.7	12.4	7.8	159.8	0.0	0.0	3.0
86.53	26.38	2215.5	68.3	3.1	240.4	239.1	11.1	7.0	138.9	0.0	0.0	3.0
87.35	26.62	2081.3	52.6	2.5	242.4	241.6	10.4	6.5	127.8		0.0	3.0
88.00	27.12	3973 7	123.3	3.1	244.5	244.0	10.0	12.4	278 5	0.0	0.0	5.0
89.81	27.38	7363.1	200.0	2.7	248.6	248.9	29.5	18.3	549.2	45.5	36.0	6.0
90.63	27.62	2217.8	49.1	2.2	250.6	251.4	8.9	5.5	137.3	30.0	30.0	3.0
91.45	27.88	2186.4	38.4	1.8	252.7	253.8	8.7	5.4	134.4	30.0	30.0	3.0
92.27	28.12	2974.1	88.5	3.0	254.7	256.3	14.9	9.1	197.0	0.0	0.0	3.0
93.09	28.38	10613.7	242.4	2.3	256.8	258.7	35.4	21.6	0.0	55.5	38.0	1.0
93.91	28.62	5293.4	164.6	3.1	258.9	261.2	21.2	12.9	381.9	35.4	32.0	6.0
94.73 OF FF	20.00	5758 5	216 0	3.2 7 9	201.0	203.0	22.4 28 9	13.0	407.7 618 /	<b>30.9</b>	345U· 0 0	0.U 6 N
95.35	29.38	3785.4	89_6	2.4	265.1	268.5	15.1	9.1	260.1	30.0	30.0	3.0
97.19	29.62	3326.7	93.9	2.8	267.1	271.0	13.3	8.0	223.1	30.0	30.0	3.0
98.01	29.88	6277.3	213.8	3.4	269.2	273.5	31.4	18.7	458.8	0.0	0.0	6.0
98.83	30.12	3743.2	137.9	3.7	271.2	275.9	18.7	11.1	255.7	0.0	0.0	3.0

.

.



instr a⊊lis parstr





ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-0667 CPT File: KA06S157.COR

	Depth	Depth	AvgQt (kDa)	Avgfs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su (kPa)	Dr (%)	Phi (deg.)	OCR (catio)
	(TT)	(m)	(KP8)	(KPd)	( <i>*</i> ) 	(KFd)	(KF@)			( KF U /			
/	99.65	30.38	3080.3	78.2	2.5	273.3	278.4	12.3	7.3	202.3	30.0	30.0	3.0
	100.47	30.62	2714.3	61.2	2.3	275.3	280.8	10.9	6.4	172.7	30.0	30.0	3.0
	101.29	30.88	2952.4	51.7	1.7	277.4	283.3	11.8	6.9	191.3	30.0	30.0	3.0
	102.11	31.12	2973.6	66.9	2.2	279.4	285.7	11.9	7.0	192.7	30.0	30.0	3.0
	102 94	31.38	2497.4	49.6	2.0	281.5	288.2	10.0	5.8	154.2	30.0	30.0	3.0
	103 76	31 62	2484.0	41.9	1.7	283.5	290.6	9.9	5.8	152.8	30.0	30.0	3.0
	104.58	31.88	2424.4	35.8	1.5	285.6	293.1	9.7	5.6	147.7	30.0	30.0	3.0
	105.40	32.12	2349.0	38.8	1.6	287.6	295.5	9.4	5.4	141.3	30.0	30.0	1.5
	106.22	32.38	2436.6	39.2	1.6	289.6	298.0	9.7	5.6	147.9	30.0	30.0	3.0
	107.04	32.62	3368.2	71.5	2.1	291.7	300.4	13.5	7.7	222.1	30.0	30.0	3.0
	107-86	32.88	2428.4	48.8	2.0	293.7	302.9	9.7	5.5	146.5	30.0	30.0	1.5
	108.68	33.12	3683.5	112.7	3.1	295.8	305.3	18.4	10.5	246.6	0.0	0.0	3.0
	109.50	33.38	15065.3	250.4	1.7	298.0	307.8	37.7	21.4	0.0	63.4	38.0	1.0
	110.32	33.62	11079.7	238.5	2.2	300.2	310.2	36.9	20.9	0.0	54.5	38.0	1.0
	111.14	33.88	4672.1	120.6	2.6	302.3	312.7	18.7	10.5	324.6	30.0	32.0	6.0
	111.96	34.12	5274.8	195.5	3.7	304.4	315.1	26.4	14.8	372.4	0.0	0.0	6.0
	112.78	34.38	14723.8	375.2	2.5	306.5	317.6	49.1	27.4	0.0	62.3	38.0	1.0
	113.60	34.62	20677.5	490.1	2.4	308.6	320.1	68.9	38.4	0.0	71.9	40.0	1.0
	114.42	34.88	36508.9	765.8	2.1	310.9	322.5	91.3	50.7	0.0	88.1	42.0	1.0

Page: 3







Client: Sounding: Date:

C

KLEINFELDER 06-SC-157 25-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone	Distance	Last Time	Shear W	ave Velocity	Com	
Depth		Interval For	Uncar W	ave velocity	Depth	sponding
		X-Over			Depui	niciement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
						(14)
1.00	1.15					
2.00	2.08	5.1	<i>⊮</i> 183	599	1.0 - 2.0	33 . 66
3.00	3.05	6.9	141	464	2.0 - 3.0	6.6 . 9.8
4.00	4.04	5.9	167	549	3.0 - 4.0	98 . 131
5.00	5.03	8.4	<b>⊬</b> 118	388	4.0 - 50	131 . 164
6.00	6.03	7.5	133	435	5.0 - 6.0	16.4 19.7
7.00	7.02	8.7	115	376	6.0 - 7.0	19.7 - 23.0
8.00	8.02	6.5	153	503	7.0 - 8.0	23.0 . 26.2
9.00	9.02	6.3	158	520	8.0 - 9.0	26.2 . 29.5
10.00	10.02	5.8	★ 172	565	9.0 - 10.0	29.5 . 32.8
11.00	11.01	6.4	156	512	10.0 - 11.0	32.8 . 36.1
12.00	12.01	7.1	141	462	11.0 - 12.0	36.1 - 39.4
13.00	13.01	7.0	143	468	12.0 - 13.0	39.4 . 42.7
14.00	14.01	6.9	145	475	13.0 - 14.0	427 . 459
15.00	15.01	6.3	<b>+</b> 159	520	14.0 - 15.0	45.9 . 49.2
16.00	16.01	4.8	208	683	15.0 - 16.0	49.2 . 52.5
17.00	17.01	4.7	213	698	16.0 - 17.0	52.5 . 55.8
18.00	18.01	4.2	238	781	17.0 - 18.0	55.8 - 59.1
19.00	19.01	4.4	227	745	18.0 - 19.0	59.1 - 62.3
20.00	20.01	4.0	<b>* 250</b>	820	19.0 - 20.0	62.3 - 65.6
21.00	21.01	4.0	250	820	20.0 - 21.0	65.6 - 68.9
22.00	22.01	4.2	238	781	21.0 - 22.0	68.9 - 72.2
23.00	23.01	4.5	222	729	22.0 - 23.0	72.2 - 75.5
24.00	24.01	4.1	244	800	23.0 - 24.0	75.5 - 78.7
25.00	25.01	4.2	* 238	781	24.0 - 25.0	78.7 - 82.0
26.00	26.01	5.4	185	607	25.0 - 26.0	82.0 - 85.3
27.00	27.01	4.7	213	698	26.0 - 27.0	85.3 - 88.6
28.00	28.01	4.4	227	745	27.0 - 28.0	88.6 - 91.9
29.00	29.01	4.0	250	820	28.0 - 29.0	91.9 - 95.1
30.00	30.01	3.8	* 263	863	29.0 - 30.0	95.1 - 98.4
31.00	31.01	4.1	244	800	30.0 - 31.0	98.4 - 101.7
32.00	32.00	4.1	244	800	31.0 - 32.0	101.7 - 105.0
33.00	33.00	4.1	244	800	32.0 - 33.0	105.0 - 108.3
34.00	34.00	4.0	250	820	33.0 - 34.0	108.3 - 111.5
34.80	34.80	3.1	A 258	847	34.0 - 34.8	111.5 - 114.2

34.4

. ·			-			•								
	ConeTe	ec Inc. •	CPT Interpr	etation						Page	: <b>1</b>			41
	Interp	pretation	OUTPUT - KE	elease I.UU	1.07									1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
		D: 90-00	803-0947-373	0			•							
	JOD NO	<b>96-3</b>	09										•	
1 Contraction	Client	t: Kleii	nfelder					1.1			7	· · ·	19 <del>Y</del> É.T	
<b>(</b>	Projec	:t: 115 9	Section 4										1	1.1
6	Site:	115,	\$4: I15 SB,	06-SC-171						·	•			
	Locati	on: 400 \$	S Structure											~ ~
	Cone:	20 1	TON A 040											···
	CPT Da	te: 96/0	1/07										•	
	CPT Ti	me: 21:33	3											
	CPT Fi	le: KA069	s171.COR											÷ .
	Vater	Table (	n):	9.00	(ft):	29.5								•
	Avera	aing Incr	rement (m):	0.25		2713								
	Su Nk	t used:	•••••	12.50										
	Phi M	lethod :		Robertson	and Car	manella 1	083						-	
	Dr M	lethod :		Jamiolkow	ski - Al	Sande	,05							
	Used	Unit Weig	hts Assigne	d to Soil	Zones									
														-
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	
	(ft)	(m)	(kPa)	(kPa) ·	(%)	(kPa)	(kPa)	(blo	ows/ft)	(kPa)	(%)	(deg.)	(ratio)	
														-
	0.41	0.12	1.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	1.23	0.38	1.0	· 0.0	0.0	7.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	2.05	0.62	1.0	0.0	0.0	12.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	2.87	0.88	1.0	0.0	0.0	17.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	3.69	1.12	1.0	0.0	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	4.51	1.38	1.0	0.0	0.0	26.8	0.0	0.0	0.0	0.0	0.0	0.0	1 0	
	5.33	1.62	1.0	0.0	0.0	31.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	6.15	1.88	1.0	0.0	0.0	36.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	6.97	2.12	1.0	0.0	0.0	41.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	7.79	2.38	1.0	0.0	0.0	46.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	8.61	2.62	1.0	0.0	0.0	51.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	9.43	2.88	1.0	0.0	0.0	56.1	0.0	0.0	0.0	0.0	0.0	. 0.0	1.0	
	10.25	3.12	1.0	0.0	0.0	60.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	11.07	3.38	1.0	0.0	0.0	65.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	11.89	3.62	1.0	0.0	0.0	70.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
1	12.71	3.88	1.0	0.0	0.0	75.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
1 -	13.53	4.12	1.0	0.0	0.0	80.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
1	14.35	4.38	1.0	0.0	0.0	85 3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	15.17	4.62	1.0	0.0	0.0	90.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	15.99	4.88	1.0	0.0	0.0	95 1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	16.31	5.12	1.0	0.0	0.0	00 0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	17.63	5.38	1.0	0.0	0.0	104.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	18.45	5.62	1.0	0.0	0.0	109.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	19.27	5.88	1.0	0.0	0.0	114.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	20.09	6.12	1.0	0.0	0.0	119 4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	20.92	6.38	1.0	0.0	0.0	124.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	21.74	6.62	1.0	0.0	0.0	129.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	22.56	6.88	1.0	0.0	0.0	134.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	23.38	7.12	1.0	0.0	0.0	138.9	0_0	0.0	0.0	0.0	0.0	0.0	1.0	
	24.20	7.38	1.0	0.0	0.0	143.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	25.02	7.62	1.0	0.0	0.0	148.7	0.0	0.0	0.0	n n	0.0	<b>n</b> n	1.0	
	25.84	7.88	2083.4	6.9	0.3	153.4	0.0	6.0	5 5	0.0	30.0	30.0	1.0	
	26.66	8.12	7038.4	108.2	1.5	158.1	0.0	23 5	18 3	0.0	50.0	30.0	1.0	
	27.48	8.38	5148.9	86.5	1.7	162 7	·	17 2	17 2	0.0	/1 2	30.0	1.0	
	28.30	8.62	5266.1	86.3	1.6	167 3	0.0	17 6	13.2	0.0	41.3	30.0	1.0	
	29.12	8.88	5276.4	69.0	1.3	171 0	<u>n</u> n	17 4	17 1	0.0	41.2	30.0	1.0	
	29.94	9.12	6370.5	67.3	1 1	175 4	1 2	15 0	11 0	0.0	41.2	30.0	1.0	
	30.76	9.38	4328.3	80.5	1 0	177 6	37	16.6	10.4	0.0	40.3	30.0	1.0	
	31.58	9.62	1538.8	42.9	2.8	179.7	5.1 K 1	77	5 6	108.2	33.0	34.0	1.0	
	32.40	9.88	1383.0	29.0	2 1	181 8	8.6	6.0	5.0	05.4	0.0	0.0	3.0	
	33.22	10.12	4757.6	57.6	1 2	187 0	11 0	15 0	J.U 11 /	73.4	77 7	7/ 0	3.0	
	34 04	10 38	5078 2	72 7	1 4	194 1	17.5	12.7	11.4	0.0	37.3	34.0	1.0	
	34 84	10 62	7051 0	122 3	1 7	100.1	13.7	10.7 37 E	16.1	0.0	37.0	34.0	1.0	
	35 68	10 88	14330 2	192 2	1 7	100.2	12.7	23.J 75 0	75 /	0.0	40.2	30.0	1.0	
	36 50	11 12	16435 4	104 7	1 2	10.5	20.4		20.4	0.0	77.4	40.0	1.0	
	30.30	11 79	20205 5	258 2	1 7	105 1	20.0	50 7	27.U 75 4	0.0	70.1	42.0	1.0	
	20 1/	11 40	18007 5	2/5 4	1.3	177.1	23.3	JU./	33.0 77 4	0.0	70.0	42.0	1.0	
	20.14 78 01	11.02	20082 8	- 43 7	1.3	17/.4	27.Ö	4/.5	33.1 37 e	0.0	(2.9	42.0	1.0	
	20.70	12 12	13002.0	62 2	0.2	<i>יעצו.</i> ב בחכ	20.2	40.2	21.0	· U.U	11.5	42.0	1.0	
	J7.10 10 10	12.12	2037 5	35 7	1 0	202.2	JU./	20.2	10.U	0.0	04.Y	40.0	7.0	
ſ	40.00	12.30	1/07 5	22.1	1.0	204.4	JJ.   75 4	0.2 4 0	<b>5.0</b> / 1	144.0	30.0	30.0	3.0	
LL .	41.42	12.02	1471.3	22.0	1.7	200.4	33.0	4.7	4.1	100.4	20.0	20.0	1.7	
1 🛩	42.24	12.00	1330.7	د.دع	1.7	200.0	30.0	0./	4.2	0/.4	0.0	<b>u.</b> u	1.7	

ConeTec Inc. - CPT Interpretation Run No: 96-0805-0947-5738 CPT File: KA06S171.COR

Page: 2

<u>,</u>

Denth	Denth	A	A	A	F 0.							
veptn (ft)	veptn (m)	AVGUT	AVGES	AVGRT	L.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
	(m)	(KPa)	(KPd)	(%)	(KPa)	(KPa)	(DLO	WS/ft)	· (kPa)	(%)	(deg.)	(ratio)
43 06	13 12	1261 3	20.6	1 4	210 5	/^ E			••••••			
43.00	13 38	1210 9	20.3	1.0	210.5	40.5	0.3	4.3	80.8	0.0	0.0	1.5
44 70	13 62	1151 1	12 7	1 1	212.0	42.9	0.1	4.1	76.4	0.0	0.0	1.5
45 52	13 88	1122 6	10 3	0.0	214.0	47.4	4.0	3.1	/1.3	30.0	30.0	1.5
46.34	14.12	1429.3	24.8	1 7	210.7	4/.0	4.7	3.0	68.7	30.0	30.0	1.5
47.16	14.38	2819.7	75.2	2.7	220.8	50.5	11 7	3.0	92.0	30.0	30.0	1.5
47.98	14.62	1332.7	13.4	1.0	222.8	55 2	5 3	7.4	203.7	30.0	20.0	3.0
48.80	14.88	3327.9	80.2	2.4	224.9	57.6	13.3	8.7	243.6	30.0	30.0	4.0
49.62	15.12	1800.4	31.4	1.7	226.9	60.1	7.2	4.7	121.1	30.0	30.0	3.0
50.44	15.38	1533.5	13.8	0.9	229.0	62.5	6.1	4.0	99.4	30.0	30.0	1.5
51.26	15.62	1909.0	29.1	1.5	231.0	65.0	7.6	4.9	129.0	30.0	30.0	3.0
52.08	15.88	1606.0	34.7	2.2	233.1	67.4	8.0	5.1	104.4	0.0	0.0	1.5
52.90	16.12	1310.2	27.9	2.1	235.1	69.9	6.6	4.2	80.4	0.0	0.0	1.5
55.72	16.58	3846.2	109.2	2.8	237.2	72.3	15.4	9.8	282.9	30.0	32.0	6.0
24.24 55 74	10.02	2018.9	35.8	1.8	239.2	74.8	8.1	5.1	136.4	30.0	30.0	3.0
54 19	17 12	2700.3	03.(	2.4	241.2	77.3	10.8	6.8	191.0	30.0	30.0	3.0
57 00	17 38	/200./	130.4	7.9	243.4	/9./	24.0	15.1	0.0	45.1	36.0	1.0
57.82	17 62	2104 3	54 5	2.4	243.3	02.2	21.5	15.4	317.8	0.0	0.0	6.0
58.64	17.88	1395.1	25.7	1.8	247.5	87 1	7.0	6.7	141.8	0.0	0.0	3.0
59.46	18.12	1224.5	10.7	0.9	251.6	89.5	4.0	4.5	04./ 70.7	30.0	70.0	1.5
60.28	18.38	1303.5	12.7	1.0	253.7	92.0	5.2	3.2	76.6	30.0	30.0	1.5
61.10	18.62	1359.6	14.3	1.0	255.7	94.4	5.4	3.3	80.8	30.0	30.0	1.5
61.93	18.88	1295.6	13.2	1.0	257.8	96.9	5.2	3.2	75.3	30.0	30.0	1.5
62.75	19.12	1420.6	18.1	1.3	259.8	99.3	5.7	3.5	84.9	30.0	30.0	1.5
63.57	19.38	1266.1	13.9	1.1	261.8	101.8	5.1	3.1	72.2	30.0	30.0	1.5
64.39	19.62	1271.9	12.9	1.0	263.9	104.2	5.1	3.1	72.3	30.0	30.0	1.5
65.21	19.88	1290.5	12.3	1.0	265.9	106.7	5.2	3.1	73.4	30.0	30.0	1.5
66.03	20.12	1310.1	18.5	1.4	268.0	109.1	5.2	3.1	74.6	30.0	30.0	1.5
67.67	20.30	1339.3	14.4	1.1	270.0	111.6	5.4	3.2	76.6	30.0	30.0	1.5
67.67	20.02	140/.0	17.1	1.5	2/2.1	114.0	6.0	3.5	88.1	30.0	30.0	1.5
69.31	21.12	2304 7	52 4	2 3	274.1	116.5	6./	4.0	103.7	30.0	30.0	1.5
70.13	21.38	2301.6	44 1	1 0	278 2	118.9	9.2	5.4	152.8	30.0	30.0	3.0
70.95	21.62	3603.1	72.9	2.0	280.3	121.4	9.2	2.4	152.2	30.0	30.0	3.0
71.77	21.88	3845.0	80.2	2.1	282 3	125.9	14.4	0.4	277.0	30.0	50.0	3.0
72.59	22.12	3196.0	109.9	3.4	284.4	128.8	16.0	9.0 0 3	274.7	30.0	30.0	3.0
73.41	22.38	3319.2	69.8	2.1	286.4	131.2	13.3	7.7	232.1	30.0	30.0	3.0
74.23	22.62	1964.4	33.8	1.7	288.5	133.7	7.9	4.5	123.4	30.0	30.0	15
75.05	22.88	3178.9	58.8	1.8	290.5	136.1	12.7	7.3	220.2	30.0	30.0	3.0
75.87	23.12	5377.7	89.0	1.7	292.6	138.6	17.9	10.3	0.0	34.1	32.0	1.0
76.69	23.38	10738.5	230.1	2.1	294.8	141.0	35.8	20.4	0.0	53.8	38.0	1.0
77.51	23.62	16541.9	353.9	2.1	297.0	143.5	55.1	31.3	0.0	66.1	40.0	1.0
78.33	23.88	16421.3	307.0	1.9	299.2	145.9	41.1	23.2	0.0	65.8	40.0	1.0
79.15	24.12	4483.4	123.7	2.8	301.4	148.4	17.9	10.1	322.7	30.0	32.0	6.0
( <b>∀.</b> ∀/ 80.70	24.58	1044.6	25.7	1.6	303.4	150.8	6.6	3.7	95.2	30.0	30.0	1.5
81 41	24.02	38/2 0	52.5	2.0	305.5	153.3	10.7	6.0	177.0	30.0	30.0	3.0
82.43	25 12	4410 1	116 5	2 4	307.0	155./	12.8	7.1	0.0	30.0	30.0	1.0
83.25	25.38	10787.5	283.5	2.6	311 8	120.2	17.0 36 0	7.0 10 0	315.4	50.0	50.0	6.0
84.07	25.62	13738.3	370.2	2.7	314.0	163 1	45 R	7.7	0.0	55.2	30.0	1.0
84.89	25.88	6470.7	230.5	3.6	316.1	165.5	32.4	17.8	479 1	0.0	10.0	1.0
85.71	26.12	3165.1	80.6	2.5	318.1	168.0	12.7	6.9	214.3	30.0	30.0	3.0
86.53	26.38	1906.7	18.0	0.9	320.2	170.4	7.6	4.2	113.3	30-0	30.0	1.5
87.35	26.62	1647.0	16.1	1.0	322.2	172.9	6.6	3.6	92.2	30.0	30.0	1.5
88.17	26.88	3080.7	43.8	1.4	324.3	175.4	12.3	6.7	206.5	30.0	30.0	3.0
88.99	27.12	3732.8	106.8	2.9	326.3	177.8	14.9	8.1	258.3	30.0	30.0	3.0
89.81	27.38	4700.6	100.4	2.1	328.4	180.3	18.8	10.2	335.4	30.0	32.0	6.0
90.63	27.62	18590.0	366.1	2.0	330.5	182.7	46.5	25.0	0.0	67.9	40.0	1.0
91.45	27.00	20/47.8	407.5	1.5	332.8	185.2	66.9	35.9	0.0	78.2	42.0	1.0
92.21 07 00	20.12	1935/.0	181.9	0.9	555.2	187.6	38.7	20.7	0.0	68.8	40.0	1.0
73.07	20.30	2710.1	77.0	2.0	337.4 770 F	190.1	11.9	0.3	195.9	50.0	30.0	-3.0
04 72	28 ÅR	1854 2	35.2	. 1 0	337.3 7/1 E	196.0	0.i 7./	4.5	110.0	30.0	30.0	1.5
94.13	20.00	1672 0	25.2	1 5	7/7 4	107 /	67	3.7 7 E	00 5	20.0	. 30.0	· 1.5
96.37	20.38	2032 8	31.0	1.5	345.0	100 0	8 1	3.J 4 T	110 0	30.0	30.0	1.2
97,10	29.62	3655.2	62.0	1 7	347 7	202 3	14.6	77	248 4	30.0	30.0	נ.י ל 1
98.01	29.88	9161.8	294.1	3.2	349.7	204_8	36.6	19.2	688.6	46.8	34.0	6.0
98.83	30.12	10692.9	378.8	3.5	351.8	207.2	42.8	22.3	810.7	51.2	36.0	6.0

.

ConeTec Inc. - CPT Interpretation Run No: 96-0805-0947-5738 CPT File: KA06S171.COR

Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
	30.38	5949.6	195.2	3.3	353.8	209.7	23.8	12.4	430.9	34.3	32 0	 6 0
100.47	30.62	1616.6	21.3	1.3	355.9	212.1	6.5	3.4	83.9	30.0	30.0	1 0
101.29	30.88	7411.6	198.5	2.7	357.9	214.6	29.6	15.3	547.1	40.4	32 0	· • •
102.11	31.12	2797.9	66.6	2.4	360.0	217.0	11.2	5.8	177.7	30.0	30.0	1 5
102.94	31.38	1698.0	21.0	1.2	362 0	219 5	6.8	35	89 3	30.0	30.0	1 0
103 76	31 62	1722 2	18 0	. 1 0	364 0	222 0	٥.0 ٨ ٥	3.5	00.0	30.0	20.0	1.0
104 58	31 88	1605 8	18.8	1 1	366 1	224 4	6.8	3.5	88 /	30.0	70.0	1.0
105.40	32,12	1743.4	30.0	1.7	368.1	226.9	7.0	3.6	91.9	30.0	30.0	1.0
106.22	32.38	2462 3	73 1	3 0	370 2	220 3	12 3	63	140 0	0.0	0.0	1.0
107 04	32.62	1982 4	30 5	2 0	372 2	231 8	7 0	6.0	110 3	30.0	70.0	1
107 86	32 88	2175 0	54 1	. 25	376.2	23/ 2	10 0	55	125 3	0.0	50.0	1.5
108.68	33.12	2112.6	49.1	2.3	376.3	236.7	8.5	4.3	120.0	30.0	30.0	1.5
109.50	33.38	3308.8	71.7	2.2	378.4	230 1	13 2	6.7	215 3	30.0	30.0	7.0
110.32	33.62	9943.6	285.3	2.9	380.4	241.6	39.8	20.0	745.7	48 0	34.0	5.0
111.14	33.88	5648.6	153.0	2.7	382.5	244.0	22 6	11.3	401 8	31 7	39.0	6.0
111.96	34.12	2392.5	33.4	1.4	384.5	246.5	9.6	4.8	140.9	30.0	30.0	1 5
112.78	34.38	3060.8	50.6	1.7	386.6	248.9	12.2	6.1	194.0	30.0	30.0	3.0
113.60	34.62	2977.9	53.1	1.8	388.6	251.4	11.9	6.0	187.0	30.0	30.0	1 5
114.42	34.88	3388.5	88.3	2.6	390.7	253.8	13.6	6.8	219.5	30.0	30.0	3 0
115.24	35.12	6339.4	234.4	3.7	392.7	256.3	31.7	15.8	455.2	0.0	0.0	6.0
116.06	35.38	3593.3	147.0	4.1	394.8	258.7	18.0	9.0	235.2	0.0	0.0	3.0
116.88	35.62	2459.6	44.0	1.8	396.8	261.2	9.8	4.9	144.1	30.0	30.0	1 5
117.70	35.88	2534.8	57.4	2.3	398.9	263.6	10.1	5.1	149.8	30.0	30.0	1 5
118.52	36.12	9106.6	316.0	3.5	400.9	266.1	36.4	18.2	675.2	44 7	34.0	6.0
119.34	36.38	12087.6	398.9	3.3	403.0	268.5	48.4	24.2	913.3	52.7	36.0	6.0
120.16	36.62	4269.8	173.2	4.1	405.0	271.0	21.3	10.7	287.5	0.0	0.0	3.0
120.98	36.88	2184.6	44.5	2.0	407.0	273.5	8.7	4.4	120.3	30.0	30.0	1 5
121.80	37.12	2151.5	36.7	1.7	409.1	275.9	8.6	4.3	117.3	30.0	30.0	1 5
122.62	37.38	2603.5	67.1	2.6	411.1	278.4	10.4	5.2	153.1	30.0	30.0	1.5
123.44	37.62	2246.1	36.5	1.6	413.2	280.8	9.0	4.5	124.2	30.0	30.0	1 5
124.26	37.88	2064.7	29.2	1.4	415.2	283.3	8.3	4.1	109.3	30.0	30.0	1.5
125.08	38.12	2223.7	33.0	1.5	417.3	285.7	8.9	4.4	121.7	30.0	30.0	1.5
125.90	38.38	2054.7	32.1	1.6	419.3	288.2	8.2	4.1	107.8	30.0	30.0	15
126.72	38.62	1993.1	28.1	1.4	421.4	290.6	8.0	4.0	102.5	30.0	30.0	1.0
127.54	38.88	2170.7	33.8	1.6	423.4	293.1	8.7	4.3	116.3	30.0	30.0	1.5
128.36	39.12	2827.8	50.0	1.8	425.5	295.5	11.3	5.7	168.5	30.0	30.0	1.5
129.18	39.38	3142.7	71.7	2.3	427.5	298.0	12.6	6.3	193.4	30.0	30.0	1 5
130.00	39.62	2984.8	57.4	1.9	429.6	300.4	11.9	6.0	180.4	30.0	30.0	1.5
130.82	39.88	2340.3	35.9	1.5	431.6	302.9	9.4	4.7	128.5	30.0	30.0	1.5
131.64	40.12	2391.5	39.3	1.6	433.7	305.3	9.6	4.8	132.2	30.0	30.0	1.5
132.46	40.38	5395.3	148.5	2.8	435.7	307.8	21.6	10.8	372.1	30.0	30.0	3.0
133.28	40.62	7592.3	241.9	3.2	437.8	310.2	30.4	15.2	547.5	38.2	32.0	6.0
134.10	40.88	5629.8	197.5	3.5	439.8	312.7	28.1	14.1	390.2	0.0	0.0	3.0
134.92	41.12	25542 2	664 0	2 6	441 0	315 1	85 1	12 4	0.0	72 0	/0.0	1.0

.

Page: 3






_____

## ConeTec Inc.

Client: Sounding: Date:

C

KLEINFELDER 06-SC-171 01-Jul-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone	Distance	Last Time	Shear We	we Velocity	Com	
Depth		Interval For	Jineal W	ANG VEIOCILY	Donth	sponaing
•		X-Over			Depth	increment
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ff)
						(,
9.05	9.07				9.6	
10.05	10.07	4.9	<b>→ 205</b>	. 674	9.1 - 10.1	29.7 - 33.0
11.05	11.06	4.6	219	718	10.1 - 11.1	33.0 - 36.3
12.05	12.06	4.6	219	719	11.1 - 12.1	36.3 - 39.5
13.05	13.06	4.9	206	674	12.1 - 13.1	39.5 - 42.8
14.05	14.06	5.2	194	637	13.1 - 14.1	42.8 - 46.1
15.05	15.06	5.0	<b>★ 200</b>	657	14.1 - 15.1	46.1 - 49.4
16.05	16.06	4.9	205	672	15.1 - 16.1	49.4 . 52.7
17.05	17.06	4.5	223	732	16.1 - 17.1	52.7 . 55.9
18.05	18.06	4.6	219	719	17.1 - 18.1	55.9 59.2
19.05	19.06	5.3	187	614	18.1 - 19.1	59.2 62.5
20.05	20.06	5.1	+ 195	639	19.1 - 20.1	62.5 . 65.8
21.05	21.06	5.0	202	661	20.1 - 21.1	65.8 . 69.1
22.05	22.06	4.8	210	688	21.1 . 22.1	691 723
23.05	23.06	4.3	234	766	22.1 . 23.1	723 756
24.05	24.06	4.3	235	770	23.1 . 24.1	756 789
25.05	25.06	4.7	→ 215	705	24.1 25.1	78 0 82 2
26.05	26.06	4.3	235	772	25.1 - 26.1	822 855
27.05	27.06	4.6	219	718	26.1 - 27.1	85.5 88.7
28.05	28.06	4.2	239	783	27.1 - 28.1	887 920
29.05	29.06	4.6	219	719	28.1 - 29.1	920 953
30.05	30.06	4.3	* 233	765	29.1 - 30.1	95.3 98.6
31.05	31.06	4.5	224	734	30.1 - 31.1	98.6 101.9
32.05	32.05	4.9	204	669	31.1 - 32.1	101 9 . 105 2
33.05	33.05	4.5	221	726	32.1 - 33.1	105.2 - 108.4
34.05	34.05	4.2	239	785	33.1 - 34.1	108.4 . 111.7
35.05	35.05	4.3	<b>★ 235</b>	772	34.1 - 35.1	1117.1150
36.05	36.05	3.7	269	882	35.1 - 36.1	115.0 - 118.3
37.05	37.05	3.9	256	839	36.1 - 37.1	118.3 - 121.6
38.05	38.05	4.1	246	808	37.1 - 38.1	121.6 - 124.8
39.05	39.05	4.6	220	721	38.1 - 39.1	124.8 - 128.1
40.05	40.05	3.6	<b>∀ 27</b> 9	916	39.1 - 40.1	128.1 - 131.4
41.05	41.05	3.7	269	882	40.1 - 41.1	131.4 - 134.7

£	ConeTe Interp Run No Job No Client Projec Site: Locati Cone:	ec Inc pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation pretation	CPT Interpr Output - Re 805-0948-336 09 nfelder Section 4 S4: I15 NB, S Structure TON A 040	etation lease 1.00 33 06-SC-175	.07	•				Page	: <b>1</b>		an di San San San San San San San San San San San San San	
	CPT Da	me: 02:02	2/07										• .	
	CPT P1	le: KA06S	175.COR											•
	Water Avera Su Nk Phi M	Table (m ging Incr t used: ethod :	n): •ement (m):	11.00 0.25 12.50 Robertson	(ft): and Cam	36.1 panella, 1	983							•
	Used	etnoa : Unit Weig	hts Assigne	d to Soil	ski - Al Zones	l Sands	-							
	Depth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)	
	0.41	0.12	1.0	0.0	0.0	2.4	<b>0.</b> 0	0.0	0.0	0.0	0.0	 0.0	1.0	
	1.23	0.38	1.0	0.0	0.0	7.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	2.87	0.88	1.0	0.0	0.0	17.1	0.0	0.0	0.0	0.0	C.O 0.0	0.0	1.0	
	3.69	1.12	1.0	0.0	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	4.21 5.33	1.62	1.0	0.0	0.0	26.8	. 0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	6.15	1.88	1.0	0.0	0.0	36.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	6.97	2.12	1.0	0.0	0.0	41.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	8.61	2.50	1.0	0.0	0.0	46.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	9.43	2.88	1.0	0.0	0.0	56.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	•
	10.25	3.12	1.0	0.0	0.0	60.9	0.0	0.0	0.0	0.0	0.0	<b>0</b> .0	1.0	
	11.89	3.30	1.0	0.0	0.0	65.8 70.7	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
1	12.71	3.88	1.0	0.0	0.0	75.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
£.,	13.53	4.12	1.0	0.0	0.0	80.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	14.35	4.58	1.0	0.0	0.0	85.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
(	15.99	4.88	1.0	0.0	0.0	95.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	16.81	5.12	1.0	0.0	0.0	99.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	18.45	5.62	1.0	0.0	0.0	104.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	19.27	5.88	1.0	0.0	0.0	114.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	20.09	6.12	1.0	0.0	0.0	119.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	20.92	6.62	1.0	0.0	0.0	124.3	0.0	0.0	0.0	~ 0.0	0.0	0.0	1.0	
	22.56	6.88	1.0	0.0	0.0	134.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	23.38	7.12	1.0	0.0	0.0	138.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	24.20	7.58	1.0	0.0	0.0	143.8 148 7	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	25.84	7.88	1.0	0.0	0.0	153.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	26.66	8.12	1.0	0.0	0.0	158.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	27.40	8.62	1.0	0.0	0.0	165.5	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	29.12	8.88	1.0	0.0	0.0	173.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	29.94	9.12	1.0	0.0	0.0	177.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	31.58	9.50	1.0	0.0	0.0	182.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	32.40	9.88	1.0	0.0	0.0	192.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	33.22	10.12	1.0	0.0	0.0	197.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	54.04 36 86	10.38 10.62	1.0	0.0 0 0	0.0	202.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
	35.68	10.88	685.5	8.2	1.2	211.9	0.0	3.4	2.3	37.9	0.0	0.0	1.0 1.0	•
	36.50	11.12	3594.8	28.7	0.8	215.2	1.2	12.0	8.0	0.0	30.0	32.0	1.0	
	57.32 38 14	11.38	1955.9 3280 n	19.5 43 8	1.0	217.3	3.7	7.7	5.1	137.2	30.0	30.0	3.0	
	38.96	11.88	3811.7	98.2	2.6	221.5	8.6	15.2	10.0	286.5	30.0	32.0	1.U 6.0	•
	39.78	12.12	16233.7	220.7	1.4	223.7	11.0	40.6	26.6	0.0	69.6	40.0	1.0	
ſ	40.60	12.38	19229.9	239.6	1.2	226.0	13.5	48.1	31.3	0.0	74.3	42.0	1.0	
	42.24	12.88	17877.3	104.6	0.6	230.7	18.4	44.3 35.8	23.0	0.0	71.8	40.0 40.0	1.0	

1 - Maria

. .

ConeTec Inc. - CPT Interpretation Run No: 96-0805-0948-3363 CPT File: KA06S175.COR

.

.

Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	16.3 20113
(11)	(m) 	(KPa)	(KPa)	(%) 	( KP8 )	(KPa) 	(blo)	4S/11)	(kPa)	(%)	(deg.)	(ratio)	
43.06	13.12	13659.8	22.5	0.2	233.1	20.8	27.3	17.5	0.0	64.1	40.0	1.0	-
43.88	13.38	8921.0	107.2	1.2	235.5	23.3	22.3	14.2	0.0	51.7	38.0	1.0	
44.70	13.88	1454.4	24.1	1.2	237.0	25.8	5.1	3.0 4 5	95./ 121 7	30.0	30.0	1.5	
46.34	14.12	2082.7	56.3	2.7	241.7	30.7	10.4	6.6	144.8	0.0	0.0	3.0	
47.16	14.38	2478.9	89.0	3.6	243.8	33.1	12.4	7.8	176.2	0.0	0.0	3.0	
47.98	14.62	1704.0	40.0	2.3	245.8	35.6	8.5	5.3	113.8	0.0	0.0	1.5	
48.80	14.00	1539.1	20.9	1.4	247.9	38.0	6.2	3.8	100.3	30.0	30.0	1.5	• .
50.44	15.38	1444.8	12.3	0.9	252.0	40.5	5.9 5.8	3.0	93.9	30.0	30.0	1.5	•
51.26	15.62	1483.9	12.4	0.8	254.0	45.4	5.9	3.6	94.8	30.0	30.0	1.5	•
52.08	15.88	2307.0	41.4	1.8	256.1	47.8	9.2	5.6	160.3	30.0	30.0	3.0	
52.90	16.12	2716.7	53.7	2.0	258.1	50.3	10.9	6.6	192.7	30.0	30.0	3.0	
54.54	16.30	3431.U 1022 0	90.3 10 3	2.9	260.1	55 2	17.2	10.4	249.4	0.0	0.0	3.0	
55.36	16.88	1996.2	22.9	1.1	264.2	57.6	8.0	4.8	133.9	30.0	30.0	1.5	•
56.18	17.12	2008.3	29.9	1.5	266.3	60.1	8.0	4.8	134.6	30.0	30.0	3.0	
57.00	17.38	2777.9	60.9	2.2	268.3	62.5	11.1	6.6	195.8	30.0	30.0	3.0	
59 4/	17.62	1942.1	31.8	1.6	270.4	65.0	7.8	4.6	128.5	30.0	30.0	1.5	
59.46	18.12	2387.3	87.9	3.7	276 5	67.4 60 0	15 0	5.5	151.7	30.0	30.0	.3.0	
60.28	18.38	9434.4	303.4	3.2	276.5	72.3	37.7	22.2	726.8	51.0	36.0	5.0	
61.10	18.62	2375.8	31.8	1.3	278.6	74.8	9.5	5.6	161.8	30.0	30.0	3.0	
61.93	18.88	2391.3	26.0	1.1	280.6	77.3	9.6	5.6	162.7	30.0	30.0	3.0	
62.75	19.12	2740.1	52.1	1.9	282.7	79.7	11.0	6.4	190.2	30.0	30.0	3.0	
66 30	19.30	2891.7	09.J 31 1	2.4	284.7	82.2	11.6	6.7	202.0	30.0	30.0	. 3.0	
65.21	19.88	1910.1	15.3	0.8	288.8	04.0 87 1	<b>0.</b> 1 7 6	4.1	151.5	30.0	30.0	1.5	
66.03	20.12	1822.1	16.3	0.9	290.9	89.5	7.3	4.2	115.3	30.0	30.0	1.5	
66.85	20.38	2204.7	36.4	1.7	292.9	92.0	8.8	5.0	145.6	30.0	30.0	1.5	
67.67	20.62	3704.5	88.2	2.4	295.0	94.4	14.8	8.4	265.2	30.0	30.0	3.0	
60.49 60 31	20.00	81/3.0 10177 8	180.1	2.2	297.1	96.9	27.3	15.5	0.0	45.9	36.0	1.0	
70.13	21.38	8012.0	186.0	2.0	301 4	101 8	33.9 26 7	19.2	0.0	52.1	36.0	1.0	
70.95	21.62	2575.0	41.1	1.6	303.5	104.2	10.3	5.8	173.4	45.1	34.0	1.0	
71.77	21.88	2135.2	15.6	0.7	305.6	106.7	8.5	4.8	137.8	30.0	30.0	1.5	
72.59	22.12	1952.4	11.5	0.6	307.6	109.1	7.8	4.4	122.9	30.0	30.0	1.5	
7/ 23	22.38	1772.5	9.5	0.5	309.7	111.6	7.1	3.9	108.1	30.0	30.0	1.5	
75.05	22.88	1765 9	<b>7.3</b> 16 1	0.0	311.7	114.0	0.0	5./	98.1	30.0	30.0	1.5	
75.87	23.12	2268.6	26.8	1.2	315.8	118.9	9.1	5.0	146.7	30.0	30.0	1.5	
76.69	23.38	3232.9	83.1	2.6	317.9	121.4	12.9	7.1	223.5	30.0	30.0	3.0	
77.51	23.62	7674.2	188.1	2.5	319.9	123.9	30.7	16.8	578.4	43.0	34.0	6.0	
70.33	23.00	14198.7	554.U	2.5	322.0	126.3	47.3	25.8	0.0	60.6	38.0	1.0	
79.97	24.12	3150 5	62.8	2.0	324.2	120.0	13.0	7.0	0.0	30.0	30.0	1.0	
80.79	24.62	8206.2	246.6	3.0	328.3	133.7	32.8	17.7	619.5	44.6	34.0	6.0	
81.61	24.88	6810.4	236.3	3.5	330.4	136.1	34.1	18.3	507.5	0.0	0.0	6.0	
82.43	25.12	3000.6	82.3	2.7	332.4	138.6	12.0	6.4	202.4	30.0	30.0	3.0	
83.25	25.38	0000.0	156.9	2.5	334.5	141.0	22.9	12.2	0.0	39.2	32.0	1.0	
84.89	25.88	3974.1	101.7	2.7	338.8	143.5	33.U 15 Q	17.0	0.0 270 1	49.0 30 0	36.0	1.0	
85.71	26.12	2385.9	56.9	2.4	340.9	148.4	9.5	5.1	151.7	30.0	30.0	1.5	
86.53	26.38	2319.3	44.8	1.9	342.9	150.8	9.3	4.9	146.0	30.0	30.0	1.5	
87.35	26.62	1755.5	26.0	1.5	345.0	153.3	7.0	3.7	100.6	30.0	30.0	1.5	
88 00	20.00	30/2.3 6231 1	205 3	1.8	347.0	155.7	14.7	7.7	253.6	30.0	30.0	3.0	
89.81	27.38	10594.8	338.8	3.2	351.1	150.2	24.9 47 6	22 1	437.9 806 6	50 0	32.0	6.0	
90.63	27.62	21448.4	498.9	2.3	353.2	163.1	71.5	37.2	0.0	71.1	40.0	1.0	
91.45	27.88	21400.0	457.4	2.1	355.4	165.5	71.3	37.0	0.0	70.9	40.0	1.0	
92.27	28.12	21823.7	466.9	2.1	357.6	168.0	72.7	37.7	0.0	71.4	40.0	1.0	
95.09	28.38	21088.3	488.0 507 5	2.3	359.7	170.4	70.3	36.3	0.0	70.3	40.0	1.0	
04 77	20.02 28 88	17022.3 13521 A	384 0	2.1	364 1	175 4	65.4 45.1	JZ.0 23 1	0.0 0 0	07.3 57 4	30.U 38 0	1.0	
95.55	29.12	14265.8	306.9	2.2	366.3	177.8	47.6	24.3	0.0	58.9	38.0	1.0	
96.37	29.38	16084.7	415.9	2.6	368.4	180.3	53.6	27.3	0.0	62.2	38.0	1.0	
97.19	29.62	18525.9	351.5	1.9	370.7	182.7	46.3	23.5	0.0	66.2	38.0	1.0	
98.01	29.88	11254.5	264.2	2.3	372.9	185.2	37.5	19.0	0.0	51.8	36.0	1.0	
78.83	50.12	2209.1	J2.Ö	2.3	J/J.U	10/.0	٧.٢	4.0	130.2	20.0	20.0	1.2	

.



1

. . . .

ConeTec Inc. - CPT Interpretation Run No: 96-0805-0948-3363 CPT File: KA06S175.COR

.

Depth (ft)	Depth (m)	AvgQt (kPa)	Avgfs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 ws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
99.65	30.38	8117.2	203.2	2.5	377.1	190.1	32.5	16.4	604.0	42.3	 34 0	 م م
100.47	30.62	20018.4	440.9	2.2	379.2	192.5	66.7	33.5	0.0	68 1	38.0	1 0
101.29	30.88	20242.1	385.2	1.9	381.4	195.0	50.6	25.4	0.0	68.3	38.0	1.0
102.11	31.12	18511.9	388.3	2.1	383.6	197.4	61.7	30.9	0.0	65 7	38.0	1.0
102.94	31.38	11600.2	425.1	3.7	385.7	100 0	46 4	23 2	881 2	52.2	74 0	1.0
103 76	31 62	4564.9	102 4	. 22	387 8	202 7	19 7	0 1	719 0	70.0	30.0	0.0
104 58	31.88	5260.7	100 4	1 0	380 0	202.3	17.5	7.1	210.0	30.0	30.0	3.0
105.40	32.12	6732.9	193.1	20	302 0	207.2	26.0	17 5	400 7	30.0	30.0	1.0
106.22	32.38	24839.5	293.4	1 2	30/ 2	207.2	20.7 /0 7	2/ 9	490.7	30.4	32.0	6.0
107 04	32 62	12006 5	330 3	2 5	304.5	207.7	47.1	24.0	0.0	13.1	40.0	1.0
107 86	32 88	4821 4	101 0	2.1	309.7	216.1	43.3	21.7	774 7	20.0	36.0	1.0
108.68	33.12	2531.9	47.9	1.7	400 7	214.0	10 1	<b>9.0</b> 5 1	330./ 157 1	30.0	50.0	3.0
109.50	33.38	7136.1	119.3	1.7	402.8	210 5	23.8	11 0	0.0	77 4	30.0	1.5
110.32	33.62	4103.9	90.0	2 2 2	402.0	222 0	16 /	9.7	279.2	37.0	32.0	1.0
111 14	33 88	1058 3	18 4	0.0	404.7	226.6	7 9	2.0	106.2	30.0	30.0	5.0
111 06	34 12	2560 6	33 6	1 3	407.0	224.4	10.2	5.7	100.2	30.0	30.0	1.5
112 78	34 38	2035 4	20.6	1.5	409.0	220.7	10.2	2.1	134.0	30.0	50.0	1.5
113 60	34.62	23/1 1		1.0	411.1	227.3	0.1	4.1	111.0	30.0	30.0	1.5
116 62	34.02	6041.4	92.0	1.0	413.1	231.0	9.4	4.7	135.7	30.0	30.0	1.5
115 2/	34.00	4001.0	97.2	2.4	413.2	234.2	10.2	8.1	273.0	30.0	30.0	3.0
116 06	35 38	2004.7	62.4	2.1	417.2	230.7	15.4	6.7	162.5	0.0	0.0	1.5
116 22	35.40	27/2 0	41.1	1.0	417.3	239.1	0.7	4.5	118.1	50.0	30.0	1.5
117 70	JJ.02 75 99	2246.7	42.1	1.7	421.3	241.0	9.0	4.5	126.4	30.0	30.0	1.5
117.70	33.00	2776.4	02.0	2.2	423.4	244.0	11.2	5.6	170.3	30.0	30.0	1.5
110.32	30.12	3/01./	97.0	2.0	425.4	246.5	15.0	7.5	247.2	30.0	30.0	3.0
120 14	74 47	7669 1	104.7	2.0	427.4	248.9	28.9	14.4	523.9	37.1	32.0	6.0
120.10	JO.02	2030.1	04.5	2.4	429.5	251.4	10.6	5.3	158.2	30.0	30.0	1.5
120.90	30.00	2013.4	41.0	1.0	431.5	253.8	10.3	5.1	151.0	30.0	30.0	1.5
121.00	37.12	2933.3	04.0	2.9	433.6	256.3	14.8	7.4	181.1	0.0	0.0	1.5
122.02	37,38	8333.9 E/37 0	2/3.8	3.3	435.6	258.7	33.4	16.7	612.8	41.0	32.0	6.0
123.44	37.02	7427.0	150.1	2.9	457.7	261.2	21.7	10.9	378.3	30.0	30.0	3.0
124.20	37.00	10930.2	320.1	2.9	439.7	263.6	43.8	21.9	819.7	48.7	34.0	6.0
122.00	30.12	12323.9	307.1	2.5	441.8	266.1	41.1	20.5	0.0	52.0	36.0	1.0
123.90	30.30	3300.2	105.3	5.1	444.0	268.5	16.8	8.4	212.3	0.0	0.0	1.5
120.72	38.02	3348.0	44.7	1.3	446.1	271.0	11.2	5.6	0.0	30.0	30.0	1.0
12/.34	38.88	0158.1	157.2	2.6	448.2	273.5	24.6	12.3	434.9	31.9	30.0	3.0
128.30	39.12	11350.6	490.5	4.3	450.5	275.9	32.4	16.2	0.0	49.3	34.0	1.0
129.18	39.38	10029.9	2/1.5	2.7	452.9	278.4	40.1	20.1	743.9	45.7	34.0	6.0
	39.02	3330.8	64.8	1.9	454.9	280.8	13.3	6.7	207.6	30.0	30.0	1.5
130.82	39.88	3033.7	36.1	1.2	457.0	283.3	10.1	5.1	0.0	30.0	30.0	1.0
151.64	40.12	2802.2	46.7	1.7	459.2	285.7	11.2	5.6	164.6	30.0	30.0	1.5
132.46	40.38	2805.4	57.3	2.0	461.2	288.2	11.2	5.6	164.5	30.0	30.0	1.5
133.28	40.62	2286.3	39.2	1.7	463.3	290.6	9.1	4.6	122.6	30.0	30.0	1.5
154.10	40.88	2388.3	36.9	1.5	465.3	293.1	9.6	4.8	130.4	30.0	30.0	1.5
134.92	41.12	2937.3	49.8	1.7	467.3	295.5	11.7	5.9	174.0	30.0	30.0	1.5
135.74	41.38	2721.3	40.4	1.5	469.4	298.0	10.9	5.4	156.3	30.0	30.0	1.5
136.56	41.62	2371.7	30.8	1.3	471.4	300.4	9.5	4.7	128.0	30.0	30.0	1.5
137.38	41.88	2815.6	41.1	1.5	473.5	302.9	11.3	5.6	163.1	30.0	30.0	1.5
138.20	42.12	3104.4	44.2	1.4	475.5	305.3	12.4	6.2	185.9	30.0	30.0	1.5
139.02	42.38	3259.3	48.3	1.5	477.6	307.8	13.0	6.5	197.9	30.0	30.0	1 5
139.84	42.62	2812.0	37.0	1.3	479.6	310.2	11.2	5.6	161_8	30.0	30.0	1 5
	10.00	2422 2						2.0		30.0	30.0	

Page: 3







## ConeTec Inc.

Client: Sounding: Date: *KLEINFELDER 06-SC-175 01-Jul-96* 

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone	Distance	Last Time	Shear W	ave Velocity	Com	on o nalin -
Depth		Interval For	Jileal W	ave velocity	Denth	sponding
:		X-Over			Depui	nclement
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
12.90	12.91					
13.90	13.91	5.1	196	643	12.9 - 13.9	42.3 - 45.6
14.90	14.91	5.1	196	643	13.9 - 14.9	45.6 - 48.9
15.90	15.91	4.9	<i>₩</i> 204	669	14.9 5415.9	48.9 - 52.2
16.90	16.91	4.7	213	698	15.9 - 16.9	52.2 - 55.4
17.90	17.91	4.4	227	745	16.9 - 17.9	55.4 - 58.7
18.90	18.91	4.3	232	763	17.9 - 18.9	58.7 - 62.0
19.90	19.91	4.3	232	763	18.9 - 19.9	62.0 - 65.3
20.90	20.91	4.8	<b>≁ 208</b>	683	19.9 - 20.9	65.3 - 68.6
21.90	21.91	5.2	192	631	20.9 - 21.9	68.6 - 71.9
22.90	22.91	5.3	189	619	21.9 - 22.9	71.9 - 75.1
23.90	23.91	4.3	232	763	22.9 - 23.9	75.1 - 78.4
24.90	24.91	4.0	250	820	23.9 - 24.9	78.4 - 81.7
25.90	25.91	4.1	₩ 244	800	24.9 . 25.9	817 . 850
26.90	26.91	4.4	227	745	25.9 - 26.9	85.0 88.3
27.90	27.91	3.5	286	937	26.9 - 27.9	88.3 . 91.5
28.90	28.91	3.8	263	863	27.9 . 28.9	915 948
29.90	29.91	3.7	270	887	28.9 - 29.9	94.8 98.1
_30_90	30.91	3.8	¥ 263	863	29.9 - 30.9	98.1 - 101.4
31.90	31.90	3.8	263	863	30.9 - 31.9	101 4 104 7
32.90	32.90	3.8	263	863	31.9 - 32.9	104 7 - 107 9
33.90	33.90	4.6	217	713	32.9 33.9	107.9 - 111.2
34.90	34.90	4.4	227	746	33.9 34.9	111 2 . 114 5
35.90	35.90	4.4	* 227	746	34.9 - 35.9	114.5 . 117.8
36.90	36.90	3.8	263	863	35.9 - 36.9	117.8 - 121.1
37.90	37.90	3.8	263	863	36.9 - 37.9	121 1 . 124 3
38.90	38.90	3.6	278	911	37.9 - 38.9	124.3 . 127.6
39.90	39.90	3.5	286	937	38.9 - 39.9	127.6 - 130.9
40.90	40.90	4.1	* 244	800	39.9 - 40.9	130.9 - 134.2
41.90	41.90	4.1	244	800	40.9 - 41.9	134.2 - 137.5
42.90	42.90	3.8	263	863	41.9 - 42.9	137.5 - 140.7
					42.4	

(.

														an and
. •	ConeTe		CPT Intern	retation						Daga				가려면 다. 1997년 - 1997년 br>1997년 - 1997년 -
	Interp	retation	Output - R	elease 1.00	.07					Page	: 1		1.0. N 34	ing and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of
	Run No Job No	: 96-08 : 96-30	104-2150-35 19	62			• .					an di		
( Dest	Client	: Klein	felder								*	••••	ana giri.	* tree
$=\sum_{i=1}^{n} e_{i} e_{i} e_{i} e_{i}$	Projec Site:	t: 115 S 115,	S4: 900 W.	06-SC-183			1.	÷	· · · · ·	s 1. 		ر. ب		(14)
	Locati	on: 900 W	Structure						÷.,	×				
	Cone: CPT Da	20 T te: 96/26	ON A 040 /06				•	. *	*1	•		t.		
	CPT Ti	me: 08:39	407 000											
		(e: KAUOS	185.CUK											
	Water Avera	Table (m ning Incr	ement (m):	2.00	(ft):	6.6							-	
	Su Nk	t used:	cincite (in)t	12.50									•	1.18
	Phi M Dr M	ethod : ethod :		Robertson Jamiolkow	and Cam ski - Al	panella, 19 1 Sands	283							
	Used	Unit Weig	hts Assign	ed to Soil	Zones									•
	Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR	
	(ft)	(m) 	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(bloi	ws/ft)	(kPa)	(%)	(deg.)	(ratio)	
	0.41	0.12	6296.1	70.5	1.1	2.3	0.0	21.0	42.0	0.0	95.0	50.0	1.0	
	2.05	0.58	5225.5 3149.1	72.1	2.0	6.9 11.5	0.0	17.4	34.8 25.2	0.0 251.0	86.9 65.2	50.0 46.0	1.0 10.0	
	2.87	0.88	2767.4	61.8 58.1	2.2	16.0	0.0	11.1	22.1	220.1	56.7	44.0	10.0	•
	4.51	1.38	3510.5	42.1	1.2	20.8	0.0	14.0	28.1	0.0	65.2 57.0	46.0	1.0 1.0	. *
	5.33	1.62	4793.4	46.7	1.0	29.8	0.0	16.0	28.6	0.0	63.5	44.0	1.0	
	6.97	2.12	4118.3	46.5	1.1	37.8	1.2	13.7	29.7	0.0	64.6 55.8	44_U 42.0	1.0	
	7.79 8.61	2.38	2844.0 5952.9	34.7 39.0	1.2	<b>39.9</b> 42 1	3.7	11.4	17.6	224.0	44.4	40.0	10.0	
	9.43	2.88	10624.8	59.6	0.6	44.5	8.6	21.2	31.2	0.0	80.6	46.0	1.0	•
	10.25	3.12 3.38	15432.9 17269.5	67.2 43.3	0.4 0.3	46.9 49.3	11.0 13.5	30.9 34.5	44.1 48.1	0.0	90.6 97 1	48.0	1.0	
<i></i>	11 89	3.62	13737.4	14.6	0.1	51.7	15.9	27.5	37.4	0.0	85.8	46.0	1.0	
1	13.53	5.88 4.12	3/8/.9 12327.2	16.4	0.4	54.0 56.3	18.4 20.8	12.6 24.7	16.8 32.1	0.0	48.3 81.5	40.0	1.0	
	14.35	4.38	14889.3	24.3	0.2	58.8	23.3	29.8	38.0	0.0	86.3	46.0	1.0	
	15.99	4.88	6160.1	36.5	0.6	63.5	25.8 28.2	31.1 15.4	58.9 18.9	0.0	87.0 59.9	46.0 42.0	1.0 1.0	
	16.81 17.63	5.12	1374.0 1387 0	23.2	1.7	65.7	30.7	6.9	8.3	102.2	0.0	0.0	6.0	
	18.45	5.62	958.4	6.5	0.7	69.8	35.6	3.8	4.5	68.2	30.0	30.0	6.U 3.0	
	19.27	5.88	883.5 785.3	8.7 5.0	1.0	71.9 73.0	<b>38.</b> 0	4.4	5.1	61.9	0.0	0.0	3.0	
	20.92	6.38	685.0	3.6	0.5	75.3	42.9	3.4	3.9	45.3	0.0	0.0	3.0	
	21.74	6.62 6.88	647.1 621.5	3.2 2.4	0.5	75.9 76.6	45.4 47.8	3.2	3.6	42.1 30 R	0.0	0.0	3.0	
	23.38	7.12	614.7	2.4	0.4	77.3	50.3	3.1	3.4	39.0	0.0	0.0	3.0	
	24.20	7.38	1158.1	3-6 12.5	0.5	78.0 79.3	52.7 55.2	3.5 4.6	3.9 5.1	45.5	0.0 30.0	0.0 32.0	3.0 6.0	
	25.84	7.88	1492.0	21.3	1.4	81.4	57.6	6.0	6.5	108.2	30.0	32.0	6.0	
	27.48	8.38	902.3	4.6	0.5	85.5	62.5	3.6	3.8	60.3	30.0	30.0	6.0 3.0	
	28.30	8.62	2619.1 1501 7	29.1	1.1	87.5 80.6	65.0	10.5	11.0	197.3	30.8	36.0	6.0	
	29.94	9.12	874.0	4.5	0.5	91.6	69.9	3.5	3.6	57.0	30.0	30.0	3.0	
	30.76 31.58	9.38 9.62	1306.8 951.4	6.9 3.8	0.5	93.7 95.7	72.3 74.8	5.2 3.8	5.3 3-8	91.3 62.5	<b>30.0</b>	30.0	3.0	
	32.40	9.88	1211.7	18.8	1.6	97.7	77.3	6.1	6.0	82.9	0.0	0.0	3.0	
	33.22 34.04	10.12 10.38	2145.0 1618.2	16.7 39.0	0.8 2.4	99.8 101.8	79.7 82.2	8.6 8.1	8.4 7.8	157.2 114.7	30.0	34.0 n n	6.0	
	34.86	10.62	1760.8	24.0	1.4	103.9	84.6	7.0	6.8	125.8	30.0	32.0	6.0	
	35.08 36.50	11.12	1332.6	20.1	1.4	108.1	87.1 89.5	12.1 5.3	5.0	0.0 90.8	37.4 30.0	56.0 30.0	1.0 3.0	
	37.32	11.38	1615.4	29.4	1.8	110.2	92.0	6.5	6.0	113.1	30.0	32.0	6.0	
	38.96	11.88	1007.1	5.4	0.5	114.3	94.4 96.9	4.0	3.7	63.7	30.0	30.0	6.U 3.0	
	<b>39.78</b>	12.12	928.7 074 8	3.7	0.4	116.3	99.3	3.7	<b>3.</b> 4 [·]	57.0 57 3	30.0	30.0	1.5	
	41.42	12.62	1019.2	5.8	0.6	120.4	104.2	4.1	3.6	63.6	30.0	30.0	3.0	
	42.24	12.88	967.4	5.0	0.5	122.4	106.7	3.9	3.4	59.1	30.0	<b>30</b> .0	1.5	

-

دي. ايتمو درآدو

and the second second second second second second second second second second second second second second second

CPT Fi	le: KA06S	183.COR	<i></i>									
)epth (ft)	Depth (m)	AvgQt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Hyd. Pr. (kPa)	N60 (blo	(N1)60 pws/ft)	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
43.06	13.12	919.0	4.6	0.5	124.5	109.1	3.7	3.2	54.8	30.0	30.0	1.5
43.88	13.38	978.7	4.6	0.5	126.5	111.6	3.9	3.4	-59.2	30.0	30.0	1.5
44.70	13.82	1020.4	5.0	0.5	128.6	114.0	4.1	5.5	62.2	30.0	30.0	1.5
46.34	14.12	1052.3	5.8	0.5	132.7	118.9	4.2	3.6	64.1	30.0	30.0	1.5
47.16	14.38	1078.6	6.9	0.6	134.7	121.4	4.3	3.6	65.8	30.0	30.0	1.5
47.98	14.62	1068.2	7.7	0.7	136.8	123.9	4.3	3.6	64.6	30.0	30.0	1.5
48.80	14.00	1007.0	14.2	0.7	138.8	126.3	4.0	3.3	59.4	30.0	30.0	1.5
50.44	15.38	3852.1	61.5	1.6	143.0	131.2	12.8	10.5	0.0	34.8	34.0	1.5
51.26	15.62	4049.2	44.5	1.1	145.2	133.7	13.5	11.0	0.0	36.0	36.0	1.0
52.08	15.88	1913.0	18.3	1.0	147.3	136.1	7.7	6.2	130.4	30.0	30.0	3.0
52.90	16.12	2870.2	51.U	1.1	149.4	138.6	9.6	7.7	0.0	30.0	32.0	1.0
54.54	16.62	4442.9	76.0	1.7	153.6	143.5	14.8	11.7	0.0	37.9	36.0	<b>0.</b> U
55.36	16.88	4586.3	56.8	1.2	155.8	145.9	15.3	12.0	0.0	38.6	36.0	1.0
56.18	17.12	3438.6	52.6	1.5	157.9	148.4	11.5	8.9	0.0	30.1	34.0	1.0
57.00	17.38	4665.3	65.1	1.4	160.1	150.8	15.6	12.0	0.0	38.7	36.0	1.0
58.64	17.88	8323.4	176.0	2.1	102.2	155.5	12.8	9.9 21 2	251.4	50.0	32.0	6.0
59.46	18.12	3279.6	78.1	2.4	166.4	158.2	13.1	10.0	236.4	30.0	32.0	6.0
60.28	18.38	1463.0	18.0	1.2	168.5	160.6	5.9	4.4	90.7	30.0	30.0	3.0
61.10	18.62	1360.0	14.1	1.0	170.5	163.1	5.4	4.1	82.1	30.0	30.0	1.5
62 75	10.00	1256.0	8.0 10 3	0.7	172.6	165.5	5.0	3.7	73.4	30.0	30.0	1.5
63.57	19.38	2198.8	31.4	1.4	176.7	170.4	0.0 8.8	6.5	143.0	30.0	30.0	3.0
54.39	19.62	5776.9	74.0	1.3	178.8	172.9	19.3	14.1	0.0	43.2	36.0	1.0
55.21	19.88	10682.2	172.5	1.6	181.0	175.4	35.6	25.9	0.0	60.7	40.0	1.0
56.03	20.12	15727.5	259.1	1.6	183.2	177.8	39.3	28.4	0.0	71.6	42.0	1.0
57.67	20.30	16227.7	259 1	1.0	187.8	180.5	45.1	31.0	0.0	74.0	42.0	1.0
58.49	20.88	10755.2	155.1	1.4	190.1	185.2	26.9	19.1	0.0	60 2	42.0	1.0
69.31	21.12	5470.0	124.1	2.3	192.3	187.6	21.9	15.4	407.2	40.6	36.0	6.0
70.13	21.38	13210.1	250.3	1.9	194.4	190.1	44.0	30.9	0.0	65.7	40.0	1.0
70.95	21.62	15362.3	320.9	2.1	196.5	192.5	51.2	35.7	0.0	69.9	40.0	1.0
72.59	22.12	18329.4	343.2	1.9	201 1	195.0	40.4 45 8	52.2	0.0	75.2	42.0	1.0
73.41	22.38	8767.2	245.8	2.8	203.2	199.9	35.1	24.1	669.1	74.0 53.3	42.0	6.0
74.23	22.62	3022.1	75.1	2.5	205.3	202.3	12.1	8.3	209.2	30.0	32.0	6.0
75.05	22.88	1866.3	40.6	2.2	207.3	204.8	7.5	5.1	116.3	30.0	30.0	3.0
75.01 76.60	23.12	1591.5	21.0	1.3	209.4	207.2	6.4	4.3	94.0	30.0	30.0	1.5
77.51	23.62	1984.4	29.5	1.5	213.5	212.1	7.9	4.4 5.3	124.7	30.0	30.0	1.5
78.33	23.88	2031.2	32.6	1.6	215.5	214.6	8.1	5.4	128.1	30.0	30.0	3.0
79.15	24.12	1718.2	19.7	1.1	217.6	217.0	6.9	4.6	102.7	30.0	30.0	1.5
<b>19.9</b> 7	24.38	1698.9	19.4	1.1	219.6	219.5	6.8	4.5	100.8	30.0	30.0	1.5
S1.61	24.88	3520.4	67.0	1.9	223.7	222.0	0.3 14 1	2.2	245 8	30.0	30.0	3.0
32.43	25.12	7062.7	172.7	2.4	225.8	226.9	28.3	18.4	528.8	45.6	36.0	6.0
33.25	25.38	8672.5	176.7	2.0	227.9	229.3	28.9	18.7	0.0	51.4	38.0	1.0
4.07	25.62	11612.8	336.3	2.9	230.0	231.8	46.5	30.0	892.1	59.6	38.0	6.0
14.07 15.71	25.00	9612.2	265.9	2.8	236.2	234.2	4/.5	30.5	U.U 731 3	73.6	42.0	1.0
6.53	26.38	13644.7	304.6	2.2	236.4	239.1	45.5	28.9	0.0	63.8	40.0	1.0
7.35	26.62	11285.5	130.9	1.2	238.7	241.6	28.2	17.9	0.0	58.3	38.0	1.0
8.17	26.88	2252.4	24.9	1.1	240.9	244.0	9.0	5.7	141.4	30.0	30.0	3.0
0.77	27 38	2491.3	52.6	1.0	242.9	240.0	10.0	6.5 7 5	160.2	30.0	30.0	3.0
0.63	27.62	3405.7	70.6	2.1	247.0	251.4	13.6	8.5	232.6	30.0	30.0	3.U T
1.45	27.88	2830.3	96.0	3.4	249.0	253.8	14.2	8.8	186.2	0.0	0.0	3.0
2.27	28.12	2332.5	58.5	2.5	251.1	256.3	9.3	5.8	146.0	30.0	30.0	3.0
3.09	28.38	2205.1	46.3	2.1	253.1	258.7	8.8	5.4	135.5	30.0	30.0	3.0
13.91 24 72	20.02 28 88	2312.U 5478 8	30./ 168 0	1.0	233.2 257 2	201.2 263 A	9.2 21 0	5./ 13 4	145.0	30.0	30.0	5.0 A A
5.55	29.12	10321.8	262.0	2.5	259.3	266.1	34.4	20.9	0.0	54.5	38.0	1_0
				27	341 5	340 F			170 0	70 0	70.0	
6.37	29.38	2777.6	00.0	2.4	201.5	200.7	11.1	0./	1/9.0	30.0	30.0	5.0
6.37 7.19	29.38 29.62	2777.6	49.1	2.4	263.5	271.0	9.3	5.6	144.1	30.0	30.0	3.0

·

ConeTec Inc. - CPT Interpretation Run No: 96-0804-2150-3562 CPT File: KA06S183.COR

(). {

Depth	Depth	AvgQt	AvgFs	AvgRf	E.Stress	Hyd. Pr.	N60	(N1)60	Su	Dr	Phi	OCR
(11)	(m)	(KPa)	(KPa)	(%)	(кра)	(KPa)	(blo	WS/TT)	(kPa)	(%)	(deg.)	(ratio)
99.65	30.38	3903.1	108.0	2.8	269.6	278.4	15.6	9.3	268.4	30.0	32.0	3.0
100.47	30.62	7415.1	211.4	2.9	271.7	280.8	29.7	17.6	549.0	44.4	34.0	6.0
101.29	30.88	13686.4	307.6	2.2	273.8	283.3	45.6	27.0	0.0	61.8	38.0	1 0
102.11	31.12	3433.3	94.3	2.7	275.9	285.7	13.7	8.1	229.7	30.0	30.0	3 0
102.94	31.38	2344.7	35.5	1.5	278.0	288.2	9.4	5.5	142.3	30.0	30.0	3.0
103.76	31.62	2033.6	26.1	1.3	280.0	290.6	8.1	4.8	117.0	30.0	30.0	1 5
104.58	31.88	2272.3	34.2	1.5	282.1	293.1	9.1	5.3	135.8	30.0	30.0	1.5
105.40	32.12	2355.0	62.5	2.7	284.1	295.5	11.8	6.8	142.0	0.0	0.0	15
106.22	32.38	11903.8	294.7	2.5	286.2	298.0	39.7	23.0	0.0	57.2	38.0	1 0
107.04	32.62	20633.4	511.5	2.5	288.4	300.4	68.8	39.6	0.0	72.9	40.0	1 0
107.86	32.88	24520.0	601.2	2.5	290.6	302.9	81.7	46.9	0.0	77 7	40.0	1.0
108.68	33.12	18557.2	415.6	2.2	292.7	305.3	61.9	35.4	0.0	69.6	40.0	1.0
109.50	33.38	8931.6	223.7	2.5	294.9	307.8	29.8	17.0	0.0	48.5	36.0	1.0
110.32	33.62	16375.0	317.3	1.9	297.1	310.2	54.6	31.0	0.0	65.8	40 0	1 0
111.14	33.88	17348.0	365.1	2.1	299.2	312.7	57.8	32.7	0.0	67.4	40.0	1 0
111.96	34.12	11520.1	373.7	3.2	301.4	315.1	46.1	26.0	872.3	55.5	38 0	6.0
112.78	34.38	13447.3	367.6	2.7	303.5	317.6	44.8	25.2	0.0	59.9	38.0	1.0
113.60	34.62	11474.0	436.0	3.8	305.6	320.1	45.9	25.7	867.9	55.2	38.0	6.0
114.42	34.88	28022.8	251.4	0.9	307.8	322.5	56.0	31 3	0 0	80.7	42.0	1.0

.

#### Page: 3







## ConeTec Inc.

Client: Sounding: Date:

£ .

KLEINFELDER 06-SC-183 26-Jun-96

Source: Offset (m): Cone: Geophone: Beam & Hammer 0.56 AD 040 (20 tonne) 0.20 m above tip

Geophone	Distance	Last Time	Shear Wa	ve Velocity	Corres	sponding
Depth		Interval For			Depth	Increment
`		X-Over		•		
(m)	(m)	(ms)	(m/s)	(ft/s)	(m)	(ft)
					:	
1.60	1.70					
2.60	2.66	6.3	+ 153	502	1.6 - 2.6	5.2 - 8.5
3.60	3.64	5.3	186	609	2.6 - 3.6	8.5 - 11.8
4.60	4.63	5.8	171	560	3.6 - 4.6	11.8 - 15.1
5.60	5.63	6.5	¥ 153	502	4.6 - 5.6	15.1 - 18.4
6.60	6.62	7.6	131	430	5.6 - 6.6	18.4 - 21.7
7.60	7.62	8.8	113	372	63 - 7.6	21.7 - 24.9
<b>8</b> .60	8.62	6.6	i 151	496	7.3 - 8.6	24.9 - 28.2
9.60	9.62	6.1	164	537	8.6 - 9.6	28.2 31.5
10.60	10.61	5.6	+ 178 ·	585	9.6 - 10.6	31.5 - 34.8
11.60	11.61	5.6	178	585	10.6 - 11.6	34.8 - 38.1
12.60	12.61	5.9	169	555	11.6 - 12.6	38.1 - 41.3
13.60	13.61	7.1	141	462	12.5 - 13.6	41.3 - 44.6
14.60	14.61	6.7	149	489	13.6 - 14.6	44.6 - 47.9
15.60	. 15.61	7.1	+ 141	462	14.6 - 15.6	47.9 - 51.2
16.60	16.61	5.0	200	656	15.6 - 16.6	51.2 - 54.5
17.60	17.61	4.5	222	729	16.6 - 17.6	54.5 - 57.7
18.60	18.61	4.9	204	669	17.6 - 18.6	57.7 - 61.0
19.60	19.61	5.6	178	586	18.6 - 19.6	61.0 - 64.3
20.60	20.61	4.1	∀ 244	800	19.6 - 20.6	64.3 - 67.6
21.65	21.66	4.4	239	783	20.6 - 21.7	67.6 - 71.0
22.60	22.61	3.7	257	842	21.7 - 22.6	71.0 - 74.1
23.60	23.61	5.5	182	596	22.6 - 23.6	74.1 - 77.4
24.60	24.61	4.8	208	683	23.6 - 24.6	77.4 - 80.7
25.60	25.61	4.2	* 238	781	24.6 - 25.6	80.7 - 84.0
26.60	26.61	4.2	238	781	25.6 - 26.6	84.0 - 87.3
27.70	27.71	5.2	211	694	26.6 - 27.7	87.3 - 90.9
28.60	28.61	4.6	196	642	27.7 - 28.6	90.9 - 93.8
29.70	29.71	4.3	256	839	28.6 - 29.7	93.8 - 97.4
30.70	30.71	4.5	* 222	729	29.7 - 30.7	97.4 - 100.7
31.70	31.70	3.6	278	911	30.7 - 31.7	100.7 - 104.0
32.70	32.70	4.1	244	800	31.7 - 32.7	104.0 - 107.3
33.70	33.70	4.0	250	820	32.7 - 33.7	107.3 - 110.6
34.70	34.70	3.1	323	1058	33.7 - 34.7 34 2	110.6 - 113.8

is groved fill in Vs cale
5 groved fil 1 Vs cale
n Vs code

* granular fill material comprises most of the 0 to 5 ft. section; compressional wave velocity (Vp) = 2291 '/s; poissons' ratio = .35.

** zone above water table and below granular fill layer;  $V_p = 1953'/s$ ; poissons' ratio = .48.

Vs = shear wave velocity E = Young's modulus

G = shear modulus

TABLE I

.....



Figure 3.3 - Soil profile based on test hole DH-W.

- **(** )-



#### TABLE I

## RESULTS OF DOWNHOLE SHEAR WAVE SURVEY, BORING B-11, INTERMOUNTAIN HEALTH CARE, WEST VALLEY CITY, UTAH

DEPTH	[	Vs	Р	G		Ε		
(ft.)	(1	ft./sec.)	)	(lb./ft. ²	² )	(lb./fl	² )	(pcf)
0-5	'46	480 *	.44	0.82 x	10E6	2.37 x	10E6	115
5-10	e	526	.45	0.89	11	2.59	"	104
10-15	$12 \gamma_{\rm eff}$	635	.45	1.30	Ħ	3.78	н	104
15-20	255	870 *	.37	2.89	11	7.92	**	123
20-25		708	.37	1.91	<b>f</b> †	5.25	11	123
25-30	1-2	952	.37	3.61	ff	9.88	**	128
25-35	<u> ૩૧૩</u> 1	290 *	.35	6.82	#	18.42	**	132
35-45	1	181	.40	5.20	61	14.57	11	120
45-55	348 1	143 ¥	.37	5.03	"	13.78	"	124
55-65	· 5 - 1	250	.37	5.87	"	16.09	"	121
65-75	428 1	404 *	.37	7.41	"	20.31	"	121
75-85	122 1	634 +-	.40	9.77	"	27.36	"	118
85-95	∼∵ <b>1</b>	667	.37	10.45	"	28.63	"	121
95-105	469 1	538 🐃	.35	9.56	"	25.80	~~	130
105-115	444 1	458 <del>/</del>	.40	7.93	"	22.20	"	120
113-123	436 1	429	.40	7.62	"	21.33	"	120

Vp = compressional wave velocity

Vs = shear wave velocity

p = Poissons' ratio (assumed)

G = shear modulus

E = Young's modulus

= moist unit soil weight (based on lab test results and interpolated on untested segments)

Vs =

<u> </u>	<u>, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</u>			2			RIG TYPE	CME 750
t tinuous etratio	sistand	ole Tyr	stoof b. 30 b-fall b hamme	Densit Per ic foot	sture tent cent of Weight	fied ssifi- ion	BORING TYPE SURFACE ELEV DATUM	3-3/4" ID Hollow-Stem Augers
	Constant Log	Sami Sami	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P S S S S S S S S S S S S S S S S S S S			REMARKS	VISUAL CLASSIFICATION
0						ML	moist	CLAYEY SILT with trace fine sand and major roots (topsoil) to 3"; brown
5						ML/ SM/ CL	very moist loose, medium stiff	ALTERNATING ZONES OF CLAYEY SILT, SILT, AND SILTY VERY FINE SAND; grayish-brown
₽							soft, loose	
10			3					
15						SM/ ML/ CL	saturated medium dense, stiff	ALTERNATING UP TO 2" LAYERS OF CLAYEY SILT, SILTY CLAY, AND SILTY FINE SAND; gray
20			20	98	26.2			-
				· · · · · · · · · · · · · · · · · · ·				
25	GROUND				SAM	PLE TYPE		

. . .....

.

•

٠

et et	nt i nuous netrat i on ssi stance	Iphical 1	ıp l e	IPIE Type	bus/foot.   1b. 30. ee-fall pp hammer	Jensity Per Jic foot	sture tent cent of Weight	fied issifi- ion	RIG TYPE BORING TYPE SURFACE ELEV DATUM	CME 750 3-3/4" ID Hollow-Stem Augers
г Ге	ပို့ရှိရှိ	C C C C C C C C	Sar	Sar	140 140 140		ΣΟ 2010 2010	2000 and and a	REMARKS	VISUAL CLASSIFICATION
25	· · · ·									
								SP/	saturated	FINE TO MEDIUM SAND with
								SC	medium dense	some clay and zones of clayey fine
										to moduli suid, grayish brown
30			$\overline{}$		17	110	10.0			
			$\left  \right\rangle$			110	19.9			
			$\times$							
				-						
						······································				
35										
-		7777		_				CL	saturated	SILTY CLAY with trace fine sand:
				4					very stiff	light brown
ļ				1		······································				
40		///								grades with occasional up to 1/4" layers of silty fine sand
			X	D	47					
-			Щ	$\neg$						
ŀ										
ļ		1//		_						
ŀ		///						-		
45										
ŀ				$\overline{+}$					•	
ŀ		///		-						
				1						
50							•	SM/ ML	saturated very dense	SILTY VERY FINE SAND; grayish-brown
<u> </u>		GROUNDW	ATER				SAMP	LE TYPE		

·

•

et n	nt i nuous ne trat i on es i stance	aph i ca l g		mple Type	ous/foot 0 lb. 30" ee-fall op hammer	y Density s. Per bic foot	isture ntent rcent of y Weight	ified assifi- tion	RIG TYPE BORING TYPE SURFACE ELEV DATUM	CME 750 3-3/4" ID Hollow-Stem Augers
의 드 관 관 	ပိုင်္နမ္က	د ئ		Sa Sa	<u> </u>	63	5000 2000	ວັດຕິດ	REMARKS	VISUAL CLASSIFICATION
50			ß	إ₽	148	97	28.1			
			P	4						
				-						
55				-						
								ML/	saturated	ALTERNATING UP TO 4"
				F				SM	hard	AND SILTY VERY FINE SAND;
										grayish-brown
60				D	134					
65			+					SM/	saturated	SILTY VERY FINE SAND: brown
								ML	very dense	,
				L						
70				D	132	93	30.3			
				$\mathbb{Q}$					`	
			Ē							
75			L							
	DEPTH	HOU	R	EK DA	TEA	- Auger	SAMP cutting	LE TYPE		

•

• .

•

F +	t i nuous etration si stance	ph i ca l	ple	ple Type	us/foot.  b.30" e-fall P hammer	Density Per ic foot	sture tent cent beight	fied ssifi- ion	RIG TYPE BORING TYPE SURFACE ELEV DATUM	CME 750 3-3/4" ID Hollow-Stem Augers
a n n n n n n n n n n n n n n n n n n n	040 040 040	C C C C C C C C C	Sam	Sam	140 140 d76 d76	dry Cubs Cubs			REMARKS	VISUAL CLASSIFICATION
75						•				
	· ·								caturated	SII TY CLAY with trace fire conde
80			XX	D	35	86	35.2		vcry stiff	brown
05								SM/	saturated	SILTY VERY FINE SAND: brown
60								ML	dense	
										grades with occasional 1/8" to 1/4" layers of silty clay occasional zone of clayey fine sand
90			XX	D	78	94	29.1			
			X							
95										
									·	
100								<u> </u>	saturated very dense	FINE TO MEDIUM SAND with trace silt; brown
	DEPTH	GROUNDW	ATER	DA	TE A	- Auger	SAMP	LE TYPE		

a a an

.

• . •

CME 750 -3/4" ID Hollow-Stem Augers	RIG TYPE BORING TYPE SURFACE ELEV DATUM	Isture Cueight Fled Flied Flon Flon	y Density s. Per bic foot	0ws/foot. 0 1b. 30. ee-fall op hammer	mple mple Type	aphical g	nt inuous netration es i stance	et et
VISUAL CLASSIFICATION	REMARKS	တ္လေရာင္ ဥလဲဘု ဂ္လ	297 297	477 814-2	Sa Sa	دی	ပ္ပရမ္က	
								100
			· · ·					ļ
					Н			ŀ
								ŀ
								ļ
								105
					Η			105
					H			ļ
					Н			ŀ
					H			ł
								ŀ
LAYERS OF SILT AND SILTY	dense, hard	ML/						110
CLAY; brown and gray				98	Ş₽			
					×П			F
								ł
								ł
								F
								115
								-
								ł
								-
								120
								}
grades gray in color					Ц			
				164/8"	×D			105

.

•

٠

+	nt inuous netration esistance	Iphical	ple	us/foot us/foot b 1b. 30" ce-fall bammer	L Density Der Der Der	sture itent itent itent beight	fied    ssifi-  on	RIG TYPE BORING TYPE SURFACE ELEV DATUM	CME 750 3-3/4" ID Hollow-Stem Augers
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	6 Log	Sam	8 8 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	20-3 20-3 20-3		C C C C C C C C C C C C C C C C C C C	REMARKS	VISUAL CLASSIFICATION
					· ·				Stopped drilling at 104 52
E									Stopped drilling at 124.5.
-									Stopped sampling at 125.25'.
									Installed 2" diameter flush couple PVC pipe to 125.00' packed in 10/20 sand.
130		1							
F									
-									
F									
35									
F									
i -									
$\vdash$					<u> </u>				
-			-						
40									The discussion in the test of the state
F									section titled, SUBSURFACE
-									conditions, is necessary to a proper understanding of the nature
									of the subsurface materials.
F				_					
		:							
F				_				•	
					`				
F									
$\left  \right $									
150									I
	DEPTH	HOUR		DATE	- Auger	SAMP	IS THE	4	

.

.

v

## UNIFIED SOIL CLASSIFICATION SYSTEM

Soils are visually classified for engineering purposes by the Unified Soil Classification System. Grain-size analyses and Atterberg Limits tests often are performed on selected samples to aid in classification. The classification system is briefly outlined on this chart. Graphic symbols are used on boring logs presented in this report. For a more detailed description of the system, see "Standard Practice for Description and Identification of Solls (Visual-Manual Procedure)" ASTM Designation: 2488-84 and "Standard Test Method for Classification of Soils for Engineering Purposes" ASTM Designation: 2487-85.

	N	A IOR DIVISIONS		GRAPHIC	GROUP	1		
		T		SYMBOL	SYMBOL		TYPICAL NAMES	
	oarse 4 sieve	CLEAN GF	RAVELS	44.4	GW	Well grade mixtures,	ed gravels, gravel-sand or sand-gravel-cobble mixtures	
sieve)	VELS ss of c es No.	(CCS man 3% passi	es No. 200 sieve)		GP	Poorty gra tures, or s	ided gravels, gravel-sand mix- and-gravel-cobble mixtures	
) SOILS	GRA 9% or levents	GRAVELS WITH FINES	Limits plot below "A" line & hatched zone on plasticity chart	推	.GM	Silty grave	ols, gravel-sand-silt mixtures	
RAINED Isses N	) fractic	passes No. 200 sieve)	Limits plot above "A" line & hatched zone on plasticity chart		GC	Clayey gra	avels, gravel-sand-clay mixture	
RSE-GI 50% pa	coarse 4 sieve	CLEAN S	ANDS		sw	Well graded sands, gravelly sands		
COAl ss than	VNDS ore of es No.	(Less than 5% passe	es No. 200 sieve)		SP	Poorty gra	ded sands, gravelly sands	
Les	S/ % or m on pass	SANDS WITH FINES (More than 12%	Limits plot below "A" line & hatched zone on plasticity chart		SM	Silty sands	s, sand-silt mixtures	
	fracti	passes No. 200 sieve)	Limits plot above *A* line & hatched zone on plasticity chart		sc	Clayey sands, sand-clay mixtures		
sieve)	ILTS lot below "A stated zone staty attent	SILTS OF LOW I (Liquid Limit les	PLASTICITY is than 50)		ML	Inorganic s medium pla	silts, clayey silts of low to asticity	
SOILS o. 200	Umits p Brack h On Part A h	SILTS OF HIGH I (Liquid Limit 50	PLASTICITY ) or more)		мн	Inorganic s diatomaced	ilts, micaceous or ous silty soils, elastic silts	
AINED Isses N	AYS of above "A miched zone riddiy chart	CLAYS OF LOW (Liquid Limit les	PLASTICITY is than 50)		CL	Inorganic c plasticity, g	clays of low to medium pravelly, sandy, and silty clays	
VE-GR/ nore pa	In the form	CLAYS OF HIGH (Liquid Limit 50	PLASTICITY or more)		СН	Inorganic c clays, sand	lays of high plasticity, fat by clays of high plasticity	
FII D% or n	ANIC S AND AYS	ORGANIC SILTS AND PLASTICITY (Liquid Li	CLAYS OF LOW imit less than 50)		OL	Organic silts and clays of low to medium plasticity, sandy organic silts and clays		
(2	SE 10	ORGANIC SILTS AND PLASTICITY (Liquid L	CLAYS OF HIGH imit 50 or more)		он	Organic sitts and clays of high plasticity, sandy organic sitts and clays		
ORG SC	ANIC ILS	PRIMARILY ORGA (dark in color and c	NIC MATTER organic odor)		PT	Peat		
		NOTE: Coarse-grained soils with with limits plotting in the h	between 5% and 12% passi atched zone on the plasticity	ing the No. 2 / chart have	00 sieve and dual classific	fine-grained soi	ils	
	601	PLASTICITY CHAI	RT		DEF	INITION O	F SOIL FRACTIONS	
		₩E \$;4≤UL≤25.5		Ļ	SOIL CO	MPONENT	PARTICLE SIZE RANGE	
L XX	PI=0	0.73 (LL-20)	HA IN LINE		Boulders		Above 12 in.	
N N	40 - UL	16; PIST		·	Gravel		3 In. to No. 4 sieve	
È	30- PI-0	D.9 (LL-8)			Coarse g	gravel	3 in. to 3/4 in.	
일		1.0			Hne gra	vel	3/4 in. to No. 4 sieve	
AS.	20 CL-MI	100		1	Coarse	sand	No. 4 to No. 200 sieve	
ದ			NH or OH		Medium	sand	No. 10 to No. 40 sieve	
		ML or OL			Fine san	d and days	No. 40 to No. 200 sieve	
	0 10	20 30 40 50 60	70 80 90 100	L		and day	Less man No. 200 sieve	
l			70 00 90 100	,				







E

1997) 1997) 1997

E

· · · · ·

B-9 Elev. 4315.5' Completed 2/4/97 28.4 4320 17 4320-3" A.C. 4315 4315 -٩ţ B-9 (Cont.) 4310 TEAL 4310 - 4275 4275 45/12 24 · 2012년~ 21 🛊 4305 4305 WC = 25 DD = 111 +4 = 5 -200 = 824270 4270-8-8 (Cont.) UC = 2190 4300 4300 4165 4165 16/12 Elevation/Feet WC = 28 DD = 95 -200 = 89 LL = 34 Pl = 15 10.00 m 4265 4265 Elevation/Fee 3/<u>28</u>/97 4260 0 4180 4295 4160 140/12 WC = 34 DD = 87 ~200 = 92 LL = 35 PI = 14 WC = 4 +4 = 66 -200 = 6 4260. 17 4155 4290 **1**5350/3 4155 4290 4255 Elevation/Feet 4255 ų, ē ä ... 4285 50/3 4150 4150 4285 4250 4250-WC = 6+4 = 38 -200 = 13 Elevation/Feet vation/ 4280 ä 4145 50/3 4145 4280 4245 4245_ Anticipated Floor Level 4140 4140 \$\06 4275 4275 ÷, 4240 4240. Approximate Vertical Scale 1" - 8" See Figure 21 for Legend and Notes AVEN 973042 Logs of Exploratory Borings Figure 18

199

T

	LEGEND	t		
		Asphallic Concrete.		
		Base Course, Silly Sand and Gravel.	NOT	res:
v.'		Fill, lean clay with sand, moist to very moist, dark brown, roots, organics.	1.	Borings B-1 through B-4 were drilled on April 19, 22, 24 and 25, 1996. Borings B-5 through E-12 were drilled on February 4, 5, 6, 7, 10, 12, 13, 14. 15, and 17, 1997 with 9-inch percussion hammer drilling equipment.
			2.	Locations of borings were measured approximately by pacing from features shown on the site plan provided.
	$\boxtimes$	Fill: clayey to sitty gravel with sitty sand and sandy lean clay, occasional cobbles, slightly moist to moist, brown to dark gray.	3.	Elevations of borings were measured by survey level and refer to the bench mark shown on Figure 1.
t-ie-	0	Silty to Lean Clay with Silt layers (CL/ML); occasional silty sand and gravel layers, medium stiff to hard, molst to wet, brown to yellowish brown to gravish brown iron oxide staining.	4.	The boring locations and elevations should be considered accurate only to the degree implied by the method used.
		interlayered Lean Clay and Silty Sand (CL/SM); silt layers, occasional gravel lenses, stiff to very stiff, medium to very dense, moist to vet,	<b>5</b> .	The lines between the materials shown on the boring logs represent the approximate boundaries between material types and the transitions may be gradual.
<b>196</b>		brown to yellowish brown to grayish brown, iron oxide staining. Silty Sand (SM); small to moderate amount of silt, gravels, occasional cobbles, medium to very dense, moist to wet, yellowish to gravish brown.	<b>6</b> .	Water level readings shown on the logs were made at the time and under the conditions indicated. Fluctuations in the water level may occur with time.
Lin		Poorly-graded Gravel with Clay and Sand (GP-GC); occasional silty zones, cobbles generally up to 10 inches in size, lenses of sand, silt and clay, medium to very dense, moist to wet, brown to gray to yellowish brown.	<b>7.</b>	WC = Water Content (%); DD = Dry Density (pcf); +4 = Percent Retained on No. 4 Sleve; -200 = Percent Passing No. 200 Sleve; LL = Liquid Liquid (%);
.: <b>C</b>		Poorly-graded Gravel with Silt and Sand (GP-GM); claysy zones, cobbles generally up to 10 inches in size, occasional boulders up to approximately 2 1/2 feet in size, the larger particles are typically at the lower depths, lenses of sand, sill and clay, medium to very dense, moist to wet, brown to gray to yellowish brown.	•	PI = Plastcity Index (%); NP = Non Plastci; UC = Unconfined Compressive Strength (psf); WSS = Water Soluble Sulfates (ppm); AC = Asphaltic Concrete Thickness (inches); BC = Base Course Thickness (inches).
	 10/15	California Drive sample taken. The symbol 10/12 indicates that 10 blows from a 140 pound hammer falling 30 inches were required to drive the sampler 12 inches.		
2000 2000 2000	10/15	2 1/2 inch inside diameter drive sample taken. The symbol 10/12 indicates that 10 blows from a 140 pound hammer failing 30 inches were required to drive the sampler 12 inches.		
	10/12	Standard Drive Samplé taken. The symbol 10/12 indicates that 10 blows from a 140 pound hammer falling 30 inches were required to drive the sampler 12 inches.		
<b>**</b>	8	Shelby Tube Sample taken.	a	
		Indicates disturbed sample taken.		
i Şil	$\square$	Indicates slotted PVC pipe installed in the boring to the depth shown.		<b>.</b>
	0 	indicates the depth to free water and the number of days after drilling the measurement was taken. If date is shown, the date is when the measurement was obtained.	. 1	
973042		AVEX Legend and Notes of Exploratory Borings		Figure 21
. ang te			1	
			•	
•	Æ	_	Æ	

(E

24 Feb 1998

FIRM

L65

Degen " Here is the info on the American Stores Office Tower Vs profile

0-9 ft Fill 400 9-36 ft Sand + Gravel 1400 at top dropping to 1200 at base 36-59 ft Silty Clay 825 at surface 59-79 ft Layered Sitt Clay and Sand Variations of ± 50 ft/sec 910 at base	Depth	Soil Type	$V_{S}$ (ft/sec)
9-36 ft Sand + Gravel 1400 at top dropping 36-59 ft Silty Clay 825 at surface 59-79 ft Layered Sitt Clay and Sand Variations of ± 50 ft/sec 910 at base	0-9 tt	Fill	400
36-59 ft Silty Clay 825 at surface 59-79 ft Layered Silt Clay and Sand Variations of 59-99 ft Silty Clay 910 at base	9-36 ft	Sand + Grave	1400 at top dropping
59-79 ft Layered Sitt Clay and Sand Variations of + Soft/sec 910 at base	36-59 ft	Silty Clay	825 at surface
T9-99ft Silty Clay # Soft/sec 910 at base	59-79 <del>f</del> t	Layered Sill Clay and Sand	variatims of
910 at base	-79-99 ft	Silly Clay	± so ft/sec
			910 at base

See if this matches the boring logs that we have and then make your classification

Kyle Rollin GEDPHYSICS

## GIS ID # 292_

Location Northeast of 300 South & Main Street

Firm -

(

Firm Job ID #

Borehole # 1

Total Depth = 99.0 ft

	Depth		Shear Wave		Correlated	Interval
From	То	Interval	Velocity, V _s	Su	SPT N value	SPT N value
0	9	9	400 122	/		0.0225
9	18	9	1400 Ur	1		0.0064
18	27	9	<b>1300</b> 39	1		0.0069
27	- 36	9	1200 54	,6		0.0075
36	59	23	<b>825</b> . 15	١		0.0279
59	64	5	775 vy	6		0.0065
64	69	5	825 25			0.0061
69	74	5	775 1 ³⁶	•		0.0065
74	79	5	825 * 4	_		0.0061
79	99	20	910 2 ¹¹	1		0.0220

**Σ** = 0.1182

Class D

SPT average = 837.3

# C Shear Velocity Profiles: Plotted

This appendix provides the plots of shear velocity files obtained by inversion of the fundamental mode dispersion of Rayleigh waves (solid) and Love waves (dashed), and by refraction (dash-dotted lines). The site numbers are listed in Appendix A. A quality flag (1 for poor, 2 for fair, 3 for good) is assigned to each CSP gather of the 28 sites. The flags are listed in Table 1.

[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				

Table 1: Site quality flags and the calculated alluvium-to-bedrock maximum spectral amplification ratios for the 28 sites in the Salt Lake Valley. The entries SH FL, SV FL,  $\beta$  FL, and CCR FL indicates respectively if the SH CSP gather, SV CSP gather, consistency of the shear velocity profile obtained by refraction and (Love and Rayleigh) inversions, and the cross-correlation of the measured SV CSP gather with the computed Rayleigh wave CSP gather are poor (flag=1), fair (flag=2), or good (flag=3) for a site. The entries Calc SR1 and Calc SR2 are the maximum spectral ratios (in the range of 0-5 Hz) computed using the shear velocity profiles by the Rayleigh wave inversions and the USGS down? Hole measurements respectively. The SP SR and LP SR are the spectral ratios computed from USGS's observed NTS seismic recordings. SP denotes a period band of 0.2-0.7 seconds; LP denotes a period band of 0.7-1.0 seconds. ratio computation.


[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				





1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				


Depth (m)

[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



S-wave Velocity (m/s)

[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



Depth (m)

[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



S-wave Velocity (m/s)

[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



S-wave Velocity (m/s)

1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



S-wave Velocity (m/s)

1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



S-wave Velocity (m/s)

[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



S-wave Velocity (m/s)

[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				



[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				





[	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				




# C Shear Velocity Profiles: Plotted

This appendix provides the plots of shear velocity files obtained by inversion of the fundamental mode dispersion of Rayleigh waves (solid) and Love waves (dashed), and by refraction (dash-dotted lines). The site numbers are listed in Appendix A. A quality flag (1 for poor, 2 for fair, 3 for good) is assigned to each CSP gather of the 28 sites. The flags are listed in Table 1.

1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				

Table 1: Site quality flags and the calculated alluvium-to-bedrock maximum spectral amplification ratios for the 28 sites in the Salt Lake Valley. The entries SH FL, SV FL,  $\beta$  FL, and CCR FL indicates respectively if the SH CSP gather, SV CSP gather, consistency of the shear velocity profile obtained by refraction and (Love and Rayleigh) inversions, and the cross-correlation of the measured SV CSP gather with the computed Rayleigh wave CSP gather are poor (flag=1), fair (flag=2), or good (flag=3) for a site. The entries Calc SR1 and Calc SR2 are the maximum spectral ratios (in the range of 0-5 Hz) computed using the shear velocity profiles by the Rayleigh wave inversions and the USGS down? Hole measurements respectively. The SP SR and LP SR are the spectral ratios computed from USGS's observed NTS seismic recordings. SP denotes a period band of 0.2-0.7 seconds; LP denotes a period band of 0.7-1.0 seconds. ratio computation.



S-wave Velocity (m/s)

# C Shear Velocity Profiles: Plotted

This appendix provides the plots of shear velocity files obtained by inversion of the fundamental mode dispersion of Rayleigh waves (solid) and Love waves (dashed), and by refraction (dash-dotted lines). The site numbers are listed in Appendix A. A quality flag (1 for poor, 2 for fair, 3 for good) is assigned to each CSP gather of the 28 sites. The flags are listed in Table 1.

1	Site	SH	SV	β	CCR	Calc	Nearby	Calc	SP	LP
#	Name	FL	FL	FL	FL	SR1	USGS Site	SR2	SR	SR
1	rpgc	1	2	2	2	4.1				
2	rppk	1	2	3	1	5.0				
3	rvpk	1	1	1	1	3.4				
4	arpt	3	2	3	2	3.3	SLCWAP	3.3	11.0	8.0
5	soap	2	3	3	2	3.7				
6	uofu	1	2	3	3	3.1	SLCWAS	4.0	4.1	4.1
7	sspk	1	2	1	1	4.0	SLCUGM	3.4	2.5	2.8
8	lypk	2	2	1	1	3.0				
9	glen	3	2	3	1	3.1				
10	ftpk	1	1	2	1	3.3	SLCFOR	2.7	4.5	4.2
11	zcmi	2	2	3	3	3.2				
12	wvhy	2	3	3	3	4.4				
13	nowv	1	2	1	1	6.0	SLCMAG	10.1	5.5	6.2
14	dlpk	3	3	3	2	4.0				
15	cpwv	1	3	3	3	4.9				
16	sowv	2	3	3	1	3.0				
17	ecwv	1	2	2	1	3.3				
18	snrd	1	3	2	3	3.0				
19	cwrp	1	3	1	2	6.0				
20	mprt	2	2	3	2	2.0				
21	wvcp	1	2	3	2	3.0				
22	srpk	2	2	1	2	2.4				
23	krct	1	2	1	2	5.0				
24	airp	1	2	1	3	2.8				
25	nmid	1	1	1	2	4.5	SLCBAT	3.4	6.6	8.2
26	wjpk	2	3	2	3	3.2				
27	ssrd	1	2	3		2.0				
28	ddpk	1	1	3	2	2.7				

Table 1: Site quality flags and the calculated alluvium-to-bedrock maximum spectral amplification ratios for the 28 sites in the Salt Lake Valley. The entries SH FL, SV FL,  $\beta$  FL, and CCR FL indicates respectively if the SH CSP gather, SV CSP gather, consistency of the shear velocity profile obtained by refraction and (Love and Rayleigh) inversions, and the cross-correlation of the measured SV CSP gather with the computed Rayleigh wave CSP gather are poor (flag=1), fair (flag=2), or good (flag=3) for a site. The entries Calc SR1 and Calc SR2 are the maximum spectral ratios (in the range of 0-5 Hz) computed using the shear velocity profiles by the Rayleigh wave inversions and the USGS down? Hole measurements respectively. The SP SR and LP SR are the spectral ratios computed from USGS's observed NTS seismic recordings. SP denotes a period band of 0.2-0.7 seconds; LP denotes a period band of 0.7-1.0 seconds. ratio computation.





### Seismic Wave Velocity Calculations

Job No.:00-300Client:KleinfelderLocationLegacy ParkwayCPT Date:5/1/00CPT No.:SC-14-312

Geophone Offset (m): 0.20 Source Offset (m): 0.74

				Vs	Vs
Test	Ray	Incremental	Interval	Interval	Interval
Depth	Path	Distance	Depth	Time	Velocity
(m)	(m)	(m)	(m)	(ms)	(m/s)
		) (			
0.90	1.02				
1.90	1.85	0.84	1.20	3.81	219.3
2.90	2.80	0.95	2.20	5.50	171.9
3.90	3.77	0.97	3.20	6.62	147.1
4.90	4.76	0.98	4.20	6.06	162.5
5.90	5.75	0.99	5.20	6.35	155.9
6.90	6.74	0.99	6.20	6.91	143.7
7.90	7.74	0.99	7.20	7.04	141.3
8.90	8.73	1.00	8.20	9.17	108.6
9.90	9.73	1.00	9.20	7.47	133.4
10.90	10.73	1.00	10.20	7.66	130.2
11.90	11.72	1.00	11.20	8.15	122.4
12.90	12.72	1.00	12.20	7.35	135.8
13.90	13.72	1.00	13.20	7.99	125.0
14.90	14.72	1.00	14.20	7.83	127.5
15.90	15.72	1.00	15.20	6.39	156.3
16.90	16.72	1.00	16.20	6.87	145.4
17.90	17.72	1.00	17.20	4.15	240.7
18. <del>9</del> 0	18.71	1.00	18.20	4.63	215.8
19.90	19.71	1.00	19.20	4.00	249.8
20.90	20.71	1.00	20.20	4.05	<b>246</b> .7
21.90	21.71	1.00	21.20	4.64	215.4
22.90	22.71	1.00	22.20	5.50	181.7
23.90	23.71	1.00	23.20	5.01	199.5
24.90	24.71	1.00	24.20	5.01	199.5
25.90	25.71	1.00	25.20	4.03	248.0
26.90	26.71	1.00	26.20	3.91	255.7
27.90	27.71	1.00	27.20	3.79	263.8
28.90	28.71	1.00	28.20	4.03	248.1
29.90	29.71	1.00	29.20	3.79	263.8
30.90	30.71	1.00	30.20	4.29	233.0
31.90	31.71	1.00	31.20	4.06	246.2
32.90	32.71	1.00	32.20	4.29	233.0
33.90	33.71	1.00	33.20	4.17	239.7
34.90	34.71	1.00	34.20	3.05	327.8
35.90	35.71	1.00	35.20	3.49	286.5
36.90	36.71	1.00	36.20	3.50	285.7
				l	

PLATE H-1

. . . . . . . .





PLATE H-3





E

### Seismic Wave Velocity Calculations

Job No.:00-300Client:KleinfelderLocationLegacy ParkwayCPT Date:5/10/00CPT No.:SC-15-361

Geophone Offset (m): 0.20 Source Offset (m): 0.61

				Vs	Vs
Test	Ray	Incremental	Interval	Interval	Interval
Depth	Path	Distance	Depth	Time	Velocity
(m)	(m)	(m)	(m)	(ms)	(m/s)
1.80	1.71				
2.80	2.67	0.96	2.10	7.52	127.4
3.80	3.65	0.98	3.10	7.14	137.4
4.80	4.64	0.99	4.10	7.14	138.5
5.80	5.63	0.99	5.10	6.58	150.9
6.80	6.63	1.00	6.10	6.58	151.2
7.80	7.62	1.00	7.10	7.52	132.5
8.80	8.62	1.00	8.10	7.71	129.3
9.80	9.62	1.00	9.10	9.02	110.6
10.80	10.62	1.00	10.10	7.42	134.5
11.80	11.62	1.00	11.10	7.19	138.9
12.80	12.61	1.00	12.10	8.04	124.2
13.80	13.61	1.00	13.10	7.61	131.3
14.80	14.61	1.00	14.10	6.77	147.6
15.80	15.61	1.00	15.10	7.33	136.3
16.80	16.61	1.00	16.10	7.19	139.0
17.80	17.61	1.00	17.10	6.63	150.7
18.80	18.61	1.00	18.10	6.90	144.8
19.80	19.61	1.00	19.10	4.80	208.2
20.80	20.61	1.00	20.10	4.73	211.3
21.80	21.61	1.00	21.10	4.16	240.3
22.80	22.61	1.00	22.10	3.91	255.7
23.80	23.61	1.00	23.10	4.40	227.2
24.80	24.61	1.00	24.10	5.62	177.9
25.80	25.61	1.00	25.10	5.98	·167.2
26.80	26.61	1.00	26.10	4.89	204.4
27.80	27.61	1.00	27.10	4.64	215.5
28.80	28.61	1.00	28.10	4.04	247.5
29.80	29.61	1.00	29.10	3.42	292.3
30.80	30.61	1.00	30.10	3.73	268.0
31.80	31.61	1.00	31.10	4.13	242.1
32.80	32.61	1.00	32.10	3.76	265.9
33.80	33.61	1.00	33.10	3.76	265.9
34.80	34.61	1.00	34.10	4.21	237.5
35.80	35.61	1.00	35.10	4.14	241.5
36.80	36.61	1.00	36.10	3.31	302.1

--

PLATE H-5





PLATE H-7





### **Seismic Wave Velocity Calculations**

Job No.:00-300Client:KleinfelderLocationLegacy ParkwayCPT Date:5/1/00CPT No.:SC-33-358

27.66

28.66

29.66

30.66

31.65

32.65

33.65

34.65

35.65

36.35

27.85

28.85

29.85

30.85

31.85

32.85

33.85

34.85

35.85

36.55

Geophone Offset (m): 0.20 Source Offset (m): 0.56

				Vs	Vs
Test	Ray	Incremental	Interval	Interval	Interval
Depth	Path	Distance	Depth	Time	Velocity
(m)	(m)	(m)	(m)	(ms)	(m/s)
0.85	0.86				
1.85	1.74	0.88	1.15	9.40	94.1
2.85	2.71	0.97	2.15	9.59	100.7
3.85	3.69	0.98	3.15	9.58	102.7
4.85	4.68	0.99	4.15	9.40	105.4
5.85	5.68	0.99	5.15	7.52	132.2
6.85	6.67	1.00	6.15	6.58	151.3
7.85	7.67	1.00	7.15	5.64	176.8
8.85	8.67	1.00	8.15	6.01	166.0
9.85	9.67	1.00	9.15	6.21	160.7
10.85	10.66	1.00	10.15	6.91	144.5
11.85	11.66	1.00	11.15	5.27	189.5
12.85	12.66	1.00	12.15	6.01	166.2
13.85	13.66	1.00	13.15	6.32	158.1
14.85	14.66	1.00	14.15	5.71	1 <b>75</b> .0
15.85	15.66	1.00	15.15	5.72	174.7
16.85	16.66	1.00	16.15	6.16	162.2
17.85	17.66	1.00	17.15	5.57	179.4
18.85	18.66	1.00	18.15	5.86	170.6
19.85	19.66	1.00	19.15	6.62	151.0
20.85	20.66	1.00	20.15	5.03	198.7
21.85	21.66	1.00	21.15	4.37	228.8
22.85	22.66	1.00	22.15	5.07	197.2
23.85	23.66	1.00	23.15	4.37	228.8
24.85	24.66	1.00	24.15	4.65	215.0
25.85	25.66	1.00	25.15	4.94	202.4
26.85	26.66	1.00	26.15	4.93	202.8

27.15

28.15

29.15

30.15

31.15

32.15

33.15

34.15

35.15

36.00

3.67

3.66

4.09

3.71

3.67

4.04

3.85

4.14

3.38

2.35

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.70

PLATE H-9

272.4

273.2

244.5 269.5

272.4

247.5

259.7

241.5 295.8

297.8

....



Sec. 1



PLATE H-11



#### TABLE I

.

#### RESULTS OF DOWNHOLE SHEAR WAVE SURVEY, BORING B-2, OGDEN MUNICIPAL BUILDING, OGDEN, UTAH

DEPTH	Vs	G		E	
(ft.)	(ft./sec.)	(lb./	ft.²)	$(lb./ft.^{2})$	
0- 5	861	2.77 x	10 <b>E</b> 6	7.76 x 10E	5
5-10	666	1.65	*1	4.62 "	
10-15	1053	4.66	**	12.58 "	
15-20	1053	4.66	TT	12.58 "	
20-25	870	2.82	<b>f</b> 7	7,90 "	
25-30	800	2.39	H	6.70 "	
30-35	714	1.90	**	5,32 "	
35-40	833	2.56	**	7.17 "	
40-45	870	2.82		7.90 [°]	
45-50	714	1.92	"	5.34 "	
50-55	909	3.08	11	8.62 ^w	
55-60	952	3.38	"	9.46 °	
60-65	833	2.56	**	7,17 "	
65-70	869	2.82	N	7.90 "	
70-75	833	2.56	w	7.17 *	
75-80	869	2.82	w	7.90 ^w	
80-85	833	2.56	**	7.17 ^w	
85-90	741	2.05	"	5.74 °	
90-95	770	2.21	n	6.19 [°]	
93-98	817	2.49	n	6.97 <b>"</b>	
Vp = con	mpressional w	ave velo	city	p = Poisson	s' ratio
Vs = she	ear wave velo	city	-	G = shear m	odulus
				E = Young's	modulus
soil uni	t weights use	d:		Poissons' ratio	assumed:
0 - 10'	120 pcf			0 - 10'	.40
10 201	195			10 001	

10- 20' 135 pcf 15-100' 120 pcf

.

10- 20' 20-100'

.35 .40

+	t nuous teration is istance	iphica i	Ple	ple Tupe	245 +001 15 +001 16 -18 - 30"	L Density		fied ssifi- tion	RIG TYPEC BORING TYPE3 SURFACE ELEV DATUM	CME 550 -3/4" ID Hollow-Stem Auger
E.		52	San	8	0444	6.3		ວິດຕະສ	REMARKS	VISUAL CLASSIFICATION
								CL FILL	very moist soft	SANDY CLAY with major roots (topsoil) to 4"; fine to coarse sand; dark brown, FILL
								GM FILL	moist medium dense	SANDY GRAVEL with silt; fine to coarse sand; fine and coarse gravel; dark brown, FILL
5			XX	Q	12	82	34.9	CL	moist stiff	SANDY CLAY; fine sand; dark brown to black
										grades to brown
Ļ		14						CP/	clightly maint	CANDY CDAVICI with two ofte
10			XX	Ď	60			GM	dense to dense	fine to coarse sand; fine and subrounded to rounded coarse gravel and small cobbles; brown
			X							
5-			XX	ß	60				saturated dense	grades with some silt
		1111								
			X	Ω	37				saturated medium dense	
		N NN								
25										

Earth & Environmental

~

,

÷



🗳 AGRA (con't) Earth & Environmental

PROЛ	ECT _	Ogden 2500 V	Mu	nic	ipal Bui	iding devand	Orden	Yitah	LOG	OF TEST BORING NO. B.2
JOB N	10. <u>7-</u>	817-000	786		DATE	03-1	1-97			
	500	_		đ	3 <b>8</b> - 3 <b>8</b> -	t i	4. A			CME 550
		<u>5</u>			04.14 14.14				SURFACE ELEV.	
et h	223	لو م	a	de	30000	200	+ 0 03 9+0 - C L J	14.00	DATUM	
	000 m	20	5	8	a-4-5	6-3	2022	ວິດຕີ ເ	REMARKS	VISUAL CLASSIFICATION
50		11	X	D	17	106	22.0	CL	saturated	CLAY with occasional fine sandy
			$\mathbb{R}$	E					SUII	silt seams; scams to 1/4"; brown with some grav
		11//		$\vdash$						
		1///	1							
										possible gravel in drilling
65										at 53.5'
		1///								
				$\vdash$						
				$\square$						
		11/		E						
6		1//		Н						
00			X	D	_ 14	101	24.7			
		11/	$\mathbf{\Sigma}$	H		·····	_			
		11		$\square$						
				$\square$			_			
		11		$\left  \cdot \right $						
မာ		1///								
		1//		$\square$			-			
		11.								
		1//								
		11		$\square$						
70			X	D	14					
		1//	$\mathbf{\hat{\mathbf{x}}}$		_					
ŀ										
ļ										
ŀ	• • • • • • • • • • • • • • • • • • •	11/								
		GROUNDW	TER		1		SANP	LE TYPE		
¥	DEPTH 13.6	HOLR 14:47	03-	DA1	IE A 197 S	- Auger	cutting . 1.38	1.D. tuk	o≢ sample.	
*[	13.6	12:00	04	17-	.97 U	- 37 0.	D. 2.42"	I.D. tu Walled St	nelby tube.	
					č	- Celif	ornia Sp	lit Spoor	Sample.	FIGURE 4B Earth & Environmental (con't)

.



Earth & Environmental

(con't)





### Shear Wave Velocity Calculations

Job No.: 01-352 Client: Earthtec CPT No.: CPT-1 Location Morinda AF Date: 12/18/01

Geophone Offset (m): 0.20 Source Offset (2') (m): 0.61

	Test	Geophone	Ray	Incremental	Time	Interval	Interval	Interval	Interval
	Depth	Depth	Path	Distance	Interval	Velocity	Depth	Velocity	Depth
	(m)	(m)	(m)	(m)	(ms)	(m/s)	(m)	(ft/s)	(ft)
	0.75	0.55	0.82						
	1.75	1.55	1.67	0.84	8.46	99.8	1.05	327.4	3.4
	2.75	2.55	2.62	0.96	7.19	133.0	2.05	436.2	6.7
	3.75	3.55	3.60	0.98	8.32	117.8	3.05	386.4	10.0
	4.75	4.55	4.59	0.99	6.63	149.1	4.05	489.1	13.3
	5.75	5.55	5.58	0.99	7.19	138.1	5.05	452.9	16.6
	6.75	6.55	6.58	0.99	8.45	117.7	6.05	386.2	19.8
	7.75	7.55	7.57	1.00	7.05	141.3	7.05	463.5	23.1
	8.75	8.55	8.57	1.00	5.92	168.4	8.05	552.5	26.4
	9.75	9.55	9.57	1.00	5.36	186.1	9.05	610.6	29.7
	10.75	10.55	10.57	1.00	5.02	198.8	10.05	652.2	33.0
	11.75	11.55	11.57	1.00	4.93	202.5	11.05	664.3	36.2
	12.75	12.55	12.56	1.00	5.64	177.1	12.05	580.8	39.5
Į	13.75	13.55	13.56	1.00	5.08	196.6	13.05	645.0	42.8
	14.75	14.55	14.56	1.00	5.07	197.1	14.05	646.3	46.1
I	15.75	15.55	15.56	1.00	5.08	196.7	15.05	645.1	49.4
	16.75	16.55	16.56	1.00	4.23	236.2	16.05	774.9	52.6
	17.75	17.55	17.56	1.00	4.23	236.3	17.05	774.9	55.9
	18.75	18.55	18.56	1.00	4.93	202.7	18.05	664.9	59.2
	19.75	19.55	19.56	1.00	4.94	202.3	19.05	663.6	62.5
	20.75	20.55	20.56	1.00	4.60	217.3	20.05	712.7	65.8
	21.75	21.55	21.56	1.00	4.79	208.7	21.05	684.5	69.0
	22.75	22.55	22.56	1.00	5.08	196.8	22.05	645.4	72.3
	23.75	23.55	23.56	1.00	5.50	181.8	23.05	596.2	75.6
	24.75	24.55	24.56	1.00	5.35	186.9	24.05	612.9	78.9
	25.75	25.55	25.56	1.00	4.52	221.2	25.05	725.4	82.2
	26.75	26.55	26.56	1.00	4.23	236.3	26.05	775.2	85.4
	27.75	27.55	27.56	1.00	4.65	215.0	27.05	705.2	88.7
	28.75	28.55	28.56	1.00	3.66	273.2	28.05	896.0	92.0
	29.75	29.55	29.56	1.00	4.09	244.4	29.05	801.8	95.3
	30.75	30.55	30.56	1.00	3.81	262.4	30.05	860.7	98.6

Cone: 20 TON A 098 Date:12:18:01 09:51	File: 352CPO1.PPD Depth (m): 11.55 (ft): 37.89 (ft): 270.05 U-min: 17.79 0.05 U-max: 36.37 185.05 U-max: 36.37 185.05	
Hole No.:CPT-1 Location:MORINDA AF	RE DISSIPATION RECORD	D 100.0 150.0 200.0
Earthtec	PORE PRESSUE	

-







## **Shear Wave Velocity Calculations**

Job No.: 02-360 Client: Earthtec Testing & Engineering CPT No.: CPT-1 Location Tank Center Date: 9/7/02

Geophone Offset (m): 0.20 Source Offset (2') (m): 0.61

	Test	Geophone	Ray	incremental	Time	Interval	Interval	Interval	Interval
	Depth	Depth	Path	Distance	Interval	Velocity	Depth	Velocity	Depth
	(m)	(m)	(m)	(m)	(ms)	(m/s)	(m)	(ft/s)	(ft)
	0.80	0.60	0.86						
	1.80	1.60	1.71	0.86	8.60	99.6	1.10	326.7	3.6
	2.80	2.60	2.67	0.96	6.63	144.5	2.10	474.1	6.9
	3.80	3.60	3.65	0.98	6.62	148.1	3.10	485.9	10.2
	4.80	4.60	4.64	0.99	6.49	152.4	4.10	499.8	13.4
	5.80	5.60	5.63	0.99	6.20	160.1	5.10	525.3	16.7
,	6.80	6.60	6.63	1.00	6.35	156.7	6.10	514.0	20.0
	7.80	7.60	7.62	1.00	6.48	153.8	7.10	504.3	23.3
	8.80	8.60	8.62	1.00	7.33	136.0	8.10	446.2	26.6
	9.80	9.60	9.62	1.00	7.19	138.8	9.10	455.2	29.8
	10.80	10.60	10.62	1.00	6.89	144.9	10.10	475.2	33.1
	11.80	11.60	11.62	1.00	7.07	141.2	11.10	463.2	36.4
	12.80	12.60	12.61	1.00	6.92	144.3	12.10	473.4	39.7
	13.80	13.60	13.61	1.00	6.31	158.3	13.10	519.2	43.0
	14.80	14.60	14.61	1.00	5.57	179.4	14.10	588.3	46.2
	15.80	15.60	15.61	1.00	4.96	201.4	15.10	660.8	49.5
	16.80	16.60	16.61	1.00	4.96	201.5	16.10	660.8	52.8
	17.80	17.60	17.61	1.00	4.81	207.8	17.10	681.5	56.1
	18.80	18.60	18.61	1.00	5.27	189.6	18.10	622.0	59.4
	19.80	19.60	19.61	1.00	5.26	190.0	19.10	623.3	62.6
	20.80	20.60	20.61	1.00	5.71	175.1	20.10	574.2	65.9
	21.80	21.60	21.61	1.00	5.42	184.4	21.10	604.9	69.2
	22.80	22.60	22.61	1.00	5.71	175.1	22.10	574.2	72.5
	23.80	23.60	23.61	1.00	6.32	158.2	23.10	518.8	75.8
	24.80	24.60	24.61	1.00	6.16	162.3	24.10	532.3	79.0
	25.80	25.60	25.61	1.00	6.02	166.1	25.10	544.7	82.3
	26.80	26.60	26.61	1.00	6.16	162.3	26.10	532.3	85.6
	27.80	27.60	27.61	1.00	5.72	174.8	27.10	573.3	88.9
	28.80	28.60	28.61	1.00	5.71	175.1	28.10	574.3	92.2
	29.80	29.60	29.61	1.00	5.57	179.5	29.10	588.7	95.4
	30.80	30.60	30.61	1.00	4.51	221.7	30.10	727.1	98.7

Cone: 20 TON A 122 Date:09:07:02 09:39	File: 360CP01.PPD Depth (m): 4.95 (ft): 16.24 Duration : 400.05 U-min: 11.03 0.05 U-max: 13.47 15.05		
Hole No.:CPT-1 Location:TANK CENTER	URE DISSIPATION RECORD		7.0 200.0 300.0 400.0 TIME (sec)
Earthtec	PORE PRESS	Pore Pressure (ft)	0.0



 $\sim$ 





### SASW Testing at the Metropolitan Water District, Little Cottonwood Canyon Water Treatment Plant Salt Lake City, Utah

Dr. James A. Bay, Jeffrey Gilbert, and Intuorn Sasanakul

Department of Civil and Environmental Engineering Utah State University Logan, Utah 84322-4110

Prepared for

URS Corporation 500 12th Street Suite 200 Oakland, CA 94607-4014

April 18, 2003



#### Introduction

On 17 February 2003, Spectral-Analysis-of-Surface-Wave (SASW) tests were performed at nine locations at the Metropolitan Water District, Water Treatment Plant at the mouth of Little Cottonwood Canyon, in Salt Lake City, Utah. The test were conducted by Dr. James A. Bay, Inthuorn, Sasanakul, Jeffery Gilbert, and Kenneth D. Jewkes from Utah State University. The purpose of the testing was to determine the shear wave velocity profiles across the facility.

#### The SASW Method

<u>General Theory</u> The SASW method is a nonintrusive seismic technique used to determine the shear wave velocity profile of a site using wave sources and receivers on the ground surface (1-4). Unlike other surface seismic methods, such as refraction, the SASW method can be used to detect and measure the properties of softer layers located beneath stiffer layers.

The SASW method is used to measure the propagation velocity of Rayleigh-type surface waves. These surface waves propagate along the ground surface, and exhibit wave motion that attenuates with depth into the earth. Practically all wave motion occurs at depths within one wavelength of ground surface. The velocity of Rayleigh-type surface waves is largely controlled by the shear modulus of the material through which the waves are propagating, with the Rayleigh wave velocity about 10% less than the shear wave velocity of that material.

When surface waves propagate through a uniform material with a constant shear modulus, waves with various wavelengths will all propagate with the same velocity. This condition is shown in Fig. 1. If the velocity varies with depth, different wavelengths will propagate at different velocities. This is known as dispersion and plots that show the variation in wave velocity with either wavelength or frequency are called dispersion curves. For example, a dispersion curve for a system with two layers (a soft layer over a stiffer layer) is shown in Fig. 2. Wavelengths that are less than the thickness of the surface layer only disturb the surface layer and propagate with a velocity that is only influenced by the softer, surface layer. As the wavelengths become longer than the thickness of the surface layer. As the wavelengths become longer, the stiffer layer exerts more influence until the wavelengths become long relative to thickness of the surface layer, and the wave velocity is only influenced by the stiffer layer. More complicated layered systems result in more complicated dispersion curves.

1


Fig. 1 Surface Wave Dispersion for a Single, Uniform Layer



Fig. 2 Surface Wave Dispersion for a Two-Layer System

Testing Procedure The SASW method requires two or more receivers, capable of measuring the vertical motion of the ground surface, a source or sources capable of generating a wide range of frequencies, and a recording instrument capable of separating the waveforms from the receivers into their various frequency components. The general testing configuration used for the testing at the water treatment plant is shown in Fig. 3. The receivers and the source are positioned along a line with the distance between the source and the first receiver the same as the distance between the first receiver and the second receiver. The distance between the second and third receiver is equal to the distance from the source to the second receiver. Measurements are made simultaneously between receivers 1 and 2, and receivers 2 and 3. For a given spacing, wavelengths from 0.5 time the spacing between receivers, to 2 times the spacing between receivers can usually be measured. Testing typically begins with a short spacing and then the spacing is increased in subsequent tests to measure longer wavelengths. An 8-lb instrumented hammer was used as a wave sources to generate high frequencies (short wavelengths) at receiver spacings of 6 and 12 ft. At longer receiver spacings, a 4500-lb drop weight was employed to generate lower frequencies (longer wavelengths). Site geometry limited the longest receiver spacing at each site, with maximum spacings ranging from 170 to 300 ft. Tests at each receiver spacing are usually repeated by reversing the direction of wave propagation to average out any receiver-coupling effects and any effects of lateral variability at the site. The waveforms are recorded and spectral analyses performed on a Fast-Fourier-Transform (FFT) dynamic signal analyzer.



Fig. 3 SASW Testing Configuration

<u>Forward Modeling Procedure</u> The dispersion curve for a site is measured using the procedures described above. An iterative forward modeling process is then used to determine the shear wave velocity profile of the site from the measured dispersion curve. This involves making an initial estimate of the shear wave velocity profile and assuming values of mass density and either Poisson's ratio or confined compression wave (P-wave) velocity. Forward modeling is then performed with a computer to determine the theoretical dispersion curve for the estimated profile. The theoretical dispersion curve is then compared to the measured dispersion curve and the estimated profile is modified accordingly. This procedure is repeated until the measured and theoretical dispersion curves match each other very closely, at which point the estimated profile will closely represent the actual velocity profile at the site. A program developed by Professor Jose M. Roesset of the University of Texas is used to perform the forward modeling (5).

## Testing at Little Cottonwood Canyon Water Treatment Plant

Locations of nine SASW test locations are shown on the aerial photograph in Fig. 4. The lines indicate the alignment of receiver arrays with the approximate centerline of the array marked with a circular target.

<u>Outer Access Gate</u> The experimental dispersion curve measured at the outer access gate is shown in Fig. 5. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 6. A plot of the shear wave velocity profile is shown in Fig. 7. Tabulated values of the parameters used in forward modeling are presented in Table 1.

<u>Southwest of Aeration Basin</u> The experimental dispersion curve measured southwest of the aeration basin is shown in Fig. 8. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 9. A plot of the shear wave velocity profile is shown in Fig. 10. Tabulated values of the parameters used in forward modeling are presented in Table 2.

South of Old Chemical Building The experimental dispersion curve measured south of the old chemical building is shown in Fig. 11. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 12. A plot of the shear wave velocity profile is shown in Fig. 13. Tabulated values of the parameters used in forward modeling are presented in Table 3.



Fig. 4 Aerial Photograph Showing the SASW Test Locations at the Little Cottonwood Canyon Water Treatment Plant.



Fig. 5 Experimental Dispersion Curve Measured at the Outer Access Gate, Little Cottonwood Canyon Water Treatment Plant.



Fig. 6 Comparison between Experimental and Theoretical Dispersion Curves from Outer Access Gate, Little Cottonwood Canyon Water Treatment Plant.



Fig. 7 Shear Wave Velocity Profile Determined from SASW Test at Outer Access Gate, Little Cottonwood Canyon Water Treatment Plant.

Table1	Soil Profile from SASW Test at Outer Access Gate, Little Cottonwood Canyon Wa	iter
	Treatment Plant.	

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	A: sumed Unit Weight (lb/ft ³ )
1	0.25	3000	5610	120
2	1.75	700	1350	120
3	5.0	650	1220	120
4	18.0	935	1750	120
5	24.0	900	1680	120
6	51.0*	2500	4680	135



Fig. 8 Experimental Dispersion Curve Measured Southwest of the Aeration Basin, Little Cottonwood Canyon Water Treatment Plant.



Fig. 9 Comparison between Experimental and Theoretical Dispersion Curves from Southwest of Aeration Basin, Little Cottonwood Canyon Water Treatment Plant.



Fig. 10 Shear Wave Velocity Profile Determined from SASW Test Southwest of Aeration Basin, Little Cottonwood Canyon Water Treatment Plant.

Table 2	Soil Profile from SASW Test Southwest of Aeration Basin, Little Cottonwood Cany	yon
	Water Treatment Plant.	

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	0.2	2500	4680	145
2	1.3	425	795	120
3	6.5	700	1310	120
4	17.0	825	1540	120
5	20.0	1600	2990	120
6	30.0	1800	3370	135
7	75*	3200	5990	135



Fig. 11 Experimental Dispersion Curve Measured South of Old Chemical Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 12 Comparison between Experimental and Theoretical Dispersion Curves from South of the Old Chemical Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 13 Shear Wave Velocity Profile Determined from SASW Test South of the Old Chemical Building, Little Cottonwood Canyon Water Treatment Plant.

Table 3	Soil Profile from	SASW	Test South	of Old	Chemical	Building,	Little	Cottonwood
	Canyon Water Tre	atment F	Plant.					

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	0.2	3000	5610	145
2	1.3	500	935	120
3	6.5	700	1310	120
4	10.0	825	1540	120
5	20.0	1600	2990	120
6	30.0	1800	3370	135
7	42.0*	2400	4490	135

<u>Northwest of Filter Building</u> The experimental dispersion curve measured northwest of filter building is shown in Fig. 14. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 15. A plot of the shear wave velocity profile is shown in Fig. 16. Tabulated values of the parameters used in forward modeling are presented in Table 4.

South of new Maintenance Building The experimental dispersion curve measured south of the new maintenance building is shown in Fig. 17. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 18. A plot of the shear wave velocity profile is shown in Fig. 19. Tabulated values of the parameters used in forward modeling are presented in Table 5.

North of new Maintenance Building The experimental dispersion curve measured north of the new maintenance building is shown in Fig. 20. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 21. A plot of the shear wave velocity profile is shown in Fig. 22. Tabulated values of the parameters used in forward modeling are presented in Table 6.

East of Sludge Drying Beds The experimental dispersion curve measured east of the sludge drying beds is shown in Fig. 23. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 24. A plot of the shear wave velocity profile is shown in Fig. 25. Tabulated values of the parameters used in forward modeling are presented in Table 7.

<u>North of Sludge Drying Beds</u> The experimental dispersion curve measured north of the sludge drying beds is shown in Fig. 26. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 27. A plot of the shear wave velocity profile is shown in Fig. 28. Tabulated values of the parameters used in forward modeling are presented in Table 8.

<u>Field North of Sludge Drying Beds</u> The experimental dispersion curve measured in field north of the sludge drying beds is shown in Fig. 29. The comparison between the experimental and theoretical dispersion curves determined from forward modeling is shown in Fig. 30. A plot of the shear wave velocity profile is shown in Fig. 31. Tabulated values of the parameters used in forward modeling are presented in Table 9.



Fig. 14 Experimental Dispersion Curve Measured Northwest of Filter Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 15 Comparison between Experimental and Theoretical Dispersion Curves from Northwest of Filter Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 16 Shear Wave Velocity Profile Determined from SASW Test Northwest of Filter Building, Little Cottonwood Canyon Water Treatment Plant.

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	0.15	2400	4990	145
2	1.85	500	935	120
3	6.0	750	1400	120
4	7.0	1200	2245	120
5	14.0	1300	2430	120
6	16.0	1400	2620	120
7	30.0	1600	2990	120
8	30.0	1700	3180	120
9	75*	3000	5610	135

 Table 4
 Soil Profile from SASW Test Northwest of Filter Building, Little Cottonwood Canyon

 Water Treatment Plant.



Fig. 17 Experimental Dispersion Curve Measured South of New Maintenance Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 18 Comparison between Experimental and Theoretical Dispersion Curves from South of New Maintenance Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 19 Shear Wave Velocity Profile Determined from SASW Test South of New maintenance Building, Little Cottonwood Canyon Water Treatment Plant.

Table 5	Soil Profile from SASW Test South of New Maintenance Building, Little Cottonwood
	Canvon Water Treatment Plant.

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	0.2	2500	4680	145
2	1.3	650	1220	120
3	4.0	800	1500	120
4	5.0	825	1540	120
5	18.0	1600	2990	120
6	30.0	1800	3370	135
7	40.0*	2150	4020	135



Fig. 20 Experimental Dispersion Curve Measured North of New Maintenance Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 21 Comparison between Experimental and Theoretical Dispersion Curves from North of New Maintenance Building, Little Cottonwood Canyon Water Treatment Plant.



Fig. 22 Shear Wave Velocity Profile Determined from SASW Test North of New Maintenance Building, Little Cottonwood Canyon Water Treatment Plant.

Table 6Soil Profile from SASW Test North of New Maintenance Building, Little CottonwoodCanyon Water Treatment Plant.

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	0.2	2500	4680	145
2	1.3	650	1220	120
3	4.0	825	1540	120
4	9.0	875	1640	120
5	18.0	1600	2990	120
6	30.0	1800	3370	135
7	20.0*	2150	4020	135



Fig. 23 Experimental Dispersion Curve Measured East of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.



Fig. 24 Comparison between Experimental and Theoretical Dispersion Curves from East of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.



Fig. 25 Shear Wave Velocity Profile Determined from SASW Test East of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.

Table 7Soil Profile from SASW Test East of Sludge Drying Beds, Little Cottonwood CanyonWater Treatment Plant.

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	0.5	525	980	120
2	1.0	775	1450	120
3	5.5	950	1780	120
4	13.0	1100	2060	120
5	31.0	1600	2990	120
6	50.0	1800	3370	135
7	20.0*	2400	4490	135



Fig. 26 Experimental Dispersion Curve Measured North of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.



Fig. 27 Comparison between Experimental and Theoretical Dispersion Curves from North of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.



Fig. 28 Shear Wave Velocity Profile Determined from SASW Test North of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	0.5	400	750	120
2	1.0	550	1030	120
3	5.5	775	1450	120
4	13.0	1100	2060	120
5	34.0	1600	2990	120
6	55.0	1800	3370	135
7	31.0*	2600	4860	135

Table 8Soil Profile from SASW Test North of Sludge Drying Beds, Little Cottonwood CanyonWater Treatment Plant.



Fig. 29 Experimental Dispersion Curve Measured in Field North of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.



Fig. 30 Comparison between Experimental and Theoretical Dispersion Curves from Field North of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.

25



Fig. 31 Shear Wave Velocity Profile Determined from SASW Test in Field North of Sludge Drying Beds, Little Cottonwood Canyon Water Treatment Plant.

Layer No.	Layer Thickness (ft)	Shear Wave Velocity (ft/sec)	Assumed P-Wave Velocity (ft/sec)	Assumed Unit Weight (lb/ft ³ )
1	2.0	420	790	120
2	6.0	800	1500	120
3	7.0	1350	2530	120
4	14.0	1450	2710	120
5	16.0	1550	2900	120
6	30.0	1600	2990	120
7	30.0	1800	3370	120
8	45.0*	2700	5050	135

 Table 9
 Soil Profile from SASW Test in Field North of Sludge Drying Beds, Little Cottonwood

 Canvon Water Treatment Plant.

## Conclusions

High quality dispersion curves were obtained from field SASW measurements at all of the sited except the site East of the sludge drying beds. This site was on a constructed fill, and there was significant scatter in the dispersion data. The Forward modeling procedure resulted in good matches between experimental and theoretical dispersion. This indicates that shear wave velocity profiles presented should accurately represent the shear wave velocity profiles at each site.

## References

- Ballard, R.F., Jr., "Determination of Soil Shear Moduli at Depth by In Situ Vibratory Techniques," U.S. Army, Corps of Engineers, Waterways Experiment Station, Miscellaneous Paper No. 4-691, December 1964.
- Nazarian, S., "In Situ Determination of Elastic Moduli of Soil Deposits and Pavement Systems by Spectral-Analysis-of-Surface-Waves Method," Ph.D. Dissertation, The University of Texas at Austin, December 1984.
- Stokoe, K.H., II, S. Nazarian, G.J. Rix, I. Sanchez-Salinero, J.-C. Sheu and Y.-J. Mok, "In Situ Seismic Testing of Hard-to-Sample Soils by Surface Wave Method," *Proceedings*, American Society of Civil Engineers, Specialty Conference on Earthquake Engineering and Soil Dynamics II - Recent Advances in Ground Motion Evaluation, Park City, Utah, June 1988, pp. 264-278.
- Stokoe, K.H., II, Wright, S.G., Bay, J.A. and Roesset, J.M., "Characterization of Geotechnical Sites by SASW Method," <u>Technical Report: Geophysical Characterization</u> of <u>Sites</u>, ISSMFE Technical Committee 10, edited by R.D. Woods, Oxford Publishers. Presented at the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, January 1994.
- Kausel, E. and Roesset, J.M., "Stiffness Matrices for layered Soils," Bulletin of Scismological Society of America, Vol. 71, No. 6, PP 1743-1761, December 1981.

Respectfully Submitted

James A. Bay, M.S.C.E.

Kenneth H. Stokoe II, Ph.D., P.E.



Metro water plant data (Bay and others, 2003)

t1	layer thicknVs 0.25 1.75 5 18 24	s (ft/s) 3000 700 650 935 900	b/c 8.33333E-05 0.0025 0.007692308 0.019251337 0.026666667		t1	layer thick 0.25 1.75 5 18 24	Vs (ft/s) 3000 700 650 935 900	b/c 8.33333E-05 0.0025 0.007692308 0.019251337 0.026666667	
	100 30.48	2500	0.076593645			100	2500	0.0204	
	Vs	smean	1305.6	397.9			Vs30	1305.6	397.9
t2	0.2 1.3 6.5 17 20 30 75	2500 425 700 825 1600 1800 3200	0.00008 0.003058824 0.009285714 0.020606061 0.0125 0.016666667 0.0234375		t2	0.2 1.3 6.5 17 20 30 25	2500 425 700 825 1600 1800 3200	0.00008 0.003058824 0.009285714 0.020606061 0.0125 0.016666667 0.0078125	
	150		0.085634765			100		0.070009765	
	45.72 Vs	smean	1751.6	533.9			Vs30	1428.4	435.4
t3	0.2 1.3 6.5 10 20 30 42	3000 500 700 825 1600 1800 2400	6.66667E-05 0.0026 0.009285714 0.012121212 0.0125 0.016666667 0.0175		t3	0.2 1.3 6.5 10 20 30 32	3000 500 700 825 1600 1800 2400	6.66667E-05 0.0026 0.009285714 0.012121212 0.0125 0.016666667 0.013333333	
	110 33 528		0.07074026			100		0.066573593	
	Vs	smean	1555.0	474.0			Vs30	1502.1	457.8
t4	0.15 1.85 6 7 14 16 30 30 75	2400 500 750 1200 1300 1400 1600 1700 3000	0.0000625 0.0037 0.008 0.005833333 0.010769231 0.011428571 0.01875 0.017647059 0.025		t4	0.15 1.85 6 7 14 16 30 25	2400 500 750 1200 1300 1400 1600 1700	0.0000625 0.0037 0.008 0.005833333 0.010769231 0.011428571 0.01875 0.014705882	
	180 54.864 Vs	mean	0.101190694 <b>1778 8</b>	542 2		100	Vs30	1365.2	416.1
t5	0.2 1.3 4 5 18 30 40	2500 650 800 825 1600 1800 2150	0.00008 0.002 0.005 0.006060606 0.01125 0.016666667 0.018604651		t5	0.2 1.3 4 5 18 30 41.5	2500 650 800 825 1600 1800 2150	0.00008 0.002 0.005 0.006060606 0.01125 0.016666667 0.019302326	
	30.0228 Vs	smean	1651.0	503.2		** actual t	otal depth 9 Vs30	98.5	505.0

	45.72 Vs	mean	1675.8	<u>510.8</u>		· ·	530	1427.3	435.0
	150		0.089508176			100		0.070063732	407.5
	45	2700	0.016666667			100	-	0 070062722	
	30	1800	0.0166666667			25	1800	0.013888889	
	16 30	1550 1600	0.010322581			16 รถ	1550 1600	0.010322581	
	14	1450	0.009655172			14	1450	0.009655172	
	7	1350	0.005185185			7	1350	0.005185185	
	6	800	0.0075			6	800	0.0075	
t9	2	420	0 004761905		t9	2	420	0 004761905	
	42.672 <b>Vs</b>	mean	1633.4	497.9		V	/s30	1453.7	443.1
	140		0.08571177						
	31	2600	0.011923077			100		0.068788693	
	55	1800	0.030555556			46	1800	0.025555556	
	34	1600	0.02125			34	1600	0.02125	
	5.5 13	1100 1	0.007096774			5.5 13	1100 1	0.007090774	
	1	550 775	0.001818182			1 5 5	550 775	0.001818182	
t8	0.5	400	0.00125		t8	0.5	400	0.00125	
	¥ 3	inean	1000.1	409.5					
	36.8808	moan	1606 1	189 5		V	/s30	1504.9	458.7
	121		0.07533647			100		0.000447581	
	20	2400	0.008333333			400		0.000447504	
	50	1800	0.027777778			49	1800	0.027222222	
	13 31	1600	0.01010102			13 31	1600	0.019375	
	5.5	950	0.005789474			5.5	950	0.005789474	
	_ 1	775	0.001290323			_ 1	775	0.001290323	
t7	0.5	525	0.000952381		t7	0.5	525	0.000952381	
	Vs	mean	1515.6	462.0		V	/s̀30	[′] 1515.6	462.0
	82.5 25.146		0.054433191			82.5 ** not vs30	(too shall	0.054433191 ow)	
•	00.5		0.054400404			00 5		0.054400404	
	30 20	2150	0.009302326			30 20	2150	0.009302326	
	18	1600	0.01125			18	1600	0.01125	
	9	875	0.010285714			9	875	0.010285714	
	4	825	0.004848485			4	825	0.004848485	
10	0.2	2500	0.00008		16	0.2	2500	0.00008	
	0.0	0500	0 00000		10	0.0	0500	0 00000	

Vs30 of mean plot			Vs30 of mean plot						
depth thick	kness Vs								
0	1	600	0.001666667						
1	6	780	0.007692308		depth thi	ckness Vs			
7	1	890	0.001123596		0	1	600	0.001666667	
8	2	1010	0.001980198		1	6	780	0.007692308	
10	5	1200	0.004166667		7	1	890	0.001123596	
15	5	1210	0.004132231		8	2	1010	0.001980198	
20	5	1350	0.003703704		10	5	1200	0.004166667	
25	5	1500	0.003333333		15	5	1210	0.004132231	
30	15	1520	0.009868421		20	5	1350	0.003703704	
45	5	1780	0.002808989		25	5	1500	0.003333333	
50	5	1810	0.002762431		30	15	1520	0.009868421	
55	5	1860	0.002688172		45	5	1780	0.002808989	
60	15	1900	0.007894737		50	5	1810	0.002762431	
75	25	2130	0.011737089		55	5	1860	0.002688172	
100	5	2190	0.002283105		60	15	1900	0.007894737	
105	15	2610	0.005747126		75	25	2130	0.011737089	
120	20	2670	0.007490637		100				
140	10	2960	0.003378378						
150						100		0.065558542	
	150 45.72		0.084457788		Vs	30	1525.4	464.9	
Vs3	0	1776.0	541.3						



## Preliminary Results of SASW Tests

1 49 - 200 51 -

<u>Site 109 – Beehive Ball Park, American Fork</u>



Fig 1 Experimental Dispersion Curve measured at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)



Comparison between Experimental & Theoretical Dispersion Curves at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)



Shear Wave Velocity Profile Determined from SASW Testing at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Shear Wave Velocity Profile from Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	182.90	342.1	1.92
0.61	0.91	243.80	456.2	1.92
1.52	2.74	304.80	570.2	2
4.26	1.52	228.60	399.2	1.92
5.78 ^a	1.22	269.70	1524	1.92
7	3.96	274.30	1524	1.92
10.96	7.62	297.20	1524	1.92
18.58	7.62	396.20	1524	2
26.2	30.18 ^b	914.40	1524	2.08

a. Depth to water table from Refraction Testingb. Half-space in model



Fig 2 Arrival Times for Refraction Testing at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)


Fig 3 Time-Distance Curve for Refraction Testing at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	5.45 ^a	520.26	278.09
2		1528.13	

Tabulated Refraction Profile from Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Depth of fully saturated zone

# <u>Q02</u>

Table of Contents

Q02	1
Site 109 – Beehive Ball Park, American Fork	2
Site 28, Utah Youth Sports Complex, West Jordan	7
Site 12, Riverton City Hall / Park	
Site 123, Liberty Park	15
Site 124, Ogden Lions Club Park	
Site 107, Orem City Park	
Site 37, Highland Park Elementary	
Site: 128, Tolman Elementary	
Site: 127, Bountiful City Park	
Site 46, Deseret Academy	
Site: 40, Applied Technology School, East Millcreek	
Site 3, Draper Elementary	43
Site: 302, Swire Coca-Cola	
Site: 14, Rose Creek Elementary	
Site: 27, Copper Hills High School	54
Site: 125, Dee Memorial Park	57
Site: 13, Riverton City Park	60
Site: 43, Crestview Elementary	65

<u>Site 109 – Beehive Ball Park, American Fork</u>



Fig 1 Experimental Dispersion Curve measured at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)



Comparison between Experimental & Theoretical Dispersion Curves at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)



Shear Wave Velocity Profile Determined from SASW Testing at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Shear Wave Velocity Profile from Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	182.90	342.1	1.92
0.61	0.91	243.80	456.2	1.92
1.52	2.74	304.80	570.2	2
4.26	1.52	228.60	399.2	1.92
5.78 ^a	1.22	269.70	1524	1.92
7	3.96	274.30	1524	1.92
10.96	7.62	297.20	1524	1.92
18.58	7.62	396.20	1524	2
26.2	30.18 ^b	914.40	1524	2.08

a. Depth to water table from Refraction Testingb. Half-space in model



Fig 2 Arrival Times for Refraction Testing at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 3 Time-Distance Curve for Refraction Testing at Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	5.45 ^a	520.26	278.09
2		1528.13	

Tabulated Refraction Profile from Beehive Ball Park, American Fork, Site 109, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Depth of fully saturated zone

Site 28, Utah Youth Sports Complex, West Jordan



Fig 4 Experimental Dispersion Curve measured at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 5 Comparison between Experimental & Theoretical Dispersion Curves from Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 6 Shear Wave Velocity Profile Determined from SASW Testing at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	117.4	219.50	1.89
0.3	0.24	53.3	99.80	1.89
0.54	1.37	170.7	319.30	1.92
1.91	2.74	259.1	484.70	1.92
4.65	3.96	304.8	570.20	2
8.61	6.1	426.7	798.30	2
14.71	7.62	442	826.90	2
22.33 ^a	7.01	472.4	1524.00	2
29.34	30.18 ^b	640.1	1524.00	2.08

Table 1 Tabulated Shear Wave Velocity Profile from Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Depth to fully saturated zone from Refraction testing



Fig 7 Arrival Times for Refraction Testing at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 8 Time-Distance Curve for Refraction Testing at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Refraction Profile from Utah	Youth Sports Complex	, West Jordan, Site 2	28,
Earthquake Site Response Unit Q02 (As	hland, 2001)		
		Estimated Shear	
Denth from Surface		Wave Velocity	

	Depth from Surface		Wave Velocity
Segment	to Velocity Change	P-wave Velocity	assuming $v = 0.3$
	(m)	(m/s)	(m/s)
1	8.03	429.37	229.51
2	23.20 ^a	959.34	512.79
3		1561	

a. Depth to fully saturated zone





Fig 9 Experimental Dispersion Curve measured at Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 10 Comparison between Experimental & Theoretical Dispersion Curves from Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 11 Shear Wave Velocity Profile Determined from SASW Testing at Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 2 Tabulated Shear Wave Velocity Profile from Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.38	106.7	199.6	1.89
0.38	1.14	106.7	199.6	1.89
1.52	1.52	131.1	245.2	1.92
3.04	2.44	144.8	270.9	1.89
5.48	2.13	190.5	356.4	1.92
7.61	1.52	228.6	427.7	1.92
9.13	4.57	281.9	527.5	1.92
13.7 ^a	7.62	320	1524	2
21.32	7.62	396.2	1524	2
28.94	30.18 ^b	502.9	1524	2

a. Assumed depth to fully saturated zone

## Site 123, Liberty Park



Fig 12 Experimental Dispersion Curve measured at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 13 Comparison between Experimental & Theoretical Dispersion Curves from Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 14 Shear Wave Velocity Profile Determined from SASW Testing at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 3 Tabulated Shear Wave Velocity Profile from Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.41	91.40	171.1	1.89
0.41	0.84	137.20	256.6	1.89
1.25	0.91	166.10	310.8	1.92
2.16	2.44	178.30	333.6	1.92
4.6 ^a	4.57	179.80	1524	1.92
9.17	3.05	182.90	1524	1.92
12.22	3.05	184.40	1524	1.92
15.27	7.62	198.10	1524	1.92
22.89	7.62	228.60	1524	1.92
30.51	30.18 ^b	304.80	1524	2

a. Depth to fully saturated zone from Refraction Testing



Arrival Times for Refraction Testing at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)



Time-Distance Curve for Refraction Testing at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 4 Tabulated Refraction Profile from Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change	P-wave Velocity	assuming $v = 0.3$ (m/s)
1	5.27 ^a	433.44	231.69
2		1197.83	

a. Depth to fully saturated zone





Fig 15 Experimental Dispersion Curve measured at Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 16 Comparison between Experimental & Theoretical Dispersion Curves from Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 17 Shear Wave Velocity Profile Determined from SASW Testing at Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland, 2001)

14	24, Eartiquake Site Response Onit Q02 (Asinand, 2001)					
	Depth to			Assumed P-		
	Top of		Shear Wave	Wave	Assumed	
	Layer	Layer	Velocity	Velocity	Unit Weight	
	(m)	Thickness (m)	(m/s)	(m/s)	(t/m ³ )	
	0	0.3	147.8	276.6	1.89	
	0.3	0.67	221	413.4	1.92	
	0.97	1.52	225.6	422	1.92	
	2.49	0.91	198.1	370.6	1.92	
	3.4	1.83	182.9	342.1	1.92	
	5.23	2.9	169.2	316.5	1.92	
	8.13 ^a	4.57	161.5	1524	1.92	
	12.7	7.62	198.1	1524	1.92	
	20.32	9.14	248.4	1524	1.92	
	29.46	6.1	259.1	1524	1.92	
	35.56	6.1	274.3	1524	1.92	
	41.66	30.18 ^b	365.8	1524	2.00	

Table 5 Tabulated Shear Wave Velocity Profile from Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland. 2001)

a. Assumed depth to fully saturated zoneb. Half-space in model



Fig 18 Experimental Dispersion Curve measured at Orem City Center Park, Orem, Site 107, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 19 Comparison between Experimental & Theoretical Dispersion Curves from Orem City Center Park, Orem, Site 107, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 20 Shear Wave Velocity Profile Determined from SASW Testing at Orem City Center Park, Orem, Site 107, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 6 Tabulated Shear Wave Velocity Profile from Orem City Center Park, Orem, Site107, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.46	137.2	256.7	1.89
0.46	1.04	243.8	456.1	1.92
1.5	0.73	301.8	564.5	1.92
2.23	2.44	347.5	650.1	2
4.67	1.83	373.4	698.5	2
6.5	4.57	388.6	727	2
11.07	6.1	335.3	627.3	2
17.17	7.62	304.8	570.2	2
24.79	12.19	330.7	618.7	2
36.98	30.18 ^a	457.2	855.3	2





Fig 21 Experimental Dispersion Curve measured at Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 22 Comparison between Experimental & Theoretical Dispersion Curves from Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 23 Shear Wave Velocity Profile Determined from SASW Testing at Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-			
Top of	Layer	Shear Wave	Wave	Assumed		
Layer	Thickness	Velocity	Velocity	Unit Weight		
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$		
0	0.3	121.9	228.1	1.89		
0.3	0.61	129.5	242.4	1.89		
0.91	2.13	176.8	330.7	1.92		
3.04	1.52	243.8	456.2	1.92		
4.56	6.1	281.9	527.5	1.92		
10.66	1.22	411.5	769.8	2		
11.88	2.44	457.2	855.3	2		
14.32	2.44	487.7	869.6	2		
16.76	6.1	495.3	926.6	2		
22.86	6.1	502.9	940.9	2		
28.96	6.1	533.4	997.9	2		
35.06	5.49	609.6	1140.5	2		
40.55	6.1	670.6	1254.5	2.08		
46.65	30.18 ^a	731.5	1368.6	2.08		
Julif angage in model						

Table 7 Tabulated Shear Wave Velocity Profile from Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)

#### Site: 128, Tolman Elementary



Fig 24 Experimental Dispersion Curve measured at Tolman Elementary, Bountiful, Site 128, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 25 Comparison between Experimental & Theoretical Dispersion Curves from Tolman Elementary, Bountiful, Site 128, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 26 Shear Wave Velocity Profile Determined from SASW Testing at Tolman Elementary, Bountiful, Site 128, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 8 Tabulated Shear Wave Velocity Profile from Tolman Elementary, Bountiful, Site128, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	91.4	171.1	1.89
0.3	0.61	152.4	285.1	1.92
0.91	2.13	198.1	370.6	1.92
3.04	2.44	213.4	399.2	1.92
5.48	3.05	251.5	470.4	1.92
8.53 ^a	4.57	274.3	1524	1.92
13.1	7.62	297.2	1524	1.92
20.72	7.62	350.5	1524	2
28.34	7.62	381	1524	2
35.96	9.14	487.7	1524	2
45.1	30.18 ^b	609.6	1524	2.08

a. Assumed depth to fully saturated zoneb. Half-space in model

### Site: 127, Bountiful City Park



Fig 27 Experimental Dispersion Curve measured at Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 28 Comparison between Experimental & Theoretical Dispersion Curves from Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 29 Shear Wave Velocity Profile Determined from SASW Testing at Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	99.1	185.3	1.89
0.3	0.61	144.8	270.9	1.89
0.91	2.13	160	299.4	1.92
3.04	3.05	190.5	356.4	1.92
6.09	2.13	274.3	513.2	1.92
8.22	2.13	381	712.8	2
10.35 ^a	7.32	396.2	1524	2
17.67	9.14	426.7	1524	2
26.81	1.22	579.1	1524	2
28.03	4.57	731.5	1524	2.08
32.6	30.18 ^b	975.4	1524	2.08

Table 9 Tabulated Shear Wave Velocity Profile from Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Assumed depth to fully saturated zone

## Site 46, Deseret Academy



Fig 30 Experimental Dispersion Curve measured at Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 31 Comparison between Experimental & Theoretical Dispersion Curves from Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)


Fig 32 Shear Wave Velocity Profile Determined from SASW Testing at Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 10 Tabulated Shear Wave Velocity Profile from Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.46	106.7	199.6	1.89
0.46	0.91	121.9	228.1	1.89
1.37	1.83	169.2	316.5	1.92
3.2	2.74	213.4	399.2	1.92
5.94	2.74	243.8	456.2	1.92
8.68	5.49	297.2	556	1.92
14.17	9.14	335.3	627.3	2
23.31 ^a	6.1	350.5	1524	2
29.41	4.57	353.6	1524	2
33.98	4.57	358.1	1524	2
38.55	6.1	373.4	1524	2
44.65	30.18 ^b	670.6	1524	2.08

Site: 40, Applied Technology School, East Millcreek



Fig 33 Experimental Dispersion Curve measured at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 34 Comparison between Experimental & Theoretical Dispersion Curves from Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 35 Shear Wave Velocity Profile Determined from SASW Testing at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 11 Tabulated Shear Wave Velocity Profile from Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.15	114.3	213.9	1.89
0.15	0.46	121.9	228.1	1.89
0.61	0.91	137.2	256.6	1.89
1.52	3.05	167.6	313.6	1.92
4.57	4.57	221	413.4	1.92
9.14	1.52	266.7	499	1.92
10.66	3.05	304.8	570.2	2
13.71	7.62	350.5	655.8	2
21.33	7.62	403.9	755.6	2
28.95	7.62	548.6	1026.3	2
36.57	30.18 ^b	1069.9 ^a	2001.5	2.08

a. Refraction velocity



Fig 36 Arrival Times for Refraction Testing at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 37 Time-Distance Curve for Refraction Testing at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabula	ted Refraction	Profile from	Applied	Technology	School,	East Millcreek,	Site 40,
Earthq	uake Site Resp	oonse Unit Q0	2 (Ashla	und, 2001)			

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	10.76	305.65	163.38
2	26.65	918.02	490.70
3		2001.60	1069.90

## Site 3, Draper Elementary



Fig 38 Experimental Dispersion Curve measured at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 39 Comparison between Experimental & Theoretical Dispersion Curves from Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 40 Shear Wave Velocity Profile Determined from SASW Testing at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 12 Tabulated Shear Wave Velocity Profile from Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.38	94.5	176.8	1.89
0.38	0.61	114.3	213.9	1.89
0.99	1.52	129.5	242.4	1.89
2.51	2.06	167.6	313.6	1.92
4.57 ^a	3.05	166.1	1524	1.92
7.62	7.62	228.6	1524	1.92
15.24	6.1	259.1	1524	1.92
21.34	10.67	304.8	1524	2.00
32.01	30.18 ^b	609.6	1524	2.08

a. Depth to fully saturated zone from Refraction results



Fig 41 Arrival Times for Refraction Testing at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 42 Time-Distance Curve for Refraction Testing at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Refraction Profile from Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Gaaraat	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
Segment	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	5.67 ^a	380.63	203.46
2		1654.12	

a. Depth to fully saturated zone



Fig 43 Experimental Dispersion Curve measured at Swire Coca-Cola, Draper, Site 302, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 44 Comparison between Experimental & Theoretical Dispersion Curves Swire Coca-Cola, Draper, Site 302, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 45 Shear Wave Velocity Profile Determined from SASW Testing at Swire Coca-Cola, Draper, Site 302, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 13 Tabulated Shear Wave Velocity Profile from Swire Coca-Cola, Draper, Site302, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	137.2	256.6	1.89
0.3	0.61	144.8	270.9	1.89
0.91	2.13	149.4	279.4	1.89
3.04	1.52	182.9	342.1	1.92
4.56	1.52	213.4	399.2	1.92
6.08 ^a	3.05	228.6	1524	1.92
9.13	7.62	243.8	1524	1.92
16.75	7.62	251.5	1524	1.92
24.37	10.67	274.3	1524	1.92
35.04	30.18 ^b	457.2	1524	2

Site: 14, Rose Creek Elementary



Fig 46 Experimental Dispersion Curve measured at Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 47 Comparison between Experimental & Theoretical Dispersion Curves from Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 48 Shear Wave Velocity Profile Determined from SASW Testing at Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.15	106.7	199.6	1.89
0.15	0.46	121.9	228.1	1.89
0.61	0.84	163.1	305.1	1.92
1.45	1.52	221	413.4	1.92
2.97	3.05	266.7	499	1.92
6.02	6.1	335.3	627.3	2
12.12	7.62	396.2	741.2	2
19.74	6.1	426.7	798.3	2
25.84 ^a	6.1	464.8	1524	2
31.94	4.57	495.3	1524	2
36.51	4.57	518.2	1524	2
41.08	5.49	579.1	1524	2
46.57	30.18 ^b	670.6	1524	2.08

Table 14 Tabulated Shear Wave Velocity Profile from Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Assumed depth to fully saturated zone





Fig 49 Experimental Dispersion Curve measured at Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 50 Comparison between Experimental & Theoretical Dispersion Curves from Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 51 Shear Wave Velocity Profile Determined from SASW Testing at Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.37	96	179.6	1.89
0.37	0.46	146.3	273.7	1.89
0.83	0.7	207.3	387.8	1.92
1.53	1.49	297.2	556	1.92
3.02	1.52	365.8	684.3	2
4.54	3.05	403.9	755.5	2
7.59	4.57	469.4	878.2	2
12.16	10.67	477	892.4	2
22.83 ^a	7.62	481.6	1524	2
30.45	7.62	518.2	1524	2
38.07	6.1	548.6	1524	2
44.17	30.18 ^b	609.6	1524	2.08

Table 15 Tabulated Shear Wave Velocity Profile from Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Assumed depth to fully saturated zone

## Site: 125, Dee Memorial Park



Fig 52 Experimental Dispersion Curve measured at Dee Memorial Park, Ogden, Site 125, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 53 Comparison between Experimental & Theoretical Dispersion Curves from Dee Memorial Park, Ogden, Site 125, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 54 Shear Wave Velocity Profile Determined from SASW Testing at Dee Memorial Park, Ogden, Site 125, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 16 Tabulated Shear Wave Velocity Profile from Dee Memorial Park, Ogden, Site125, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	160	285.1	1.92
0.3	0.69	167.6	313.6	1.92
0.99	0.61	222.5	416.3	1.92
1.6	0.61	236.2	441.9	1.92
2.21	3.05	221	413.4	1.92
5.26	6.1	208.8	390.6	1.92
11.36	6.1	199.6	373.5	1.92
17.46 ^a	7.62	192	1524	1.92
25.08	6.1	198.1	1524	1.92
31.18	30.18 ^b	350.5	1524	2

## Site: 13, Riverton City Park



Fig 55 Experimental Dispersion Curve measured at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 56 Comparison between Experimental & Theoretical Dispersion Curves from Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 57 Shear Wave Velocity Profile Determined from SASW Testing at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Shear Wave Velocity Profile from Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	121.9	228.10	1.89
0.3	0.91	89.9	168.20	1.89
1.21	0.91	146.3	273.70	1.89
2.12	2.29	182.9	342.10	1.92
4.41	5.49	259.1	484.70	1.92
9.9	6.1	312.4	584.50	2
16 ^a	6.1	365.8	1524.00	2
22.1	6.1	411.5	1524.00	2
28.2	6.1	472.4	1524.00	2
34.3	4.57	518.2	1524.00	2
38.87	30.18 ^b	609.6	1524.00	2.08

a. Depth to fully saturated zone



Fig 58 Arrival Times for Refraction Testing at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 59 Time-Distance Curve for Refraction Testing at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Refrac	ction Profile for Rivert	on Park, Riverton,	Site 13, Earthqua	ake Site
Resp <u>onse</u> Unit Q	002 (Ashland, 2001)		_	

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	4 47	283 74	151.67
-	,	203.71	101.07
2	16.80 ^a	663.66	354.74
3		1241.33	

a. Depth to fully saturated zone





Fig 60 Experimental Dispersion Curve measured at Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 61 Comparison between Experimental & Theoretical Dispersion Curves from Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 62 Shear Wave Velocity Profile Determined from SASW Testing at Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 17 Tabulated Shear Wave Velocity Profile for Average Profile from Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.15	91.4	171.1	1.89
0.15	0.46	118.9	222.4	1.89
0.61	0.91	163.1	305.1	1.92
1.52	3.05	178.3	333.6	1.92
4.57	2.44	198.1	370.6	1.92
7.01	3.05	243.8	456.2	1.92
10.06	3.05	281.9	527.5	1.92
13.11	3.05	297.2	556	1.92
16.16	4.57	365.8	684.3	2
20.73 ^a	5.49	457.2	1524	2
26.22	4.57	640.1	1524	2.08
30.79	30.18 ^b	762	1524	2.08

## <u>Q03</u>

Table of Contents

Q03	1
Site 300 – Hang-Glider	
Site 301 – Herriman Lot	7
Site 96 – Cedar Valley, County Road	
Site 105, Eagle Mountain, Cedar Valley	
Site 203, Barney's Wash Baseball Field	
Site 69, White City Park, Salt Lake County	
Site: 85, Granite Park	
Site 72, Buttercup Park	
Site 238, Lambert Park	
Site: 112, Alpine City Park	
Site 131, Oak Hills Elementary	
Site: 134, Eastwood Elementary	
Site 84, Park Lane Elementary	
Site 19, Salt Lake County Fire Tower	
Site: 33, Herriman Elementary	





Figure 1 Experimental Dispersion Curve measured at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 2 Comparison between Experimental & Theoretical Dispersion Curves from North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 3 Shear Wave Velocity Profile Determined from SASW Testing at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	128	239.5	1.89
0.61	1.22	140.2	262.3	1.89
1.83	1.52	160	299.4	1.92
3.35	2.74	221	413.4	1.92
6.09	3.05	335.3	627.3	2.00
9.14	4.57	365.8	684.3	2.00
13.71	6.1	396.2	741.3	2.00
19.81	7.62	426.7	812.6	2.00
27.43	30.18 ^a	485 ^b	907.4	2.00

Table 1 Tabulated Shear Wave Velocity Profile from North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

a. Half-space in model

b. Refraction velocity


Fig 1 Arrival Times for Refraction Testing at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland 2001)



Fig 2 Time-Distance Curve for Refraction Testing at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 2 Tabulated Refraction Profile from North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	4.18	253.68	135.60
2	16.39	452.45	241.84
3	59.55	908.76	485.75
4		2600.71	1390.14



Figure 4 Experimental Dispersion Curve measured at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 5 Comparison between Experimental & Theoretical Dispersion Curves from Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 6 Shear Wave Velocity Profile Determined from SASW Testing at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	91.4	171.1	1.89
0.3	0.61	137.2	256.6	1.89
0.91	0.61	167.6	313.6	1.92
1.52	1.52	249	465.9	1.92
3.04	2.13	289.6	541.7	2
5.17	5.18	358.1	670	2
10.35	5.18	457.2	855.3	2
15.53	7.62	502.9	940.9	2
23.15	30.18 ^a	685 ^b	1281.5	2.08

Table 3 Tabulated Shear Wave Velocity Profile from Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)

a. Half-space in modelb. Refraction velocity



Figure 7 Arrival Times for Refraction Testing at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 8 Time-Distance Curve for Refraction Testing at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 4 Tabulated Refraction Profile fr	om Herriman Lot	, Riverton, Sit	te 301, Earthquak	e
Site Response Unit Q03 (Ashland, 200	1)			

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	20.05	641.40	342.84
2	46.79	1282.20	685.36
3		5985.873	3199.5839 ^a

a. Bedrock velocity





Fig 3 Experimental Dispersion Curve measured at Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 4 Comparison between Experimental & Theoretical Dispersion Curves from Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 5 Shear Wave Velocity Profile Determined from SASW Testing at Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.53	121.9	228.1	1.89
0.53	0.15	91.4	171.1	1.89
0.68	1.22	259.1	484.7	1.92
1.9	3.35	304.8	570.2	2
5.25	3.05	411.5	769.8	2
8.3	6.1	502.9	940.9	2
14.4	7.62	594.4	1111.9	2
22.02	8.38	670.6	1254.5	2.08
30.4	12.19	762	1425.6	2.08
42.59	30.18 ^a	868.7	1625.2	2.08

Table 5 Tabulated Shear Wave Velocity Profile from Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)





Fig 6 Experimental Dispersion Curve measured at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 7 Comparison between Experimental & Theoretical Dispersion Curves at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 8 Shear Wave Velocity Profile Determined from SASW Testing Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 6 Tabulated Shear Wave Velocity Profile from Eagle Mountain, Cedar Valley, Site105, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.26	137.2	256.60	1.89
0.26	0.91	259.1	484.70	1.92
1.17	1.87	335.3	627.30	2
3.04	1.83	358.1	670.00	2
4.87	4.57	457.2	855.30	2
9.44	4.57	548.6	1026.40	2
14.01	5.18	571.5	1069.20	2
19.19	6.1	609.6	1140.50	2.08
25.29	7.62	640.1	1197.50	2.08
32.91	7.62	792.5	1482.60	2.08
40.53	30.18 ^a	952.5	1782.00	2.08



Fig 9 Arrival Times for Refraction Testing at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 10 Time-Distance Curve for Refraction Testing at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 7 Tabulated Refraction Profile from Eagle Mountain	, Cedar	Valley,	Site 1	05,
Earthquake Site Response Unit Q03 (Ashland, 2001)				

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	3.05	390.14	208.54
2	9.64	547.59	292.70
3	33.46	1132.32	605.25
4		1623.69	867.90

Site 203, Barney's Wash Baseball Field



Fig 11 Experimental Dispersion Curve measured at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 12 Comparison between Experimental & Theoretical Dispersion Curves from Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 13 Shear Wave Velocity Profile Determined from SASW Testing at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Laver	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	140.20	262.3	1.89
0.3	0.69	243.80	456.2	1.92
0.99	1.45	333.80	624.4	2
2.44	2.44	399.30	747	2
4.88	2.44	492.30	920.9	2
7.32	4.57	513.60	960.8	2
11.89 ^a	7.62	518.20	1524	2
19.51	6.1	548.60	1524	2
25.61	7.62	586.70	1524	2
33.23	7.62	617.20	1524	2.08
40.85	6.1	647.70	1524	2.08
46.95	7.62	670.60	1524	2.08
54.57	30.18 ^b	975.40	1524	2.08

Table 8 Tabulated Shear Wave Velocity Profile from Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)

a. Depth to fully saturated zone from Refraction Testing



Fig 14 Arrival Times for Refraction Testing at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 15 Time-Distance Curve for Refraction Testing at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile from Barney's Wash Baseball Field,	West Jordan, Site 20	3,
Earthquake Site Response Unit Q03 (Ashland, 2001)		

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
	()	( 2)	(, 2)
1	4.26	400.14	213.89
2	11.75 ^a	852.37	455.61
3		1193.93	

a. Depth of fully saturated zone

Site 69, White City Park, Salt Lake County



Fig 16 Experimental Dispersion Curve measured at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 17 Comparison between Experimental & Theoretical Dispersion Curves from White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 18 Shear Wave Velocity Profile Determined from SASW Testing at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 9 Tabulated Shear Wave Velocity Profile from White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	114.30	213.9	1.89
0.61	0.76	167.60	313.6	1.92
1.37	2.44	213.40	399.2	1.92
3.81	4.72	251.50	470.4	1.92
8.53	7.62	304.80	570.2	2
16.15	6.1	335.30	627.3	2
22.25	6.1	365.80	684.4	2
28.35	10.67	381.00	712.8	2
39.02	30.18 ^a	518.20	969.4	2



Fig 19 Arrival Times for Refraction Testing at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 20 Time-Distance Curve for Refraction Testing at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile for White City Park, Salt Lake County, Site 6	9, Earthquake
Site Response Unit Q03 (Ashland, 2001)	

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	4.34	289.00	154.48
2		643.25	343.83

## Site: 85, Granite Park



Fig 21 Experimental Dispersion Curve measured at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 22 Comparison between Experimental & Theoretical Dispersion Curves from Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 23 Shear Wave Velocity Profile Determined from SASW Testing at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 10 Tabulated Shear Wave Velocity Profile from Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	152.4	285.1	1.92
0.61	0.91	161.5	302.2	1.92
1.52	4.88	210.3	393.5	1.92
6.4	0.91	295.7	553.1	1.92
7.31	3.96	297.2	556	1.92
11.27 ^a	6.1	304.8	1524	2
17.37	4.57	335.3	1524	2
21.94	10.67	381	1524	2
32.61	7.62	563.9	1524	2
40.23	30.18 ^b	609.6	1524	2.08

a. Depth to fully saturated zone from Refraction testing



Fig 24 Arrival Times for Refraction Testing at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 25 Time-Distance Curve for Refraction Testing at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 11	Tabulated	Refraction	Profile	from	Granite	Park,	Sandy,	Site 85	, Earthquak	e Site
Respons	e Unit Q03	(Ashland,	2001)							

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	5.95	659.41	352.47
2	8.62 ^a	1156.56	618.21
3		1521.12	

a. Depth to fully saturated zone

## Site 72, Buttercup Park



Fig 26 Experimental Dispersion Curve measured at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 27 Comparison between Experimental & Theoretical Dispersion Curves from Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 28 Shear Wave Velocity Profile Determined from SASW Testing at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 12 Tabulated Shear Wave Velocity Profile from Buttercup Park, Sandy, Site 72,Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	106.7	199.6	1.89
0.3	0.84	134.1	250.9	1.89
1.14	1.98	172.2	322.2	1.92
3.12	4.57	228.6	427.7	1.92
7.69	5.18	251.5	470.4	1.92
12.87	10.67	281.9	527.5	1.92
23.54	30.18 ^a	335.3	627.3	2



Fig 29 Arrival Times for Refraction Testing at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 30 Time-Distance Curve for Refraction Testing at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile from Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	9.29	314.07	167.88
2	17.28	464.45	248.26
3	51.12	702.89	375.71
4		1300.34	695.06

## Site 238, Lambert Park



Fig 31 Experimental Dispersion Curve measured at Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 32 Comparison between Experimental & Theoretical Dispersion Curves from Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)


Fig 33 Shear Wave Velocity Profile Determined from SASW Testing at Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 13 Tabulated Shear Wave Velocity Profile from Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.15	96	179.6	1.89
0.15	0.46	121.9	228.1	1.89
0.61	1.3	216.4	404.9	1.92
1.91	1.22	291.1	544.6	1.92
3.13	3.05	320	598.8	2
6.18	4.57	388.6	727	2
10.75	7.01	426.7	798.3	2
17.76	2.44	579.1	1083.4	2
20.2	30.18 ^a	792.5	1482.6	2.08

# Site: 112, Alpine City Park



Fig 34 Experimental Dispersion Curve measured at Alpine City Park, Site 112, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 35 Comparison between Experimental & Theoretical Dispersion Curves from Alpine City Park, Site 112, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 36 Shear Wave Velocity Profile Determined from SASW Testing at Alpine City Park, Site 112, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 14 Tabulated Shear Wave Velocity Profile from Alpine City Park, Site 112,Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	121.9	228.1	1.89
0.3	0.61	152.4	285.1	1.92
0.91	1.52	228.6	427.7	1.92
2.43	3.05	274.3	513.2	1.92
5.48	3.96	298.7	558.8	1.92
9.44	4.57	381	712.8	2
14.01	7.62	426.7	798.3	2
21.63	5.18	455.7	852.5	2
26.81	9.14	548.6	1026.4	2
35.95	30.18 ^a	853.4	1596.6	2.08

#### Site 131, Oak Hills Elementary



Fig 37 Experimental Dispersion Curve measured at Oak Hills Elementary, Bountiful, Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 38 Comparison between Experimental & Theoretical Dispersion Curves from Oak Hills Elementary, Bountiful, Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 39 Shear Wave Velocity Profile Determined from SASW Testing at Oak Hills Elementary, Bountiful, Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)

 Table 15 Tabulated Shear Wave Velocity Profile from Oak Hills Elementary, Bountiful,

 Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	97.5	182.5	1.89
0.3	0.61	129.5	242.4	1.89
0.91	1.52	182.9	342.1	1.92
2.43	3.66	213.4	399.2	1.92
6.09	4.57	243.8	456.2	1.92
10.66	3.66	266.7	499	1.92
14.32	3.05	304.8	570.2	2
17.37	3.05	487.7	912.4	2
20.42	7.62	609.6	1140.5	2.08
28.04	7.62	731.5	1368.6	2.08
35.66	7.62	823	1539.6	2.08
43.28	30.18 ^a	1066.8	1995.8	2.08

### Site: 134, Eastwood Elementary



Fig 40 Experimental Dispersion Curve measured at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 41 Comparison between Experimental & Theoretical Dispersion Curves from Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 42 Shear Wave Velocity Profile Determined from SASW & Refraction Testing at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 16 Tabulated Shear Wave Velocity Profile from Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.46	335.30	627.3	1.92
0.46	0.18	152.40	285.1	1.92
0.64	0.53	259.10	484.7	1.92
1.17	0.69	304.80	570.2	2
1.86	0.91	457.20	855.3	2
2.77	2.29	579.10	1083.4	2
5.06	2.13	670.60	1254.5	2.08
7.19	5.18	762.00	1425.6	2.08
12.37	6.1	823.00	1539.6	2.08
18.47	6.4	853.40	1596.6	2.08
24.87	30.18 ^a	1163.30 ^b	2176.3	2.08

b. Refraction velocity



Arrival Time, sec

Fig 43 Arrival Times for Refraction Testing at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 44 Time-Distance Curve for Refraction Testing at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	6.17	659.41	352.47
2	10.25	1200.44	641.66
3	40.12	2176.33	1163.30
4		3901.53	2085.45

Tabulated Refraction Profile from Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

# Site 84, Park Lane Elementary



Fig 45 Experimental Dispersion Curve measured at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 46 Comparison between Experimental & Theoretical Dispersion Curves from Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 47 Shear Wave Velocity Profile Determined from SASW Testing at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 17 Tabulated Shear Wave Velocity Profile from Park Lane Elementary, Sandy, Site84, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.38	99.10	185.30	1.89
0.38	0.91	129.50	242.40	1.89
1.29	1.45	182.90	342.10	1.92
2.74	1.52	198.10	370.60	1.92
4.26	1.52	213.4	399.2	1.92
5.78	3.05	240.8	450.5	1.92
8.83	6.71	271.3	507.5	1.92
15.54	10.67	304.8	570.2	2
26.21	7.62	320	598.8	2
33.83	7.62	350.5	655.8	2
41.45	30.18 ^a	794 ^b	1485.4	2

b. Refraction velocity



Fig 48 Arrival Times for Refraction Testing at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 49 Time-Distance Curve for Refraction Testing at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile from Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	2.69	264.50	141.38
2	5.29	363.76	194.44
3	43.68	472.19	252.40
4		1485.77	794.18

Site 19, Salt Lake County Fire Tower



Fig 50 Experimental Dispersion Curve measured at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 51 Comparison between Experimental & Theoretical Dispersion Curves from Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 52 Shear Wave Velocity Profile Determined from SASW Testing at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 18 Site 19 (zh34), Magna Fire Station, Q03 Tabulated Shear Wave Velocity Profile from Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.27	129.5	242.4	1.89
0.27	0.61	243.8	456.2	1.92
0.88	1.52	335.3	627.3	2
2.4	2.44	403.9	755.5	2
4.84	6.10	414.5	775.5	2
10.94	7.62	445	832.5	2
18.56	7.62	472.4	883.9	2
26.18	7.62	518.2	969.4	2
33.8	7.62	579.1	1083.4	2
41.42	30.18 ^a	1090 ^b	2039.2	2.08

b. Refraction velocity



Fig 53 Arrival Times for Refraction Testing at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 54 Time-Distance Curve for Refraction Testing at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Forward Refraction	Profile from Sa	alt Lake Coun	ity Fire To	ower, Magna,	Site
19, Earthquake Site Response	Unit Q03 (Ash	land, 2001)			

S a com ant	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
Segment	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	17.85	714.23	381.77
2		2037.16	1088.91

Site: 33, Herriman Elementary



Fig 55 Experimental Dispersion Curve measured at Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 56 Comparison between Experimental & Theoretical Dispersion Curves from Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 57 Shear Wave Velocity Profile Determined from SASW Testing at Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 19 Tabulated Shear Wave Velocity Profile from Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	99.1	185.3	1.89
0.3	0.53	152.4	285.1	1.92
0.83	1.45	240.8	450.5	1.92
2.28	1.83	274.3	513.2	1.92
4.11	4.57	327.7	613	2
8.68	6.1	411.5	769.8	2
14.78	7.01	472.4	883.9	2
21.79	6.1	518.2	969.4	2
27.89	6.1	579.1	1083.4	2
33.99	30.18 ^a	655.3	1226	2.08

# <u>Q04</u>

Table of Contents

Q04	1
Site 98 – Cedar Valley, county road intersection	2
Site 23, Copperton Park	7
Site: 308, Lark	10
Site: 106, Eagle Mtn Water Tank	15
Site: 309, South Field Kennecott	20
Site: 310, North Field Kennecott	25

Site 98 – Cedar Valley, county road intersection



Experimental Dispersion Curve measured at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)



Comparison between Experimental & Theoretical Dispersion Curves from Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)



Shear Wave Velocity Profile Determined from SASW Testing at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.53	160	299.4	1.92
0.53	1.22	274.3	513.2	1.92
1.75	2.13	281.9	527.5	1.92
3.88	1.22	297.2	556	1.92
5.1	2.13	350.5	655.8	2
7.23	3.66	472.4	855.3	2
10.89	6.1	487.7	912.4	2
16.99	6.1	502.9	940.9	2
23.09	6.1	579.1	1083.4	2
29.19	30.18 ^a	795 ^b	1487.3	2.08

Tabulated Shear Wave Velocity Profile from Cedar Valley County Road Intersection Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)

a. Half-space in modelb. Refraction velocity



Arrival Times for Refraction Testing at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 1 Time-Distance Curve for Refraction Testing at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 1	Tabulated R	efraction Profil	e from Cedar	Valley	County Ro	ad Intersection	on,
Cedar V	alley, Site 98	8, Earthquake S	ite Response	Unit Q0	4 (Ashland	d, 2001)	

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	26.07	791.46	423.05
2		1486.25	794.43

## Site 23, Copperton Park



Fig 2 Experimental Dispersion Curve measured at Copperton Park, Copperton, Site 23, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 3 Comparison between Experimental & Theoretical Dispersion Curves from Copperton Park, Copperton, Site 23, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 4 Shear Wave Velocity Profile Determined from SASW Testing at Copperton Park, Copperton, Site 23, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 2 Tabulated Shear Wave Velocity Profile from Copperton Park, Copperton, Site23, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	91.4	171.1	1.89
0.3	0.46	167.6	313.6	1.92
0.76	0.91	239.3	447.7	1.92
1.67	1.92	312.4	584.5	2
3.59	0.76	373.4	698.5	2
4.35	1.52	388.6	727	2
5.87	7.62	403.9	755.6	2
13.49	7.62	388.6	727	2
21.11	7.62	390.1	729.8	2
28.73	7.62	393.2	735.6	2
36.35	4.57	411.5	769.9	2
40.92	30.18 ^a	914.4	1710.7	2.08

Site: 308, Lark



Fig 5 Experimental Dispersion Curve measured at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 6 Comparison between Experimental & Theoretical Dispersion Curves from Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)


Fig 7 Shear Wave Velocity Profile Determined from SASW Testing at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 3 Tabulated Shear Wave Velocity Profile from Lark, Salt Lake County, Site 308,Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.08	182.90	342.10	1.92
0.08	0.30	259.10	484.70	1.92
0.38	0.61	487.70	912.40	2
0.99	1.52	304.80	570.20	2
2.51	0.91	160	299.4	1.89
3.42	0.61	365.8	684.3	2
4.03	0.91	419.1	784.1	2
4.94	7.62	426.7	798.3	2
12.56	6.1	487.7	912.4	2
18.66	7.62	548.6	1026.4	2
26.28	30.18 ^a	1350 ^b	2525.6	2.08

a. Half-space in model

b. Refraction velocity



Fig 8 Arrival Times for Refraction Testing at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 9 Time-Distance Curve for Refraction Testing at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)

Tabula	ated Refrac	ction Profile	from Lark,	Salt Lake	County, S	Site 308,	Earthquak	e Site
Respo	nse Unit Q	04 (Ashland	l, 2001)		-			

Comment	Depth from Surface to P-wave Velocity		Estimated Shear Wave Velocity
Segment	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	4.05	472.90	252.78
2	17.73	902.04	482.16
3		2538.78	1357.03

## Site: 106, Eagle Mtn Water Tank



Fig 10 Experimental Dispersion Curve measured at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 11 Comparison between Experimental & Theoretical Dispersion Curves at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 12 Shear Wave Velocity Profile Determined from SASW Testing at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 4 Tabulated Shear Wave Velocity Profile from Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	1.07	160	299.4	1.92
1.07	1.37	342.9	641.5	2
2.44	1.22	393.2	735.6	2
3.66	1.22	463.3	866.8	2
4.88	1.52	541	1012.2	2
6.4	2.44	594.4	1112	2
8.84	3.05	640.1	1197.5	2.08
11.89	6.10	762	1425.6	2.08
17.99	4.57	1097.3	2052.8	2.08
22.56	30.18 ^a	1350 ^b	2525.6	2.08

a. Half-space in model

b. Refraction Velocity



Fig 13 Arrival Times for Refraction Testing at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 14 Time-Distance Curve for Refraction Testing at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 5 Tabulated Refraction Profile from Eagle Mountain Water Tank, Cedar	Valley,
Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)	

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	3.90	803.15	429.30
2	20.05	1109.00	592.79
3		2516.93	1345.35





Fig 15 Experimental Dispersion Curve measured at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 16 Comparison between Experimental & Theoretical Dispersion Curves from South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 17 Shear Wave Velocity Profile Determined from SASW Testing at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 6 Tabulated Shear Wave Velocity Profile from South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	91.40	171.1	1.89
0.3	0.73	216.40	404.9	1.92
1.03	0.76	289.60	541.7	1.92
1.79	1.52	350.50	655.8	2
3.31	1.22	403.90	755.5	2
4.53	7.62	419.10	784.1	2
12.15	6.1	420.60	786.9	2
18.25 ^a	2.44	442.00	1524	2
20.69	7.62	487.70	1524	2
28.31	7.62	518.20	1524	2
35.93	7.62	568.50	1524	2
43.55	30.18 ^b	650.00	1524	2.08

a. Depth to fully saturated zone from Refraction testing

b. Half-space in model



Fig 18 Arrival Times for Refraction Testing at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 19 Time-Distance Curve for Refraction Testing at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)

Tabula	ated Refrac	ction Prof	ile from So	outh Field	d-Kennecot	t, Salt La	ake County,	, Site 309,
Earthg	uake Site	Response	Unit Q04 (	(Ashland	l, 2001)			

<u>S</u>	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
Segment	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	3.03	588.89	314.78
2	12.35 ^a	833.33	445.44
3		1213.77	

a. Depth to fully saturated zone





Fig 20 Experimental Dispersion Curve measured at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001).



Fig 21 Comparison between Experimental & Theoretical Dispersion Curves from North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 22 Shear Wave Velocity Profile Determined from SASW Testing at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 7 Tabulated Shear Wave Velocity Profile from North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.23	104	194.6	1.89
0.23	0.38	106.7	199.6	1.89
0.61	0.90	143.3	268	1.89
1.51	2.36	221	413.4	1.92
3.87	3.96	304.8	570.2	2
7.83	5.18	350.5	655.8	2
13.01	4.57	414.5	775.5	2
17.58 ^a	3.96	434.3	1524	2
21.54	3.05	438.9	1524	2
24.59	3.05	449.6	1524	2
27.64	7.62	451.1	1524	2
35.26	9.14	454.2	1524	2
44.4	9.14	457.2	1524	2
53.54	9.14	458.7	1524	2
62.68	30.18 ^b	1645.9 ^c	1524	2.08

a. Depth to fully saturated zone from Refraction testing

b. Half-space in modelc. Refraction Velocity



Figure 1 Arrival Times for Refraction Testing at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)



Figure 2 Time-Distance Curve for Refraction Testing at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)

S a com ant	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
Segment	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	16.49	547.02	292.39
2	37.27 ^a	1219.24	
3		3120.22	1667.83

a. Depth to fully saturated zone

## <u>Q05</u>

Table of Contents

Q05	1
Site 303, Stone Mountain Lane,	2
Site: 304, Gun Club West	9
Site: 305, Gun Club East	14
Site 307, Mock Lane	19
Site: 306, Granite Elementary	





Fig 1 Experimental Dispersion Curve measured at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 2 Comparison between Experimental & Theoretical Dispersion Curves from Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 3 Shear Wave Velocity Profile Determined from SASW Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 1 Tabulated Shear Wave Velocity Profile from Stone Mountain Lane, Sandy, Site303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
(111)				
0	0.06	760	1421.8	1.89
0.06	0.24	114.3	213.8	1.89
0.3	0.61	137.2	256.6	1.89
0.91	0.91	243.8	456.2	1.92
1.82	1.22	297.2	556	1.92
3.04	0.91	335.3	627.3	2
3.95	1.52	396.2	741.3	2
5.47	6.10	403.9	755.6	2
11.57	6.10	442	826.8	2
17.67	6.10	563.9	1054.9	2
23.77	10.67	571.5	1069.2	2
34.44	30.18 ^a	724 ^b	1354.5	2.08

a. Half-space in modelb. Refraction velocity



Fig 4 Arrival Times for Forward Refraction Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 5 Arrival Times for Reverse Refraction Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 6 Time-Distance Curve for Refraction Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 2 Tal	bulated Forwa	rd Refraction	Profile from	n Stone	Mountain	Lane,	Sandy,	Site
303, Earthc	uake Site Res	ponse Unit Q	05 (Ashland	1, 2001)	1			

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	5.34	498.80	266.62
2	9.41	844.10	451.19
3		1047.33	559.82

Gaarrant	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
Segment	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	2.15	226.17	120.89
2	26.63	825.56	441.28
3		2116.31	1131.22

Table 3 Tabulated Reverse Refraction Profile from Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Inclined bed calculations:

Up = Reverse Refraction Line Down = Forward Refraction Line

gamma = 14.81 degrees

V1average = (451.19 + 441.28)/2 = 446.24 m/s V2= 724.1 m/s

$$\gamma = \frac{1}{2} \left[ \sin^{-1}(\frac{V_1}{V_{2D}}) - \sin^{-1}(\frac{V_1}{V_{2U}}) \right]$$

$$V_2 = \frac{2V_{2D}V_{2U}}{V_{2D} + V_{2U}}\cos\gamma$$



Fig 7 Experimental Dispersion Curve measured at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 8 Comparison between Experimental & Theoretical Dispersion Curves from Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 9 Shear Wave Velocity Profile Determined from SASW Testing at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 4 Tabulated Shear Wave Velocity Profile from Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.30	147.8	276.6	1.89
0.3	0.58	152.4	285.1	1.92
0.88	1.52	221	413.4	1.92
2.4	2.44	274.3	513.2	1.92
4.84	3.05	365.8	684.3	2
7.89	3.66	449.6	841.1	2
11.55	3.96	548.6	1026.4	2
15.51	6.10	579.1	1083.4	2
21.61	6.10	609.6	1140.5	2.08
27.71	8.23	640.1	1197.5	2.08
35.94	7.62	701	1311.5	2.08
43.56	30.18 ^a	914.4	1710.7	2.08

a. Half-space in model



Fig 10 Arrival Times for Reverse Refraction Testing at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 11 Time-Distance Curve for Refraction Testing at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Tabulated Refraction Profile from Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	4.76	395.09	211.18
2		989.12	528.71

## Site: 305, Gun Club East



Fig 12 Experimental Dispersion Curve measured at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 13 Comparison between Experimental & Theoretical Dispersion Curves from Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 14 Shear Wave Velocity Profile Determined from SASW Testing at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 5 Tabulated Shear Wave Velocity Profile from Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.38	125	233.90	1.89
0.38	0.23	190	355.50	1.92
0.61	0.7	228.6	427.70	1.92
1.31	3.05	320	598.80	2
4.36	4.57	442	826.80	2
8.93	4.57	548.6	1026.40	2
13.5	6.1	640.1	1197.50	2.08
19.6	6.1	708.7	1325.80	2.08
25.7	6.1	792.5	1482.60	2.08
31.8	30.18 ^a	1115 ^b	2086.00	2.08

a. Half-space in modelb. Refraction velocity



Fig 15 Arrival Times for Refraction Testing at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)


Fig 16 Time-Distance Curve for Refraction Testing at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 6 Tabulate	d Refraction	Profile fro	m Gun	Club East,	Cottonwood	Heights,	Site 30	)5,
Earthquake Site I	Response Un	it Q05 (As	hland, 2	2001)				

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	3.69	557.35	297.92
2	5.70	891.74	476.66
3	31.39	1168.35	624.51
4		2080.95	1112.31

## Site 307, Mock Lane



Fig 17 Experimental Dispersion Curve measured at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 18 Comparison between Experimental & Theoretical Dispersion Curves from Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 19 Shear Wave Velocity Profile Determined from SASW Testing at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 7 Tabulated Shear Wave Velocity Profile from Mock Lane, Salt Lake County, Site307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	117.4	219.6	1.89
0.3	0.61	198.1	370.6	1.92
0.91	0.55	262.1	490.4	1.92
1.46	1.52	304.8	570.2	2
2.98	3.96	419.1	784.1	2
6.94	3.96	510.5	955.1	2
10.9	6.1	533.4	997.9	2
17	6.1	579.1	1083.4	2
23.1	9.14	617.2	1154.7	2.08
32.24	10.67	634	1186.1	2.08
42.91	30.18 ^a	746.8	1397.1	2.08

a. Half-space in model



Arrival Times for Refraction Testing at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)



Time-Distance Curve for Refraction Testing at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Tabulated Refraction Profile from Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	3.53	511.67	273.50
2	5.21	876.73	468.63
3		994.04	531.33

## Site: 306, Granite Elementary



Fig 20 Experimental Dispersion Curve measured at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 21 Comparison between Experimental & Theoretical Dispersion Curves from Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 22 Shear Wave Velocity Profile Determined from SASW Testing at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 8 Tabulated Shear Wave Velocity Profile from Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.35	182.9	342.10	1.92
0.35	0.3	289.6	541.70	1.92
0.65	1.48	304.8	570.20	2
2.13	3.05	365.8	684.30	2
5.18	2.44	426.7	798.30	2
7.62	4.57	457.2	855.30	2
12.19	4.57	487.7	912.40	2
16.76	6.1	518.2	969.40	2
22.86 ^a	7.62	548.6	1524.00	2
30.48	7.8	560	1524.00	2
38.28	8	605	1524.00	2.08
46.28	30.18 ^b	800	1524.00	2.08

a. Depth to fully saturated zone from Refraction testingb. Half-space in model



Arrival Times for Refraction Testing at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)



Time-Distance Curve for Refraction Testing at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 9 Tabulated Refraction Profile from Granite Elementary, Sandy, Site	306,
Earthquake Site Response Unit Q05 (Ashland, 2001)	

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	4.59	294.45	157.39
2	21.37 ^a	705.07	376.88
3		1333.65	

a. Depth to fully saturated zone

Site 28, Utah Youth Sports Complex, West Jordan



Fig 4 Experimental Dispersion Curve measured at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 5 Comparison between Experimental & Theoretical Dispersion Curves from Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 6 Shear Wave Velocity Profile Determined from SASW Testing at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	117.4	219.50	1.89
0.3	0.24	53.3	99.80	1.89
0.54	1.37	170.7	319.30	1.92
1.91	2.74	259.1	484.70	1.92
4.65	3.96	304.8	570.20	2
8.61	6.1	426.7	798.30	2
14.71	7.62	442	826.90	2
22.33 ^a	7.01	472.4	1524.00	2
29.34	30.18 ^b	640.1	1524.00	2.08

Table 1 Tabulated Shear Wave Velocity Profile from Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Depth to fully saturated zone from Refraction testing

b. Half-space in model



Fig 7 Arrival Times for Refraction Testing at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 8 Time-Distance Curve for Refraction Testing at Utah Youth Sports Complex, West Jordan, Site 28, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Refraction Profile from Utah	Youth Sports Complex	, West Jordan, Site 2	28,
Earthquake Site Response Unit Q02 (As	hland, 2001)		
		Estimated Shear	
Denth from Surface		Wave Velocity	

	Depth from Surface		Wave Velocity
Segment	to Velocity Change	P-wave Velocity	assuming $v = 0.3$
	(m)	(m/s)	(m/s)
1	8.03	429.37	229.51
2	23.20 ^a	959.34	512.79
3		1561	

a. Depth to fully saturated zone





Fig 9 Experimental Dispersion Curve measured at Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 10 Comparison between Experimental & Theoretical Dispersion Curves from Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 11 Shear Wave Velocity Profile Determined from SASW Testing at Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 2 Tabulated Shear Wave Velocity Profile from Riverton City Hall/Park, Riverton, Site 12, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.38	106.7	199.6	1.89
0.38	1.14	106.7	199.6	1.89
1.52	1.52	131.1	245.2	1.92
3.04	2.44	144.8	270.9	1.89
5.48	2.13	190.5	356.4	1.92
7.61	1.52	228.6	427.7	1.92
9.13	4.57	281.9	527.5	1.92
13.7 ^a	7.62	320	1524	2
21.32	7.62	396.2	1524	2
28.94	30.18 ^b	502.9	1524	2

a. Assumed depth to fully saturated zone

b. Half-space in model

## Site 123, Liberty Park



Fig 12 Experimental Dispersion Curve measured at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 13 Comparison between Experimental & Theoretical Dispersion Curves from Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 14 Shear Wave Velocity Profile Determined from SASW Testing at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 3 Tabulated Shear Wave Velocity Profile from Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.41	91.40	171.1	1.89
0.41	0.84	137.20	256.6	1.89
1.25	0.91	166.10	310.8	1.92
2.16	2.44	178.30	333.6	1.92
4.6 ^a	4.57	179.80	1524	1.92
9.17	3.05	182.90	1524	1.92
12.22	3.05	184.40	1524	1.92
15.27	7.62	198.10	1524	1.92
22.89	7.62	228.60	1524	1.92
30.51	30.18 ^b	304.80	1524	2

a. Depth to fully saturated zone from Refraction Testing

b. Half-space in model



Arrival Times for Refraction Testing at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)



Time-Distance Curve for Refraction Testing at Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 4 Tabulated Refraction Profile from Liberty Park, Ogden, Site 123, Earthquake Site Response Unit Q02 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change	P-wave Velocity	assuming $v = 0.3$
	(111)	(11/5)	(111/3)
1	5.27 ^a	433.44	231.69
2		1197.83	

a. Depth to fully saturated zone





Fig 15 Experimental Dispersion Curve measured at Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 16 Comparison between Experimental & Theoretical Dispersion Curves from Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 17 Shear Wave Velocity Profile Determined from SASW Testing at Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland, 2001)

124	24, Earnquake She Kesponse Onn Q02 (Asinand, 2001)					
	Depth to			Assumed P-		
	Top of		Shear Wave	Wave	Assumed	
	Layer	Layer	Velocity	Velocity	Unit Weight	
	(m)	Thickness (m)	(m/s)	(m/s)	(t/m ³ )	
	0	0.3	147.8	276.6	1.89	
	0.3	0.67	221	413.4	1.92	
	0.97	1.52	225.6	422	1.92	
	2.49	0.91	198.1	370.6	1.92	
	3.4	1.83	182.9	342.1	1.92	
	5.23	2.9	169.2	316.5	1.92	
	8.13 ^a	4.57	161.5	1524	1.92	
	12.7	7.62	198.1	1524	1.92	
	20.32	9.14	248.4	1524	1.92	
	29.46	6.1	259.1	1524	1.92	
	35.56	6.1	274.3	1524	1.92	
	41.66	30.18 ^b	365.8	1524	2.00	

Table 5 Tabulated Shear Wave Velocity Profile from Ogden Lions Club Park, Ogden, Site 124, Earthquake Site Response Unit Q02 (Ashland. 2001)

a. Assumed depth to fully saturated zoneb. Half-space in model



Fig 18 Experimental Dispersion Curve measured at Orem City Center Park, Orem, Site 107, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 19 Comparison between Experimental & Theoretical Dispersion Curves from Orem City Center Park, Orem, Site 107, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 20 Shear Wave Velocity Profile Determined from SASW Testing at Orem City Center Park, Orem, Site 107, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 6 Tabulated Shear Wave Velocity Profile from Orem City Center Park, Orem, Site107, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.46	137.2	256.7	1.89
0.46	1.04	243.8	456.1	1.92
1.5	0.73	301.8	564.5	1.92
2.23	2.44	347.5	650.1	2
4.67	1.83	373.4	698.5	2
6.5	4.57	388.6	727	2
11.07	6.1	335.3	627.3	2
17.17	7.62	304.8	570.2	2
24.79	12.19	330.7	618.7	2
36.98	30.18 ^a	457.2	855.3	2

a. Half-space in model





Fig 21 Experimental Dispersion Curve measured at Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 22 Comparison between Experimental & Theoretical Dispersion Curves from Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 23 Shear Wave Velocity Profile Determined from SASW Testing at Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	121.9	228.1	1.89
0.3	0.61	129.5	242.4	1.89
0.91	2.13	176.8	330.7	1.92
3.04	1.52	243.8	456.2	1.92
4.56	6.1	281.9	527.5	1.92
10.66	1.22	411.5	769.8	2
11.88	2.44	457.2	855.3	2
14.32	2.44	487.7	869.6	2
16.76	6.1	495.3	926.6	2
22.86	6.1	502.9	940.9	2
28.96	6.1	533.4	997.9	2
35.06	5.49	609.6	1140.5	2
40.55	6.1	670.6	1254.5	2.08
46.65	30.18 ^a	731.5	1368.6	2.08
Ualf anosa in model				

Table 7 Tabulated Shear Wave Velocity Profile from Highland Park Elementary, Salt Lake City, Site 37, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Half-space in model

## Site: 128, Tolman Elementary



Fig 24 Experimental Dispersion Curve measured at Tolman Elementary, Bountiful, Site 128, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 25 Comparison between Experimental & Theoretical Dispersion Curves from Tolman Elementary, Bountiful, Site 128, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 26 Shear Wave Velocity Profile Determined from SASW Testing at Tolman Elementary, Bountiful, Site 128, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 8 Tabulated Shear Wave Velocity Profile from Tolman Elementary, Bountiful, Site128, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	91.4	171.1	1.89
0.3	0.61	152.4	285.1	1.92
0.91	2.13	198.1	370.6	1.92
3.04	2.44	213.4	399.2	1.92
5.48	3.05	251.5	470.4	1.92
8.53 ^a	4.57	274.3	1524	1.92
13.1	7.62	297.2	1524	1.92
20.72	7.62	350.5	1524	2
28.34	7.62	381	1524	2
35.96	9.14	487.7	1524	2
45.1	30.18 ^b	609.6	1524	2.08

a. Assumed depth to fully saturated zoneb. Half-space in model
#### Site: 127, Bountiful City Park



Fig 27 Experimental Dispersion Curve measured at Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 28 Comparison between Experimental & Theoretical Dispersion Curves from Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 29 Shear Wave Velocity Profile Determined from SASW Testing at Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	99.1	185.3	1.89
0.3	0.61	144.8	270.9	1.89
0.91	2.13	160	299.4	1.92
3.04	3.05	190.5	356.4	1.92
6.09	2.13	274.3	513.2	1.92
8.22	2.13	381	712.8	2
10.35 ^a	7.32	396.2	1524	2
17.67	9.14	426.7	1524	2
26.81	1.22	579.1	1524	2
28.03	4.57	731.5	1524	2.08
32.6	30.18 ^b	975.4	1524	2.08

Table 9 Tabulated Shear Wave Velocity Profile from Bountiful City Park, Bountiful, Site 127, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Assumed depth to fully saturated zone

# Site 46, Deseret Academy



Fig 30 Experimental Dispersion Curve measured at Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 31 Comparison between Experimental & Theoretical Dispersion Curves from Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 32 Shear Wave Velocity Profile Determined from SASW Testing at Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 10 Tabulated Shear Wave Velocity Profile from Deseret Academy, Holladay, Site 46, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.46	106.7	199.6	1.89
0.46	0.91	121.9	228.1	1.89
1.37	1.83	169.2	316.5	1.92
3.2	2.74	213.4	399.2	1.92
5.94	2.74	243.8	456.2	1.92
8.68	5.49	297.2	556	1.92
14.17	9.14	335.3	627.3	2
23.31 ^a	6.1	350.5	1524	2
29.41	4.57	353.6	1524	2
33.98	4.57	358.1	1524	2
38.55	6.1	373.4	1524	2
44.65	30.18 ^b	670.6	1524	2.08

Site: 40, Applied Technology School, East Millcreek



Fig 33 Experimental Dispersion Curve measured at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 34 Comparison between Experimental & Theoretical Dispersion Curves from Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 35 Shear Wave Velocity Profile Determined from SASW Testing at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 11 Tabulated Shear Wave Velocity Profile from Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.15	114.3	213.9	1.89
0.15	0.46	121.9	228.1	1.89
0.61	0.91	137.2	256.6	1.89
1.52	3.05	167.6	313.6	1.92
4.57	4.57	221	413.4	1.92
9.14	1.52	266.7	499	1.92
10.66	3.05	304.8	570.2	2
13.71	7.62	350.5	655.8	2
21.33	7.62	403.9	755.6	2
28.95	7.62	548.6	1026.3	2
36.57	30.18 ^b	1069.9 ^a	2001.5	2.08

a. Refraction velocity



Fig 36 Arrival Times for Refraction Testing at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 37 Time-Distance Curve for Refraction Testing at Applied Technology School, East Millcreek, Site 40, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabula	ted Refraction	Profile from	Applied	Technology	School,	East Millcreek,	Site 40,
Earthq	uake Site Resp	oonse Unit Q0	2 (Ashla	und, 2001)			

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	10.76	305.65	163.38
2	26.65	918.02	490.70
3		2001.60	1069.90

# Site 3, Draper Elementary



Fig 38 Experimental Dispersion Curve measured at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 39 Comparison between Experimental & Theoretical Dispersion Curves from Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 40 Shear Wave Velocity Profile Determined from SASW Testing at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 12 Tabulated Shear Wave Velocity Profile from Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.38	94.5	176.8	1.89
0.38	0.61	114.3	213.9	1.89
0.99	1.52	129.5	242.4	1.89
2.51	2.06	167.6	313.6	1.92
4.57 ^a	3.05	166.1	1524	1.92
7.62	7.62	228.6	1524	1.92
15.24	6.1	259.1	1524	1.92
21.34	10.67	304.8	1524	2.00
32.01	30.18 ^b	609.6	1524	2.08

a. Depth to fully saturated zone from Refraction results



Fig 41 Arrival Times for Refraction Testing at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 42 Time-Distance Curve for Refraction Testing at Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Refraction Profile from Draper Elementary, Draper, Site 3, Earthquake Site Response Unit Q02 (Ashland, 2001)

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	5.67 ^a	380.63	203.46
2		1654.12	

a. Depth to fully saturated zone



Fig 43 Experimental Dispersion Curve measured at Swire Coca-Cola, Draper, Site 302, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 44 Comparison between Experimental & Theoretical Dispersion Curves Swire Coca-Cola, Draper, Site 302, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 45 Shear Wave Velocity Profile Determined from SASW Testing at Swire Coca-Cola, Draper, Site 302, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 13 Tabulated Shear Wave Velocity Profile from Swire Coca-Cola, Draper, Site302, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	137.2	256.6	1.89
0.3	0.61	144.8	270.9	1.89
0.91	2.13	149.4	279.4	1.89
3.04	1.52	182.9	342.1	1.92
4.56	1.52	213.4	399.2	1.92
6.08 ^a	3.05	228.6	1524	1.92
9.13	7.62	243.8	1524	1.92
16.75	7.62	251.5	1524	1.92
24.37	10.67	274.3	1524	1.92
35.04	30.18 ^b	457.2	1524	2

Site: 14, Rose Creek Elementary



Fig 46 Experimental Dispersion Curve measured at Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 47 Comparison between Experimental & Theoretical Dispersion Curves from Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 48 Shear Wave Velocity Profile Determined from SASW Testing at Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.15	106.7	199.6	1.89
0.15	0.46	121.9	228.1	1.89
0.61	0.84	163.1	305.1	1.92
1.45	1.52	221	413.4	1.92
2.97	3.05	266.7	499	1.92
6.02	6.1	335.3	627.3	2
12.12	7.62	396.2	741.2	2
19.74	6.1	426.7	798.3	2
25.84 ^a	6.1	464.8	1524	2
31.94	4.57	495.3	1524	2
36.51	4.57	518.2	1524	2
41.08	5.49	579.1	1524	2
46.57	30.18 ^b	670.6	1524	2.08

Table 14 Tabulated Shear Wave Velocity Profile from Rose Creek Elementary, Riverton, Site 14, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Assumed depth to fully saturated zone





Fig 49 Experimental Dispersion Curve measured at Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 50 Comparison between Experimental & Theoretical Dispersion Curves from Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 51 Shear Wave Velocity Profile Determined from SASW Testing at Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.37	96	179.6	1.89
0.37	0.46	146.3	273.7	1.89
0.83	0.7	207.3	387.8	1.92
1.53	1.49	297.2	556	1.92
3.02	1.52	365.8	684.3	2
4.54	3.05	403.9	755.5	2
7.59	4.57	469.4	878.2	2
12.16	10.67	477	892.4	2
22.83 ^a	7.62	481.6	1524	2
30.45	7.62	518.2	1524	2
38.07	6.1	548.6	1524	2
44.17	30.18 ^b	609.6	1524	2.08

Table 15 Tabulated Shear Wave Velocity Profile from Copper Hills High School, West Jordan, Site 27, Earthquake Site Response Unit Q02 (Ashland, 2001)

a. Assumed depth to fully saturated zone

# Site: 125, Dee Memorial Park



Fig 52 Experimental Dispersion Curve measured at Dee Memorial Park, Ogden, Site 125, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 53 Comparison between Experimental & Theoretical Dispersion Curves from Dee Memorial Park, Ogden, Site 125, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 54 Shear Wave Velocity Profile Determined from SASW Testing at Dee Memorial Park, Ogden, Site 125, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 16 Tabulated Shear Wave Velocity Profile from Dee Memorial Park, Ogden, Site125, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	160	285.1	1.92
0.3	0.69	167.6	313.6	1.92
0.99	0.61	222.5	416.3	1.92
1.6	0.61	236.2	441.9	1.92
2.21	3.05	221	413.4	1.92
5.26	6.1	208.8	390.6	1.92
11.36	6.1	199.6	373.5	1.92
17.46 ^a	7.62	192	1524	1.92
25.08	6.1	198.1	1524	1.92
31.18	30.18 ^b	350.5	1524	2

# Site: 13, Riverton City Park



Fig 55 Experimental Dispersion Curve measured at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 56 Comparison between Experimental & Theoretical Dispersion Curves from Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 57 Shear Wave Velocity Profile Determined from SASW Testing at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Shear Wave Velocity Profile from Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	121.9	228.10	1.89
0.3	0.91	89.9	168.20	1.89
1.21	0.91	146.3	273.70	1.89
2.12	2.29	182.9	342.10	1.92
4.41	5.49	259.1	484.70	1.92
9.9	6.1	312.4	584.50	2
16 ^a	6.1	365.8	1524.00	2
22.1	6.1	411.5	1524.00	2
28.2	6.1	472.4	1524.00	2
34.3	4.57	518.2	1524.00	2
38.87	30.18 ^b	609.6	1524.00	2.08

a. Depth to fully saturated zone



Fig 58 Arrival Times for Refraction Testing at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 59 Time-Distance Curve for Refraction Testing at Riverton Park, Riverton, Site 13, Earthquake Site Response Unit Q02 (Ashland, 2001)

Tabulated Refrac	ction Profile for Rivert	on Park, Riverton,	Site 13, Earthquake Site
Resp <u>onse</u> Unit Q	02 (Ashland, 2001)		_

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	4 47	283 74	151.67
-	,	203.71	101.07
2	16.80 ^a	663.66	354.74
3		1241.33	

a. Depth to fully saturated zone





Fig 60 Experimental Dispersion Curve measured at Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 61 Comparison between Experimental & Theoretical Dispersion Curves from Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)



Fig 62 Shear Wave Velocity Profile Determined from SASW Testing at Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)

Table 17 Tabulated Shear Wave Velocity Profile for Average Profile from Crestview Elementary, East Millcreek, Site 43, Earthquake Site Response Unit Q02 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.15	91.4	171.1	1.89
0.15	0.46	118.9	222.4	1.89
0.61	0.91	163.1	305.1	1.92
1.52	3.05	178.3	333.6	1.92
4.57	2.44	198.1	370.6	1.92
7.01	3.05	243.8	456.2	1.92
10.06	3.05	281.9	527.5	1.92
13.11	3.05	297.2	556	1.92
16.16	4.57	365.8	684.3	2
20.73 ^a	5.49	457.2	1524	2
26.22	4.57	640.1	1524	2.08
30.79	30.18 ^b	762	1524	2.08




Figure 1 Experimental Dispersion Curve measured at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 2 Comparison between Experimental & Theoretical Dispersion Curves from North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 3 Shear Wave Velocity Profile Determined from SASW Testing at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	128	239.5	1.89
0.61	1.22	140.2	262.3	1.89
1.83	1.52	160	299.4	1.92
3.35	2.74	221	413.4	1.92
6.09	3.05	335.3	627.3	2.00
9.14	4.57	365.8	684.3	2.00
13.71	6.1	396.2	741.3	2.00
19.81	7.62	426.7	812.6	2.00
27.43	30.18 ^a	485 ^b	907.4	2.00

Table 1 Tabulated Shear Wave Velocity Profile from North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

b. Refraction velocity



Fig 1 Arrival Times for Refraction Testing at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland 2001)



Fig 2 Time-Distance Curve for Refraction Testing at North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 2 Tabulated Refraction Profile from North Hang-Gliding Park, Draper, Site 300, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	4.18	253.68	135.60
2	16.39	452.45	241.84
3	59.55	908.76	485.75
4		2600.71	1390.14



Figure 4 Experimental Dispersion Curve measured at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 5 Comparison between Experimental & Theoretical Dispersion Curves from Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 6 Shear Wave Velocity Profile Determined from SASW Testing at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	91.4	171.1	1.89
0.3	0.61	137.2	256.6	1.89
0.91	0.61	167.6	313.6	1.92
1.52	1.52	249	465.9	1.92
3.04	2.13	289.6	541.7	2
5.17	5.18	358.1	670	2
10.35	5.18	457.2	855.3	2
15.53	7.62	502.9	940.9	2
23.15	30.18 ^a	685 ^b	1281.5	2.08

Table 3 Tabulated Shear Wave Velocity Profile from Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)

a. Half-space in modelb. Refraction velocity



Figure 7 Arrival Times for Refraction Testing at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)



Figure 8 Time-Distance Curve for Refraction Testing at Herriman Lot, Riverton, Site 301, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 4 Tabulated Refraction Profile fr	om Herriman Lot	, Riverton, Sit	te 301, Earthquak	e
Site Response Unit Q03 (Ashland, 200	1)			

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	20.05	641.40	342.84
2	46.79	1282.20	685.36
3		5985.873	3199.5839 ^a

a. Bedrock velocity





Fig 3 Experimental Dispersion Curve measured at Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 4 Comparison between Experimental & Theoretical Dispersion Curves from Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 5 Shear Wave Velocity Profile Determined from SASW Testing at Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.53	121.9	228.1	1.89
0.53	0.15	91.4	171.1	1.89
0.68	1.22	259.1	484.7	1.92
1.9	3.35	304.8	570.2	2
5.25	3.05	411.5	769.8	2
8.3	6.1	502.9	940.9	2
14.4	7.62	594.4	1111.9	2
22.02	8.38	670.6	1254.5	2.08
30.4	12.19	762	1425.6	2.08
42.59	30.18 ^a	868.7	1625.2	2.08

Table 5 Tabulated Shear Wave Velocity Profile from Cedar Valley County Road, Cedar Valley, Site 96, Earthquake Site Response Unit Q03 (Ashland, 2001)





Fig 6 Experimental Dispersion Curve measured at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 7 Comparison between Experimental & Theoretical Dispersion Curves at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 8 Shear Wave Velocity Profile Determined from SASW Testing Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 6 Tabulated Shear Wave Velocity Profile from Eagle Mountain, Cedar Valley, Site105, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.26	137.2	256.60	1.89
0.26	0.91	259.1	484.70	1.92
1.17	1.87	335.3	627.30	2
3.04	1.83	358.1	670.00	2
4.87	4.57	457.2	855.30	2
9.44	4.57	548.6	1026.40	2
14.01	5.18	571.5	1069.20	2
19.19	6.1	609.6	1140.50	2.08
25.29	7.62	640.1	1197.50	2.08
32.91	7.62	792.5	1482.60	2.08
40.53	30.18 ^a	952.5	1782.00	2.08



Fig 9 Arrival Times for Refraction Testing at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 10 Time-Distance Curve for Refraction Testing at Eagle Mountain, Cedar Valley, Site 105, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 7 Tabulated Refraction Profile from Eagle Mountain	, Cedar	Valley,	Site 1	05,
Earthquake Site Response Unit Q03 (Ashland, 2001)				

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	3.05	390.14	208.54
2	9.64	547.59	292.70
3	33.46	1132.32	605.25
4		1623.69	867.90

Site 203, Barney's Wash Baseball Field



Fig 11 Experimental Dispersion Curve measured at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 12 Comparison between Experimental & Theoretical Dispersion Curves from Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 13 Shear Wave Velocity Profile Determined from SASW Testing at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Laver	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	140.20	262.3	1.89
0.3	0.69	243.80	456.2	1.92
0.99	1.45	333.80	624.4	2
2.44	2.44	399.30	747	2
4.88	2.44	492.30	920.9	2
7.32	4.57	513.60	960.8	2
11.89 ^a	7.62	518.20	1524	2
19.51	6.1	548.60	1524	2
25.61	7.62	586.70	1524	2
33.23	7.62	617.20	1524	2.08
40.85	6.1	647.70	1524	2.08
46.95	7.62	670.60	1524	2.08
54.57	30.18 ^b	975.40	1524	2.08

Table 8 Tabulated Shear Wave Velocity Profile from Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)

a. Depth to fully saturated zone from Refraction Testing



Fig 14 Arrival Times for Refraction Testing at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 15 Time-Distance Curve for Refraction Testing at Barney's Wash Baseball Field, West Jordan, Site 203, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile from Barney's Wash Baseball Field,	West Jordan, Site 20	3,
Earthquake Site Response Unit Q03 (Ashland, 2001)		

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
	()	( 2)	(, 2)
1	4.26	400.14	213.89
2	11.75 ^a	852.37	455.61
3		1193.93	

a. Depth of fully saturated zone

Site 69, White City Park, Salt Lake County



Fig 16 Experimental Dispersion Curve measured at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 17 Comparison between Experimental & Theoretical Dispersion Curves from White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 18 Shear Wave Velocity Profile Determined from SASW Testing at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 9 Tabulated Shear Wave Velocity Profile from White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	114.30	213.9	1.89
0.61	0.76	167.60	313.6	1.92
1.37	2.44	213.40	399.2	1.92
3.81	4.72	251.50	470.4	1.92
8.53	7.62	304.80	570.2	2
16.15	6.1	335.30	627.3	2
22.25	6.1	365.80	684.4	2
28.35	10.67	381.00	712.8	2
39.02	30.18 ^a	518.20	969.4	2



Fig 19 Arrival Times for Refraction Testing at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 20 Time-Distance Curve for Refraction Testing at White City Park, Salt Lake County, Site 69, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile for White City Park, Salt Lake County, Site 6	9, Earthquake
Site Response Unit Q03 (Ashland, 2001)	

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	4.34	289.00	154.48
2		643.25	343.83

## Site: 85, Granite Park



Fig 21 Experimental Dispersion Curve measured at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 22 Comparison between Experimental & Theoretical Dispersion Curves from Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 23 Shear Wave Velocity Profile Determined from SASW Testing at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 10 Tabulated Shear Wave Velocity Profile from Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.61	152.4	285.1	1.92
0.61	0.91	161.5	302.2	1.92
1.52	4.88	210.3	393.5	1.92
6.4	0.91	295.7	553.1	1.92
7.31	3.96	297.2	556	1.92
11.27 ^a	6.1	304.8	1524	2
17.37	4.57	335.3	1524	2
21.94	10.67	381	1524	2
32.61	7.62	563.9	1524	2
40.23	30.18 ^b	609.6	1524	2.08

a. Depth to fully saturated zone from Refraction testing



Fig 24 Arrival Times for Refraction Testing at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 25 Time-Distance Curve for Refraction Testing at Granite Park, Sandy, Site 85, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 11	Tabulated	Refraction	Profile	from	Granite	Park,	Sandy,	Site 85	, Earthquak	e Site
Respons	e Unit Q03	(Ashland,	2001)							

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	5.95	659.41	352.47
2	8.62 ^a	1156.56	618.21
3		1521.12	

a. Depth to fully saturated zone

## Site 72, Buttercup Park



Fig 26 Experimental Dispersion Curve measured at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 27 Comparison between Experimental & Theoretical Dispersion Curves from Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 28 Shear Wave Velocity Profile Determined from SASW Testing at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 12 Tabulated Shear Wave Velocity Profile from Buttercup Park, Sandy, Site 72,Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	106.7	199.6	1.89
0.3	0.84	134.1	250.9	1.89
1.14	1.98	172.2	322.2	1.92
3.12	4.57	228.6	427.7	1.92
7.69	5.18	251.5	470.4	1.92
12.87	10.67	281.9	527.5	1.92
23.54	30.18 ^a	335.3	627.3	2


Fig 29 Arrival Times for Refraction Testing at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 30 Time-Distance Curve for Refraction Testing at Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile from Buttercup Park, Sandy, Site 72, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	9.29	314.07	167.88
2	17.28	464.45	248.26
3	51.12	702.89	375.71
4		1300.34	695.06

# Site 238, Lambert Park



Fig 31 Experimental Dispersion Curve measured at Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 32 Comparison between Experimental & Theoretical Dispersion Curves from Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 33 Shear Wave Velocity Profile Determined from SASW Testing at Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 13 Tabulated Shear Wave Velocity Profile from Lambert Park, Alpine, Site 238, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.15	96	179.6	1.89
0.15	0.46	121.9	228.1	1.89
0.61	1.3	216.4	404.9	1.92
1.91	1.22	291.1	544.6	1.92
3.13	3.05	320	598.8	2
6.18	4.57	388.6	727	2
10.75	7.01	426.7	798.3	2
17.76	2.44	579.1	1083.4	2
20.2	30.18 ^a	792.5	1482.6	2.08

# Site: 112, Alpine City Park



Fig 34 Experimental Dispersion Curve measured at Alpine City Park, Site 112, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 35 Comparison between Experimental & Theoretical Dispersion Curves from Alpine City Park, Site 112, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 36 Shear Wave Velocity Profile Determined from SASW Testing at Alpine City Park, Site 112, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 14 Tabulated Shear Wave Velocity Profile from Alpine City Park, Site 112,Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	121.9	228.1	1.89
0.3	0.61	152.4	285.1	1.92
0.91	1.52	228.6	427.7	1.92
2.43	3.05	274.3	513.2	1.92
5.48	3.96	298.7	558.8	1.92
9.44	4.57	381	712.8	2
14.01	7.62	426.7	798.3	2
21.63	5.18	455.7	852.5	2
26.81	9.14	548.6	1026.4	2
35.95	30.18 ^a	853.4	1596.6	2.08

#### Site 131, Oak Hills Elementary



Fig 37 Experimental Dispersion Curve measured at Oak Hills Elementary, Bountiful, Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 38 Comparison between Experimental & Theoretical Dispersion Curves from Oak Hills Elementary, Bountiful, Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 39 Shear Wave Velocity Profile Determined from SASW Testing at Oak Hills Elementary, Bountiful, Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)

 Table 15 Tabulated Shear Wave Velocity Profile from Oak Hills Elementary, Bountiful,

 Site 131, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	97.5	182.5	1.89
0.3	0.61	129.5	242.4	1.89
0.91	1.52	182.9	342.1	1.92
2.43	3.66	213.4	399.2	1.92
6.09	4.57	243.8	456.2	1.92
10.66	3.66	266.7	499	1.92
14.32	3.05	304.8	570.2	2
17.37	3.05	487.7	912.4	2
20.42	7.62	609.6	1140.5	2.08
28.04	7.62	731.5	1368.6	2.08
35.66	7.62	823	1539.6	2.08
43.28	30.18 ^a	1066.8	1995.8	2.08

### Site: 134, Eastwood Elementary



Fig 40 Experimental Dispersion Curve measured at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 41 Comparison between Experimental & Theoretical Dispersion Curves from Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 42 Shear Wave Velocity Profile Determined from SASW & Refraction Testing at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 16 Tabulated Shear Wave Velocity Profile from Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.46	335.30	627.3	1.92
0.46	0.18	152.40	285.1	1.92
0.64	0.53	259.10	484.7	1.92
1.17	0.69	304.80	570.2	2
1.86	0.91	457.20	855.3	2
2.77	2.29	579.10	1083.4	2
5.06	2.13	670.60	1254.5	2.08
7.19	5.18	762.00	1425.6	2.08
12.37	6.1	823.00	1539.6	2.08
18.47	6.4	853.40	1596.6	2.08
24.87	30.18 ^a	1163.30 ^b	2176.3	2.08

b. Refraction velocity



Arrival Time, sec

Fig 43 Arrival Times for Refraction Testing at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 44 Time-Distance Curve for Refraction Testing at Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	6.17	659.41	352.47
2	10.25	1200.44	641.66
3	40.12	2176.33	1163.30
4		3901.53	2085.45

Tabulated Refraction Profile from Eastwood Elementary, East Millcreek, Site 134, Earthquake Site Response Unit Q03 (Ashland, 2001)

# Site 84, Park Lane Elementary



Fig 45 Experimental Dispersion Curve measured at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 46 Comparison between Experimental & Theoretical Dispersion Curves from Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 47 Shear Wave Velocity Profile Determined from SASW Testing at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 17 Tabulated Shear Wave Velocity Profile from Park Lane Elementary, Sandy, Site84, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.38	99.10	185.30	1.89
0.38	0.91	129.50	242.40	1.89
1.29	1.45	182.90	342.10	1.92
2.74	1.52	198.10	370.60	1.92
4.26	1.52	213.4	399.2	1.92
5.78	3.05	240.8	450.5	1.92
8.83	6.71	271.3	507.5	1.92
15.54	10.67	304.8	570.2	2
26.21	7.62	320	598.8	2
33.83	7.62	350.5	655.8	2
41.45	30.18 ^a	794 ^b	1485.4	2

b. Refraction velocity



Fig 48 Arrival Times for Refraction Testing at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 49 Time-Distance Curve for Refraction Testing at Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Refraction Profile from Park Lane Elementary, Sandy, Site 84, Earthquake Site Response Unit Q03 (Ashland, 2001)

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	2.69	264.50	141.38
2	5.29	363.76	194.44
3	43.68	472.19	252.40
4		1485.77	794.18

Site 19, Salt Lake County Fire Tower



Fig 50 Experimental Dispersion Curve measured at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 51 Comparison between Experimental & Theoretical Dispersion Curves from Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 52 Shear Wave Velocity Profile Determined from SASW Testing at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 18 Site 19 (zh34), Magna Fire Station, Q03 Tabulated Shear Wave Velocity Profile from Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.27	129.5	242.4	1.89
0.27	0.61	243.8	456.2	1.92
0.88	1.52	335.3	627.3	2
2.4	2.44	403.9	755.5	2
4.84	6.10	414.5	775.5	2
10.94	7.62	445	832.5	2
18.56	7.62	472.4	883.9	2
26.18	7.62	518.2	969.4	2
33.8	7.62	579.1	1083.4	2
41.42	30.18 ^a	1090 ^b	2039.2	2.08

b. Refraction velocity



Fig 53 Arrival Times for Refraction Testing at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 54 Time-Distance Curve for Refraction Testing at Salt Lake County Fire Tower, Magna, Site 19, Earthquake Site Response Unit Q03 (Ashland, 2001)

Tabulated Forward Refraction	Profile from Sa	alt Lake Coun	ity Fire To	ower, Magna,	Site
19, Earthquake Site Response	Unit Q03 (Ash	land, 2001)			

Segment Depth from Velocity ( (m)	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	17.85	714.23	381.77
2		2037.16	1088.91

Site: 33, Herriman Elementary



Fig 55 Experimental Dispersion Curve measured at Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 56 Comparison between Experimental & Theoretical Dispersion Curves from Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)



Fig 57 Shear Wave Velocity Profile Determined from SASW Testing at Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)

Table 19 Tabulated Shear Wave Velocity Profile from Herriman Elementary, Herriman, Site 33, Earthquake Site Response Unit Q03 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	99.1	185.3	1.89
0.3	0.53	152.4	285.1	1.92
0.83	1.45	240.8	450.5	1.92
2.28	1.83	274.3	513.2	1.92
4.11	4.57	327.7	613	2
8.68	6.1	411.5	769.8	2
14.78	7.01	472.4	883.9	2
21.79	6.1	518.2	969.4	2
27.89	6.1	579.1	1083.4	2
33.99	30.18 ^a	655.3	1226	2.08

Site 98 – Cedar Valley, county road intersection



Experimental Dispersion Curve measured at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)



Comparison between Experimental & Theoretical Dispersion Curves from Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)



Shear Wave Velocity Profile Determined from SASW Testing at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.53	160	299.4	1.92
0.53	1.22	274.3	513.2	1.92
1.75	2.13	281.9	527.5	1.92
3.88	1.22	297.2	556	1.92
5.1	2.13	350.5	655.8	2
7.23	3.66	472.4	855.3	2
10.89	6.1	487.7	912.4	2
16.99	6.1	502.9	940.9	2
23.09	6.1	579.1	1083.4	2
29.19	30.18 ^a	795 ^b	1487.3	2.08

Tabulated Shear Wave Velocity Profile from Cedar Valley County Road Intersection Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)

a. Half-space in modelb. Refraction velocity



Arrival Times for Refraction Testing at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 1 Time-Distance Curve for Refraction Testing at Cedar Valley County Road Intersection, Cedar Valley, Site 98, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 1	Tabulated R	efraction Profil	e from Cedar	Valley	County Ro	ad Intersection	on,
Cedar V	alley, Site 98	8, Earthquake S	ite Response	Unit Q0	4 (Ashland	d, 2001)	

	Depth from Surface		Estimated Shear Wave Velocity
Segment	to Velocity Change (m)	P-wave Velocity (m/s)	assuming $v = 0.3$ (m/s)
1	26.07	791.46	423.05
2		1486.25	794.43

## Site 23, Copperton Park



Fig 2 Experimental Dispersion Curve measured at Copperton Park, Copperton, Site 23, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 3 Comparison between Experimental & Theoretical Dispersion Curves from Copperton Park, Copperton, Site 23, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 4 Shear Wave Velocity Profile Determined from SASW Testing at Copperton Park, Copperton, Site 23, Earthquake Site Response Unit Q04 (Ashland, 2001)
Table 2 Tabulated Shear Wave Velocity Profile from Copperton Park, Copperton, Site23, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	91.4	171.1	1.89
0.3	0.46	167.6	313.6	1.92
0.76	0.91	239.3	447.7	1.92
1.67	1.92	312.4	584.5	2
3.59	0.76	373.4	698.5	2
4.35	1.52	388.6	727	2
5.87	7.62	403.9	755.6	2
13.49	7.62	388.6	727	2
21.11	7.62	390.1	729.8	2
28.73	7.62	393.2	735.6	2
36.35	4.57	411.5	769.9	2
40.92	30.18 ^a	914.4	1710.7	2.08

Site: 308, Lark



Fig 5 Experimental Dispersion Curve measured at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 6 Comparison between Experimental & Theoretical Dispersion Curves from Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 7 Shear Wave Velocity Profile Determined from SASW Testing at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 3 Tabulated Shear Wave Velocity Profile from Lark, Salt Lake County, Site 308,Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.08	182.90	342.10	1.92
0.08	0.30	259.10	484.70	1.92
0.38	0.61	487.70	912.40	2
0.99	1.52	304.80	570.20	2
2.51	0.91	160	299.4	1.89
3.42	0.61	365.8	684.3	2
4.03	0.91	419.1	784.1	2
4.94	7.62	426.7	798.3	2
12.56	6.1	487.7	912.4	2
18.66	7.62	548.6	1026.4	2
26.28	30.18 ^a	1350 ^b	2525.6	2.08

b. Refraction velocity



Fig 8 Arrival Times for Refraction Testing at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 9 Time-Distance Curve for Refraction Testing at Lark, Salt Lake County, Site 308, Earthquake Site Response Unit Q04 (Ashland, 2001)

Tabula	ated Refrac	ction Profile	from Lark,	Salt Lake	County, S	Site 308,	Earthquak	e Site
Respo	nse Unit Q	04 (Ashland	l, 2001)		-			

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	4.05	472.90	252.78
2	17.73	902.04	482.16
3		2538.78	1357.03

## Site: 106, Eagle Mtn Water Tank



Fig 10 Experimental Dispersion Curve measured at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 11 Comparison between Experimental & Theoretical Dispersion Curves at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 12 Shear Wave Velocity Profile Determined from SASW Testing at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 4 Tabulated Shear Wave Velocity Profile from Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	1.07	160	299.4	1.92
1.07	1.37	342.9	641.5	2
2.44	1.22	393.2	735.6	2
3.66	1.22	463.3	866.8	2
4.88	1.52	541	1012.2	2
6.4	2.44	594.4	1112	2
8.84	3.05	640.1	1197.5	2.08
11.89	6.10	762	1425.6	2.08
17.99	4.57	1097.3	2052.8	2.08
22.56	30.18 ^a	1350 ^b	2525.6	2.08

b. Refraction Velocity



Fig 13 Arrival Times for Refraction Testing at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 14 Time-Distance Curve for Refraction Testing at Eagle Mountain Water Tank, Cedar Valley, Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 5 Tabulated Refraction Profile from Eagle Mountain Water Tank, Cedar	Valley,
Site 106, Earthquake Site Response Unit Q04 (Ashland, 2001)	

Segment	Depth from Surface to Velocity Change (m)	P-wave Velocity (m/s)	Estimated Shear Wave Velocity assuming $v = 0.3$ (m/s)
1	3.90	803.15	429.30
2	20.05	1109.00	592.79
3		2516.93	1345.35





Fig 15 Experimental Dispersion Curve measured at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 16 Comparison between Experimental & Theoretical Dispersion Curves from South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 17 Shear Wave Velocity Profile Determined from SASW Testing at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 6 Tabulated Shear Wave Velocity Profile from South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.3	91.40	171.1	1.89
0.3	0.73	216.40	404.9	1.92
1.03	0.76	289.60	541.7	1.92
1.79	1.52	350.50	655.8	2
3.31	1.22	403.90	755.5	2
4.53	7.62	419.10	784.1	2
12.15	6.1	420.60	786.9	2
18.25 ^a	2.44	442.00	1524	2
20.69	7.62	487.70	1524	2
28.31	7.62	518.20	1524	2
35.93	7.62	568.50	1524	2
43.55	30.18 ^b	650.00	1524	2.08

a. Depth to fully saturated zone from Refraction testing

b. Half-space in model



Fig 18 Arrival Times for Refraction Testing at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 19 Time-Distance Curve for Refraction Testing at South Field-Kennecott, Salt Lake County, Site 309, Earthquake Site Response Unit Q04 (Ashland, 2001)

Tabula	ated Refrac	ction Prof	ile from So	outh Field	d-Kennecot	t, Salt La	ake County,	, Site 309,
Earthg	uake Site	Response	Unit Q04 (	(Ashland	l, 2001)			

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	3.03	588.89	314.78
2	12.35 ^a	833.33	445.44
3		1213.77	

a. Depth to fully saturated zone





Fig 20 Experimental Dispersion Curve measured at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001).



Fig 21 Comparison between Experimental & Theoretical Dispersion Curves from North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)



Fig 22 Shear Wave Velocity Profile Determined from SASW Testing at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)

Table 7 Tabulated Shear Wave Velocity Profile from North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.23	104	194.6	1.89
0.23	0.38	106.7	199.6	1.89
0.61	0.90	143.3	268	1.89
1.51	2.36	221	413.4	1.92
3.87	3.96	304.8	570.2	2
7.83	5.18	350.5	655.8	2
13.01	4.57	414.5	775.5	2
17.58 ^a	3.96	434.3	1524	2
21.54	3.05	438.9	1524	2
24.59	3.05	449.6	1524	2
27.64	7.62	451.1	1524	2
35.26	9.14	454.2	1524	2
44.4	9.14	457.2	1524	2
53.54	9.14	458.7	1524	2
62.68	30.18 ^b	1645.9 ^c	1524	2.08

a. Depth to fully saturated zone from Refraction testing

b. Half-space in modelc. Refraction Velocity



Figure 1 Arrival Times for Refraction Testing at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)



Figure 2 Time-Distance Curve for Refraction Testing at North Field-Kennecott, Salt Lake County, Site 310, Earthquake Site Response Unit Q04 (Ashland, 2001)

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	16.49	547.02	292.39
2	37.27 ^a	1219.24	
3		3120.22	1667.83

a. Depth to fully saturated zone





Fig 1 Experimental Dispersion Curve measured at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 2 Comparison between Experimental & Theoretical Dispersion Curves from Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 3 Shear Wave Velocity Profile Determined from SASW Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 1 Tabulated Shear Wave Velocity Profile from Stone Mountain Lane, Sandy, Site303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
(111)				
0	0.06	760	1421.8	1.89
0.06	0.24	114.3	213.8	1.89
0.3	0.61	137.2	256.6	1.89
0.91	0.91	243.8	456.2	1.92
1.82	1.22	297.2	556	1.92
3.04	0.91	335.3	627.3	2
3.95	1.52	396.2	741.3	2
5.47	6.10	403.9	755.6	2
11.57	6.10	442	826.8	2
17.67	6.10	563.9	1054.9	2
23.77	10.67	571.5	1069.2	2
34.44	30.18 ^a	724 ^b	1354.5	2.08

a. Half-space in modelb. Refraction velocity



Fig 4 Arrival Times for Forward Refraction Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 5 Arrival Times for Reverse Refraction Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 6 Time-Distance Curve for Refraction Testing at Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 2 Tal	bulated Forwa	rd Refraction	Profile from	n Stone	Mountain	Lane,	Sandy,	Site
303, Earthc	uake Site Res	ponse Unit Q	05 (Ashland	1, 2001)	1			

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	5.34	498.80	266.62
2	9.41	844.10	451.19
3		1047.33	559.82

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	2.15	226.17	120.89
2	26.63	825.56	441.28
3		2116.31	1131.22

Table 3 Tabulated Reverse Refraction Profile from Stone Mountain Lane, Sandy, Site 303, Earthquake Site Response Unit Q05 (Ashland, 2001)

Inclined bed calculations:

Up = Reverse Refraction Line Down = Forward Refraction Line

gamma = 14.81 degrees

V1average = (451.19 + 441.28)/2 = 446.24 m/s V2= 724.1 m/s

$$\gamma = \frac{1}{2} \left[ \sin^{-1}(\frac{V_1}{V_{2D}}) - \sin^{-1}(\frac{V_1}{V_{2U}}) \right]$$

$$V_2 = \frac{2V_{2D}V_{2U}}{V_{2D} + V_{2U}}\cos\gamma$$



Fig 7 Experimental Dispersion Curve measured at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 8 Comparison between Experimental & Theoretical Dispersion Curves from Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 9 Shear Wave Velocity Profile Determined from SASW Testing at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 4 Tabulated Shear Wave Velocity Profile from Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.30	147.8	276.6	1.89
0.3	0.58	152.4	285.1	1.92
0.88	1.52	221	413.4	1.92
2.4	2.44	274.3	513.2	1.92
4.84	3.05	365.8	684.3	2
7.89	3.66	449.6	841.1	2
11.55	3.96	548.6	1026.4	2
15.51	6.10	579.1	1083.4	2
21.61	6.10	609.6	1140.5	2.08
27.71	8.23	640.1	1197.5	2.08
35.94	7.62	701	1311.5	2.08
43.56	30.18 ^a	914.4	1710.7	2.08



Fig 10 Arrival Times for Reverse Refraction Testing at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 11 Time-Distance Curve for Refraction Testing at Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Tabulated Refraction Profile from Gun Club West, Cottonwood Heights, Site 304, Earthquake Site Response Unit Q05 (Ashland, 2001)

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	4.76	395.09	211.18
2		989.12	528.71

## Site: 305, Gun Club East



Fig 12 Experimental Dispersion Curve measured at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 13 Comparison between Experimental & Theoretical Dispersion Curves from Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 14 Shear Wave Velocity Profile Determined from SASW Testing at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 5 Tabulated Shear Wave Velocity Profile from Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.38	125	233.90	1.89
0.38	0.23	190	355.50	1.92
0.61	0.7	228.6	427.70	1.92
1.31	3.05	320	598.80	2
4.36	4.57	442	826.80	2
8.93	4.57	548.6	1026.40	2
13.5	6.1	640.1	1197.50	2.08
19.6	6.1	708.7	1325.80	2.08
25.7	6.1	792.5	1482.60	2.08
31.8	30.18 ^a	1115 ^b	2086.00	2.08

a. Half-space in modelb. Refraction velocity


Fig 15 Arrival Times for Refraction Testing at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 16 Time-Distance Curve for Refraction Testing at Gun Club East, Cottonwood Heights, Site 305, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 6 Tabulate	d Refraction	Profile fro	m Gun	Club East,	Cottonwood	Heights,	Site 30	)5,
Earthquake Site I	Response Un	it Q05 (As	hland, 2	2001)				

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	3.69	557.35	297.92
2	5.70	891.74	476.66
3	31.39	1168.35	624.51
4		2080.95	1112.31

### Site 307, Mock Lane



Fig 17 Experimental Dispersion Curve measured at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 18 Comparison between Experimental & Theoretical Dispersion Curves from Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 19 Shear Wave Velocity Profile Determined from SASW Testing at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 7 Tabulated Shear Wave Velocity Profile from Mock Lane, Salt Lake County, Site307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)$
0	0.3	117.4	219.6	1.89
0.3	0.61	198.1	370.6	1.92
0.91	0.55	262.1	490.4	1.92
1.46	1.52	304.8	570.2	2
2.98	3.96	419.1	784.1	2
6.94	3.96	510.5	955.1	2
10.9	6.1	533.4	997.9	2
17	6.1	579.1	1083.4	2
23.1	9.14	617.2	1154.7	2.08
32.24	10.67	634	1186.1	2.08
42.91	30.18 ^a	746.8	1397.1	2.08

a. Half-space in model



Arrival Times for Refraction Testing at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)



Time-Distance Curve for Refraction Testing at Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Tabulated Refraction Profile from Mock Lane, Salt Lake County, Site 307, Earthquake Site Response Unit Q05 (Ashland, 2001)

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	3.53	511.67	273.50
2	5.21	876.73	468.63
3		994.04	531.33

### Site: 306, Granite Elementary



Fig 20 Experimental Dispersion Curve measured at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 21 Comparison between Experimental & Theoretical Dispersion Curves from Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)



Fig 22 Shear Wave Velocity Profile Determined from SASW Testing at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 8 Tabulated Shear Wave Velocity Profile from Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)

Depth to			Assumed P-	
Top of	Layer	Shear Wave	Wave	Assumed
Layer	Thickness	Velocity	Velocity	Unit Weight
(m)	(m)	(m/s)	(m/s)	$(t/m^3)^{-1}$
0	0.35	182.9	342.10	1.92
0.35	0.3	289.6	541.70	1.92
0.65	1.48	304.8	570.20	2
2.13	3.05	365.8	684.30	2
5.18	2.44	426.7	798.30	2
7.62	4.57	457.2	855.30	2
12.19	4.57	487.7	912.40	2
16.76	6.1	518.2	969.40	2
22.86 ^a	7.62	548.6	1524.00	2
30.48	7.8	560	1524.00	2
38.28	8	605	1524.00	2.08
46.28	30.18 ^b	800	1524.00	2.08

a. Depth to fully saturated zone from Refraction testingb. Half-space in model



Arrival Times for Refraction Testing at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)



Time-Distance Curve for Refraction Testing at Granite Elementary, Sandy, Site 306, Earthquake Site Response Unit Q05 (Ashland, 2001)

Table 9 Tabulated Refraction Profile from Granite Elementary, Sandy, Site	306,
Earthquake Site Response Unit Q05 (Ashland, 2001)	

Segment	Depth from Surface to	P-wave Velocity	Estimated Shear Wave Velocity
	Velocity Change (m)	(m/s)	assuming $v = 0.3$ (m/s)
1	4.59	294.45	157.39
2	21.37 ^a	705.07	376.88
3		1333.65	

a. Depth to fully saturated zone

Report No. UT-03.18

## DOWNHOLE SEISMIC ARRAY AT THE INTERSECTION OF I-15, I-80 AND SR-201, SALT LAKE CITY, UTAH

### **Prepared For:**

Utah Department of Transportation Research and Development Division

### **Submitted By:**

Brigham Young University Department of Civil and Environmental Engineering

### **Authored By:**

T. Leslie, Youd David H. Briggs







**Figure 2.3.** Cone penetration (CPT) log in three parts with soil stratigraphy interpreted by ConeTec from sounding CPT SV-SS-1; that sounding was located about 100 ft (30 m) north of I15DA and was installed during the I-15 reconstruction (log courtesy of ConeTec, Dames and Moore, and UDOT)



**Figure 2.4.** Sediment stratigraphy reported from Well Number 24 located about 600 ft (183 m) southeast of the I15DA site (Case, 1985)

The borehole log developed from the collected cuttings is reproduced in

Figure 2.5. This log is consistent with the log from Well 25 reproduced in

Figure 2.4. The log indicates clayey sediment to a depth of 150 ft (46 m).

Below 150 ft (46 m), the cuttings indicate that the sediment is composed of clay

or clayey sands with layers of varying shades of color. Some gravel was also



**Figure 2.5.** Lithologic log of 400-ft (122 m) deep hole in I15DA compiled by David Briggs from sediment cuttings extracted from the drilling fluid

patterns in the geophysical logs (Appendix 1, page 45), sediment layers were delineated and assigned either as fine-grained (clays) or coarse grained (sands).

The lithologic log interpreted from resistivity and gamma radiation measurements indicates that clay is the major sediment type in the profile, but that there are also many relatively thick sand layers dispersed through out the sediment stratigraphy. Thus, the interpreted lithologic log plotted in Figure 2.6 indicates much more granular sediment in the profile than is indicated by either the log from Well 24 (Figure 2.4) or the log estimated from sediment cuttings (Figure 2.5). The log in Figure 2.6, however, is only approximate, because of



**Figure 2.6.** Lithologic log interpreted from resistitivity and gamma radiation logs prepared by GeoVision Geophysical Services, Inc (Appendix 1); lithology interpretation is by David Briggs, with assistance from Dr. John McBride, David Alderks, and Robert Steller

#### Seismic Velocity Logs

#### **OYO Suspension Logger**

During the I15DA site investigation, seismic velocities (both compression (P-

wave) and shear (S-wave)) velocities were measured with an OYO in-hole suspension

logger and by cross-hole velocity measurements between the 160 ft (49 m) and 400 ft

(122 m) deep PVC casings. The suspension logging was performed by Robert Steller,



¹ Composite log interpreted by David Briggs from Well Number 24, Cullings from I15DA 400 ft hole and CPT SV-CS-11



**Figure 2.8.** I15DA compression and shear wave velocity logs from 400 ft (122 m) borehole at I15DA; (a) logs from 10 ft to 200 ft (3 m to 61 m) depth; (b) logs from 200 ft to 400 ft (61 m to 122 m) depth (data courtesy of GeoVision Geophysical Services, Inc. Geotechnical Log compiled by David Briggs)

saturated below a depth of 10 ft, except for the zone noted above. Below a depth of 90 ft (30 m), P-wave velocities from the two test procedures are generally consistent and consistently above 4,800 ft/sec (1,460 m/sec).



Figure 2.9. Seismic velocities from cross-hole tests at I15DA (J. A. Bay, Utah State University)



Figure 2.10. Comparison of seismic velocities measured with cross-hole and OYO suspension tests

# SALT LAKE CITY UDOT 400 FT BORING AT I15 AND 2200 SOUTH BOREHOLE GEOPHYSICS

**Prepared for** 

Brigham Young University 368 Clyde Building Provo, Utah 84602-4081 (801) 378-6327

Prepared by

GEOVision Geophysical Services 1151 Pomona Road, Unit P Corona, California 92882 (909) 549-1234 Project 2488

> May 30, 2003 Report 2488-02

De	pth			Pick ⁻			Velo	ocity			
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S⊦	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
3.0	9.8	, ,	. ,	. ,	25.30	. ,	7.56	, ,	, ,	0	0
3.5	11.5	36.80		8.40	28.70		7.56	123	1190	405	3906
4.0	13.1			8.42	30.80		7.50	-	1087	0	3566
4.5	14.8	39.20	39.90	8.36	32.50	33.30	7.52	150	1190	493	3906
5.0	16.4	40.00	39.60	8.26	33.40	33.70	7.46	160	1250	525	4101
5.5	18.0	35.80	36.10	8.36	27.00	28.60	7 30	123	943	403	3095
6.0	19.7	34 50	35.20	8 42	27.80	28.40	7.64	148	1282	486	4206
6.5	21.3	34 60	34 60	8.98	27.30	27.90	7.96	143	980	469	3217
7.0	23.0	34.80	34.30	9.48	26.90	27.30	8 10	134	725	440	2377
7.5	24.6	34 15	33.90	9.48	26.00	26.95	8.36	136	893	446	2929
8.0	26.2	33.45	32 70	9.48	25.46	25.55	8.46	129	980	422	3217
8.5	27.0	31.85	32.55	9.40	24.10	23.00	8.40	118	962	388	3155
9.0	20.5	30.75	30.15	8.68	23.20	22.35	7.96	130	1380	427	4557
0.0	20.0	20.10	28.45	8 20	20.20	22.05	7.30	156	1235	513	4050
10.0	32.8	28.05	27.00	8.76	22.70	22.05	7.53	130	885	613	2003
10.0	34.4	27 30	26.60	8.53	21 90	21.00	7.00	183	758	602	2485
11.0	36.1	28.10	20.00	8 38	21.00	20.85	7.21	162	980	531	3217
11.5	37.7	28.05	27.00	7.26	22.90	21.30	6.57	184	1449	605	4755
12.0	39.4	28.05	27.00	7.20	22.00	22.05	6.48	174	1282	571	4206
12.0	41 0	27.75	29.05	7.26	22.55	23.60	6.53	188	1202	616	4200
12.0	42.7	30.55	20.00	7.20	24.05	23.85	6.55	170	1515	588	4971
13.0	42.7	30.55	29.40	7.21	25.30	23.85	6.52	183	1630	602	5378
14.0	45.0	30.00	29.40	7.15	25.50	23.05	6.00	103	1403	591	4807
14.0	43.9	31.20	30.00	7.00	25.50	24.05	6.03	165	1495	542	4097
14.5	47.0	31.20	30.20	7.04	23.15	24.15	6.90	100	1400	J4Z 457	2696
15.0	49.Z	31.70	30.00	7.09	24.40	23.00	0.00	139	1124	407	4261
16.0	50.9	20.75	28.60	7.02	23.75	23.00	6.54	147	1299	401 521	4201
10.0	52.5	29.75	20.00	7.43	23.15	22.00	0.54	102	1124	501	4001
10.5	04.1	29.10	27.75	7.20	23.00	22.70	6.20	179	1220	000 610	4001
17.0	55.0	20.15	27.40	7.24	20.50	22.30	0.39	100	1170	526	3000
17.5	57.4	27.40	27.00	7.40	21.05	21.95	0.71	103	1449	530	4700
18.0	59.1	26.00	27.40	7.32	20.60	21.65	0.01	179	1408	586	4621
18.5	60.7	25.80	27.15	7.31	20.10	21.45	0.57	175	1351	570	4434
19.0	62.3	25.80	20.55	7.25	20.00	21.00	6.54	1/6	1408	5/8	4621
19.5	04.0	25.00	25.20	7.18	20.20	20.70	0.40	215	1389	700	4007
20.0	05.0	∠5.8U	20.40	7.18	21.45	21.80	0.50	223	14/1	133	4825
20.5	07.3	20.40	20.40	1.15	21.40	21.45	0.52	201	1507	600	5208
21.0	00.9	20.45	20.70	0.97	21.30	21.40	0.34	191	1587	028	5208
21.5	70.5	25.70	26.40	6.95	20.70	21.30	6.32	198	1587	650	5208
22.0	72.2	27.30	26.70	6.89	22.15	22.30	6.27	209	1613	687	5292
22.5	/3.8		29.45	7.02	22.40	25.05	6.38	227	1563	/46	5126
23.0	/5.5	00.00	28.55	/.08	22.85	22.10	6.42	155	1515	509	4971
23.5	//.1	28.20	27.70	6.86	22.10	22.10	6.25	171	1639	561	5378
24.0	/8.7	29.60	29.70	7.04	22.80	22.25	6.41	140	1587	460	5208
24.5	80.4	30.00	30.20	7.05	23.40	23.45	6.41	150	1562	492	5126
25.0	82.0	30.45	30.75	7.05	22.30	22.20	6.40	120	1538	393	5047
25.5	83.7	27.85	28.10	7.06	20.80	20.75	6.38	139	1471	456	4825
26.0	85.3	26.80	26.45	7.09	19.15	19.20	6.40	134	1449	440	4/55
26.5	86.9	25.15	24.95	7.06	19.00	18.95	6.39	165	1493	540	4897
27.0	88.6	23.70	24.55	7.05	19.00	19.85	6.38	213	1493	698	4897
27.5	90.2	22.50	22.55	6.97	17.65	17.95	6.32	212	1538	694	5047

Table 3. UDOT 400' Boring, Suspension R1-R2 depth, pick times, and velocities collected 8/10/02

Depth				Pick ⁻	Times				Velo	ocitv	
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S⊦	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
28.0	91.9	22 10	22 20	6.93	17.30	17.35	6.30	207	1587	680	5208
28.5	93.5	21.60	21.70	6.89	17.20	17.35	6.25	229	1563	750	5126
29.0	95.1	21.20	21.15	6.85	17.35	17.55	6.21	268	1563	881	5126
29.5	96.8	21.15	21.30	6.87	18.05	18.25	6.26	325	1639	1067	5378
30.0	98.4	21.60	21.80	6.86	18.25	18.40	6.24	296	1613	972	5292
30.5	100.1	22 45	22 70	6.86	18.20	18.35	6.23	233	1587	763	5208
31.0	101.7	23.05	23.00	6.89	18 75	18.80	6.28	235	1639	772	5378
31.5	103.3	22.25	22.45	6.88	18.70	18.75	6.28	276	1667	905	5468
32.0	105.0	22 40	22.55	6.90	18.50	18.50	6.27	252	1587	825	5208
32.5	106.6	22.35	22.66	6.88	17 70	17.90	6.22	217	1515	713	4971
33.0	108.3	21.80	22.40	6.83	16.95	17.00	6.17	205	1515	673	4071
33.5	100.0	21.00	21.35	6.80	16.00	16.55	6 14	200	1515	687	4071
34.0	111.5	20.65	20.80	6.77	16.05	16.00	6.14	217	1587	713	5208
34.5	113.2	20.00	20.00	6.74	16.00	16.15	6.13	250	1630	820	5278
35.0	114.8	19.85	20.15	6.74	16.00	16.15	6 15	268	1695	881	5561
35.5	116.5	20.20	20.05	6.76	16.10	16.33	6.16	200	1667	803	5468
36.0	118.1	20.20	20.40	6.78	17.25	17.50	6.17	294	1639	965	5378
36.5	119.8	21.00	20.00	6.82	17.25	18.00	6.19	282	1587	924	5208
37.0	121.4	21.00	22.10	6.83	18 10	18.30	6.20	263	1587	863	5208
37.5	121.4	21.00	22.10	6.70	18.35	18.60	6.07	200	1587	000	5200
38.0	123.0	21.35	22.20	6.69	18.60	18.80	6.07	276	1613	905	5200
38.5	124.7	22.20	22.43	6.65	18.00	18.64	6.00	2/0	1538	702	5047
30.0	120.0	22.50	22.70	6.66	17.06	19.16	5.00	242	1/03	699	4807
30.5	120.0	22.12	22.34	6.64	17.30	17.56	5.99	208	1403	684	4007
40.0	123.0	22.14	22.30	6.61	17.34	17.30	5.97	200	1515	740	4071
40.0	131.2	21.00	21.00	6.59	17.10	17.42	5.95	220	1562	835	5126
40.5	134.5	21.14	21.32	6.57	16.84	17.40	5.95	254	1502	822	5208
41.0	134.5	20.64	21.04	0.57	10.04	17.00	5.94	201	1507	706	5200
41.0	130.2	20.04	20.04	6.53	16.02	16.72	5.91	243	1505	790	5209
42.0	137.0	20.30	20.72	0.54	16.20	10.42	5.91	231	1507	100	5200
42.0	139.4	20.34	20.52	0.00	10.04	10.04	5.90	201	1007	022	5200
43.0	141.1	19.70	19.92	0.51	16.02	10.20	5.69	273	1013	090	5292
43.5	142.7	19.56	19.78	6.49	15.78	16.00	5.88	205	1639	808	5378
44.0	144.4	19.14	19.34	0.49	15.40	15.00	5.68	272	1639	892	5378
44.0	140.0	10.04	19.06	0.45	15.26	15.52	5.64	201	1039	922	5376
45.0	147.0	19.10	19.34	6.45	15.60	10.00	5.05	207	1007	940	0400 5469
45.5	149.3	19.40	19.72	6.43	15.90	16.00	5.05	279	1707	910	5657
40.0	150.9	19.04	19.74	0.43	15.90	10.20	5.00	201	1724	922	5057
40.0	152.0	10.72	10.90	0.41	15.00	15.00	5.63	329	1724	1079	5057
47.0	154.2	18.00	18.96	0.41	15.68	15.98	5.83	330	1724	1101	7000
47.5	100.0	10.00	19.04	0.39	15.90	10.14	5.01	344	1700	112/	5057
48.0	157.5	18.04	18.24	0.37	15.70	15.92	5.81	429	1/80	1408	5859
48.5	159.1	17.76	17.88	6.38	15.60	15.78	5.82	469	1786	1540	5859
49.0	160.4	10.42	10.00	0.30	15.42	10.00	5.79	333 202	1754	1094	5/50
49.5	102.4	19.70	19.92	0.38	10.40	10.02	0.8U	303	1/24	994	5057
50.0	104.0	20.12	20.32	0.49	16.70	17.44	5.94	040 244	1010	1010	5905
50.5	167.2	19.00	20.00	0.01	10.72	10.70	5.94 E 0E	311 270	1704	001	0/00 F657
51.0	107.3	10.90	19.10	0.00	15.24	15.40	5.95	2/0	1706	004	5057
51.5	109.0	10.00	10.00	0.52	15.14	15.32	0.90	203	1700	929	2029
52.0	170.0	10.50	10.70	0.57	15.58	15.78	0.01	330 700	1780	1101	5859
52.5	1/2.2	19.70	19.94	6.53	18.34	18.56	5.96	730	1754	2395	5756

Table 3, continued. UDOT 400' Boring, Suspension R1-R2 depth, pick times, and velocities collected 8/10/02

De	pth			Pick ⁻	Times				Velo	ocity	
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
53.0	173.9	20.58	20.54	6.63	18.42	18.60	6.03	488	1667	1600	5468
53.5	175.5	20.60	20.76	6.61	16.22	16.38	6.00	228	1639	749	5378
54.0	177.2	19.56	19.76	6.64	15.56	15.74	6.03	249	1639	818	5378
54.5	178.8	18.74	18.92	6.49	15.64	15.80	5.88	322	1639	1055	5378
55.0	180.4	18.48	18.68	6.49	16.30	16.56	5.87	465	1613	1526	5292
55.5	182.1	18.56	18.72	6.49	16.72	16.96	5.88	556	1639	1823	5378
56.0	183.7	19.54	19.78	6.46	15.80	16.04	5.85	267	1639	877	5378
56.5	185.4	21.22	21.36	6.44	15.74	16.00	5.84	185	1667	605	5468
57.0	187.0	19.52	19.74	6.47	15.10	15.26	5.87	225	1667	737	5468
57.5	188.6	17.70	17.88	6.47	14.46	14.66	5.87	310	1667	1016	5468
58.0	190.3	17.10	17.30	6.44	14.22	14.40	5.86	346	1724	1135	5657
58.5	191.9	17.06	17.28	6.43	14.32	14.52	5.85	364	1724	1193	5657
59.0	193.6	16.92	17.16	6.43	14.74	14.96	5.85	457	1724	1498	5657
59.5	195.2	17.16	17.40	6.53	15.04	15.28	5.93	472	1667	1548	5468
60.0	196.9	17.96	18.20	6.55	14.26	14.44	5.96	268	1695	880	5561
60.5	198.5	18.34	18.54	6.55	14.06	14.28	5.97	234	1724	768	5657
61.0	200.1	17.40	17.58	6.56	14.16	14.38	5.98	311	1724	1019	5657
61.5	201.8	17.32	17.58	6.57	14.54	14.72	5.96	355	1639	1163	5378
62.0	203.4	17.94	18.14	6.44	15.08	15.22	5.84	346	1667	1135	5468
62.5	205.1	19.38	19.58	6.57	16.24	16.42	5.96	317	1639	1042	5378
63.0	206.7	19.74	19.94	6.52	16.76	16.94	5.91	334	1639	1097	5378
63.5	208.3	18.68	18.94	6.52	15.66	15.94	5.92	332	1667	1090	5468
64.0	210.0	17.92	18.16	6.48	15.26	15.44	5.90	372	1724	1220	5657
64.5	211.6	17.60	17.80	6.45	15.50	15.68	5.86	474	1695	1555	5561
65.0	213.3	17.40	17.68	6.42	15.74	15.90	5.84	581	1724	1907	5657
65.5	214.9	17.80	17.98	6.43	15.08	15.22	5.86	365	1754	1197	5756
66.0	216.5	18.26	18.48	6.45	14.70	14.90	5.87	280	1724	919	5657
66.5	218.2	18.24	18.40	6.45	14.20	14.46	5.88	251	1754	822	5756
67.0	219.8	17.96	18.18	6.46	14.06	14.28	5.87	256	1695	841	5561
67.5	221.5	17.44	17.62	6.45	14.30	14.50	5.88	319	1754	1048	5756
68.0	223.1	17.16	17.36	6.46	14.42	14.60	5.89	364	1754	1193	5756
68.5	224.7	17.18	17.34	6.44	14.48	14.62	5.88	369	1786	1211	5859
69.0	226.4	17.16	17.22	6.50	14.38	14.50	5.92	364	1724	1193	5657
69.5	228.0	17.26	17.46	6.45	14.34	14.56	5.85	344	1667	1127	5468
70.0	229.7	17.36	17.56	6.51	14.14	14.36	5.90	312	1639	1022	5378
70.5	231.3	17.20	17.38	6.51	13.94	14.16	5.91	309	1667	1013	5468
71.0	232.9	16.76	16.98	6.51	13.52	13.74	5.91	309	1667	1013	5468
71.5	234.6	16.60	16.82	6.51	13.18	13.38	5.92	292	1695	957	5561
72.0	236.2	16.30	16.50	6.50	13.35	13.50	5.92	336	1724	1103	5657

Table 3, continued. UDOT 400' Boring, Suspension R1-R2 depth, pick times, and velocities collected 8/10/02

De	epth			Pick ⁻			Velo	ocity			
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
67.5	221.5	10.54	10.52	6.53	8.48	8.50	5.96	490	1739	1608	5706
68.0	223.1	10.34	10.54	6.53	8.28	8.30	5.93	465	1681	1526	5514
68.5	224.7	10.90	10.98	6.53	8.60	8.66	5.97	433	1786	1420	5859
69.0	226.4	10.52	10.58	6.55	8.78	8.72	6.02	556	1887	1823	6190
69.5	228.0	12.78	12.68	6.58	10.28	10.38	6.02	417	1770	1367	5807
70.0	229.7	13.30	13.20	6.58	10.68	10.78	5.99	397	1681	1302	5514
70.5	231.3	13.82	13.76	6.61	11.36	11.36	6.00	412	1653	1350	5423
71.0	232.9	13.96	13.86	6.58	11.18	11.10	5.98	361	1667	1184	5468
71.5	234.6	14.36	14.36	6.52	11.68	11.72	5.92	376	1667	1233	5468
72.0	236.2	14.48	14.40	6.58	11.96	11.90	6.00	398	1709	1307	5608
72.5	237.9	13.98	14.00	6.58	11.44	11.54	6.00	400	1724	1312	5657
73.0	239.5	14.26	14.16	6.55	11.34	11.40	5.93	352	1626	1155	5335
73.5	241.1	11.68	11.86	6.48	9.38	9.46	5.87	426	1639	1396	5378
74.0	242.8	13.60	13.70	6.63	11.08	11.04	6.05	386	1724	1267	5657
74.5	244.4	14.66	14.60	6.60	12.50	12.48	5.99	467	1653	1533	5423
75.0	246.1	14.70	14.66	6.61	12.30	12.32	6.00	422	1639	1384	5378
75.5	247.7	12.76	12.84	6.63	10.50	10.58	6.02	442	1639	1452	5378
76.0	249.3	12.74	12.66	6.62	10.48	10.52	6.01	455	1639	1491	5378
76.5	251.0	12.76	12.78	6.58	10.58	10.68	5.98	467	1667	1533	5468
77.0	252.6	12.88	12.84	6.55	10.68	10.60	5.96	450	1681	1478	5514
77.5	254.3	12.78	12.72	6.50	10.20	10.24	5.91	395	1695	1297	5561
78.0	255.9	12.84	12.94	6.47	10.38	10.42	5.87	402	1667	1318	5468
78.5	257.5	12.68	12.72	6.60	10.10	10.22	5.99	394	1653	1292	5423
79.0	259.2	12.58	12.52	6.59	9.72	9.74	5.99	355	1667	1163	5468
79.5	260.8	14.60	14.68	6.55	12.28	12.38	5.98	433	1754	1420	5756
80.0	262.5	14.66	14.70	6.57	12.40	12.50	5.99	448	1724	1471	5657
80.5	264.1	14.60	14.60	6.57	12.72	12.82	5.99	546	1724	1793	5657
81.0	265.7	15.66	15.86	6.60	13.62	13.86	6.04	495	1770	1624	5807
81.5	267.4	12.34	12.18	6.62	10.30	10.12	6.08	488	1835	1600	6020
82.0	269.0	14.38	14.44	6.65	12.16	12.28	6.10	457	1818	1498	5965
82.5	270.7	12.44	13.52	6.53	10.22	11.32	5.97	452	1802	1485	5911
83.0	272.3	14.42	14.50	6.68	12.02	12.10	6.07	417	1639	1367	5378
83.5	274.0	12.42	13.60	6.70	10.10	11.26	6.08	429	1600	1408	5249
84.0	275.6	12.64	12.74	6.56	10.14	10.22	5.92	398	1563	1307	5126
84.5	277.2	12.64	14.54	6.66	10.06	11.68	6.03	368	1587	1206	5208
85.0	278.9	13.06	14.00	6.62	10.52	11.30	6.02	382	1653	1252	5423
85.5	280.5	12.52	12.62	6.60	10.20	10.24	6.01	426	1709	1396	5608
86.0	282.2	14.14	14.20	6.58	11.30	11.42	6.00	356	1709	1168	5608
86.5	283.8	13.68	13.80	6.56	10.96	11.10	5.97	369	1695	1211	5561
87.0	285.4	11.90	12.02	6.54	9.54	9.64	5.96	422	1709	1384	5608
87.5	287.1	11.68	11.86	6.54	9.56	9.64	5.94	461	1681	1512	5514
88.0	288.7	11.66	13.44	6.49	9.92	11.18	5.93	500	1786	1640	5859
88.5	290.4	11.74	12.76	6.52	10.06	10.74	5.94	541	1739	1773	5706
89.0	292.0	12.08	12.40	6.52	10.36	10.52	5.98	556	1835	1823	6020
89.5	293.6	12.38	12.62	6.51	10.58	10.66	6.00	532	1942	1745	6371
90.0	295.3	12.82	12.92	6.54	10.52	10.54	6.00	427	1852	1402	6076
90.5	296.9	12.94	12.86	6.61	10.58	10.58	6.06	431	1835	1414	6020
91.0	298.6	12.74	12.74	6.64	10.38	10.46	6.08	431	1786	1414	5859
91.5	300.2	16.32	16.36	6.66	13.86	13.92	6.09	408	1739	1339	5706
92.0	301.8	16.28	16.36	6.67	13.68	13.80	6.07	388	1681	1272	5514

Table 4. UDOT 400' Boring, Suspension R1-R2 depth, pick times, and velocities collected 4/15/03

De	pth			Pick ⁻	Times				Velo	ocity	
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
92.5	303.5	13.12	16.64	6.63	10.80	13.86	6.04	392	1681	1287	5514
93.0	305.1	12.92	13.00	6.64	10.78	10.76	6.03	457	1653	1498	5423
93.5	306.8	12.82	16.94	6.65	9.90	14.32	6.01	361	1562	1184	5126
94.0	308.4	14.62	14.62	6.65	11.56	11.60	6.01	329	1575	1079	5167
94.5	310.0	14.26	14.16	6.61	11.66	11.62	5.99	389	1613	1277	5292
95.0	311.7	14.26	14.28	6.55	11.66	11.70	5.93	386	1600	1267	5249
95.5	313.3	11.44	11.66	6.52	9.70	9.44	5.92	505	1667	1657	5468
96.0	315.0	11.52	11.58	6.50	9.68	9.78	5.90	549	1667	1803	5468
96.5	316.6	11.36	11.48	6.48	9.84	9.94	5.89	654	1695	2144	5561
97.0	318.2	11.24	11.36	6.43	9.76	9.82	5.84	662	1681	2173	5514
97.5	319.9	11.18	11.16	6.53	9.64	9.66	5.97	658	1786	2158	5859
98.0	321.5	10.92	10.88	6.58	8.76	8.64	5.99	455	1695	1491	5561
98.5	323.2	10.18	10.20	6.56	8.40	8.30	5.97	543	1695	1783	5561
99.0	324.8	9.72	9.62	6.61	8.04	7.98	6.02	602	1695	1976	5561
99.5	326.4	9.96	9.94	6.62	8.24	8.16	6.04	571	1739	1875	5706
100.0	328.1	9.78	9.74	6.62	8.10	8.06	6.04	595	1739	1953	5706
100.5	329.7	9.90	9.90	6.62	8.52	8.52	6.02	725	1681	2377	5514
101.0	331.4	10.08	10.06	6.73	8.92	8.88	6.08	855	1538	2804	5047
101.5	333.0	12.60	12.66	6.58	11.10	11.18	5.90	671	1481	2202	4861
102.0	334.6	12.28	12.24	6.52	10.96	11.00	5.87	781	1538	2563	5047
102.5	336.3	10.62	12.58	6.52	8.96	10.76	5.89	575	1600	1886	5249
103.0	337.9	10.78	12.60	6.45	8.92	10.52	5.88	508	1770	1665	5807
103.5	339.6	10.50	12.42	6.57	8.68	10.48	5.99	532	1724	1745	5657
104.0	341.2	10.36	10.44	6.57	8.40	8.44	6.00	505	1754	1657	5756
104.5	342.8	10.40	10.34	6.57	8.56	8.52	6.00	546	1739	1793	5706
105.0	344.5	10.22	10.16	6.59	8.50	8.42	5.98	578	1653	1896	5423
105.5	346.1	10.04	10.08	6.45	8.72	8.74	5.85	752	1667	2467	5468
106.0	347.8	10.14	10.08	6.48	8.44	8.34	5.90	581	1739	1907	5706
106.5	349.4	10.20	10.20	6.63	8.60	8.64	6.02	633	1653	2076	5423
107.0	351.0	10.04	10.00	6.47	8.52	8.52	5.90	667	1770	2187	5807
107.5	352.7	10.00	9.94	6.48	8.30	8.36	5.92	610	1786	2001	5859
108.0	354.3	9.84	9.76	6.50	8.10	8.10	5.93	588	1770	1930	5807
108.5	356.0	9.78	10.14	6.53	8.22	8.58	5.95	641	1709	2103	5608
109.0	357.6	9.52	9.54	6.52	7.98	8.04	5.95	658	1739	2158	5706
109.5	359.3	9.46	9.50	6.59	7.92	7.98	6.02	654	1754	2144	5756
110.0	360.9	9.38	9.40	6.60	7.86	7.90	6.00	662	1667	2173	5468
110.5	362.5	9.34	9.36	6.61	7.82	7.88	6.00	667	1653	2187	5423
111.0	364.2	9.36	9.34	6.62	7.90	7.92	6.00	694	1613	2278	5292
111.5	365.8	9.32	9.26	6.61	8.06	8.02	5.98	800	1600	2625	5249
112.0	367.5	9.36	9.34	6.56	7.82	7.74	5.97	637	1695	2090	5561
112.5	369.1	9.54	9.56	6.54	7.68	7.72	5.95	541	1695	1773	5561
113.0	370.7	9.34	9.34	6.54	7.82	7.84	5.94	662	1681	2173	5514
113.5	372.4	9.34	9.20	6.55	7.82	7.78	5.97	680	1724	2232	5657
114.0	374.0	9.30	9.28	6.52	7.70	7.72	5.92	633	1667	2076	5468
114.5	375.7	9.28	9.26	6.48	7.80	7.84	5.90	690	1724	2263	5657
115.0	377.3	9.20	9.24	6.49	7.74	7.84	5.93	699	1786	2294	5859
115.5	378.9	9.22	9.32	6.49	7.78	7.90	5.92	699	1754	2294	5756
116.0	380.6	9.40	9.54	6.46	7.80	7.98	5.89	633	1754	2076	5756
116.5	382.2	9.46	9.58	6.34	7.52	7.66	5.78	518	1786	1700	5859

Table 4, continued. UDOT 400' Boring, Suspension R1-R2 depth, pick times, and velocities collected 4/15/03



Figure 5. UDOT 400' Boring, Resistivity data



Figure 6. UDOT 400' Boring, Gamma, Point Resistivity and Suspension velocities

## **APPENDIX A**

# SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS





	Velocity			Velocity		Velocity			Velocity		
Depth	V-S _H	V-p	Depth	V- S _H	V-p	Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)	(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
5.1	153	963	16.6	503	3160	25.1	170	1481	82.3	557	4859
5.6	132	1026	18.3	435	3367	25.6	175	1454	83.9	576	4769
6.1	120	1033	19.9	394	3389	26.1	173	1502	85.5	568	4929
6.6	116	1047	21.6	380	3434	26.6	172	1460	87.2	564	4792
7.1	110	1040	23.2	360	3411	27.1	181	1440	88.8	594	4726
7.6	113	1068	24.8	371	3504	27.6	195	1481	90.5	640	4859
8.1	119	1013	26.5	392	3323	28.1	211	1517	92.1	694	4977
8.6	126	946	28.1	414	3103	28.6	218	1562	93.7	715	5125
9.1	141	918	29.8	464	3012	29.1	219	1554	95.4	719	5100
9.6	146	892	31.4	480	2927	29.6	242	1578	97.0	792	5177
10.1	156	908	33.0	513	2977	30.1	248	1578	98.7	814	5177
10.6	162	908	34.7	531	2977	30.6	248	1586	100.3	814	5203
11.1	173	929	36.3	568	3048	31.1	243	1619	101.9	799	5310
11.6	176	1019	38.0	579	3345	31.6	235	1619	103.6	772	5310
12.1	176	1125	39.6	579	3692	32.1	231	1619	105.2	757	5310
12.6	182	1231	41.2	597	4040	32.6	228	1610	106.9	747	5283
13.1	181	1256	42.9	594	4121	33.1	222	1562	108.5	728	5125
13.6	181	1266	44.5	594	4154	33.6	220	1570	110.1	723	5151
14.1	176	1348	46.2	579	4421	34.1	226	1594	111.8	741	5229
14.6	173	1314	47.8	568	4310	34.6	239	1627	113.4	783	5338
15.1	156	1314	49.4	513	4310	35.1	252	1670	115.1	827	5480
15.6	152	1319	51.1	499	4329	35.6	262	1653	116.7	858	5422
16.1	150	1256	52.7	491	4121	36.1	270	1627	118.3	884	5338
16.6	151	1359	54.4	495	4460	36.6	273	1635	120.0	896	5366
17.1	159	1353	56.0	522	4440	37.1	270	1644	121.6	884	5394
17.6	165	1359	57.6	541	4460	37.6	262	1610	123.3	858	5283
18.1	170	1440	59.3	557	4726	38.1	248	1594	124.9	814	5229
18.6	173	1408	60.9	568	4620	38.6	235	1594	126.5	772	5229
19.1	189	1467	62.6	621	4814	39.1	229	1586	128.2	752	5203
19.6	191	1474	64.2	626	4837	39.6	225	1586	129.8	738	5203
20.1	201	1460	65.8	658	4792	40.1	223	1610	131.5	733	5283
20.6	205	1474	67.5	673	4837	40.6	225	1586	133.1	737	5203
21.1	207	1539	69.1	678	5050	41.1	232	1610	134.7	762	5283
21.6	204	1440	70.8	669	4726	41.6	245	1610	136.4	804	5283
22.1	192	1377	72.4	630	4518	42.1	248	1619	138.0	815	5310
22.6	189	1474	74.0	619	4837	42.6	245	1602	139.7	804	5256
23.1	190	1488	75.7	622	4882	43.1	254	1627	141.3	832	5338
23.6	195	1481	77.3	640	4859	43.6	261	1635	142.9	857	5366
24.1	183	1447	79.0	599	4747	44.1	263	1653	144.6	864	5422
24.6	174	1474	80.6	572	4837	44.6	267	1670	146.2	876	5480

Table A-1. UDOT 400' Boring, S - R1 quality assurance analysis P- and S_H -wave data collected 8/10/02

	Velo	ocity		Velocity			
Depth	V-S _H	V-p	Depth	V- S _H	V-p		
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)		
45.1	274	1679	147.9	897	5509		
45.6	280	1697	149.5	918	5569		
46.1	284	1688	151.1	933	5539		
46.6	291	1707	152.8	956	5599		
47.1	280	1725	154.4	918	5660		
47.6	275	1716	156.1	904	5629		
48.1	271	1716	157.7	890	5629		
48.6	280	1735	159.4	918	5692		
49.1	280	1784	161.0	918	5853		
49.6	280	1774	162.6	918	5820		
50.1	280	1754	164.3	918	5755		
50.6	284	1754	165.9	933	5755		
51.1	287	1764	167.6	942	5788		
51.6	263	1735	169.2	864	5692		
52.1	245	1735	170.8	804	5692		
52.6	250	1735	172.5	821	5692		
53.1	289	1716	174.1	949	5629		
53.6	301	1707	175.8	989	5599		
54.1	280	1688	177.4	918	5539		
54.6	225	1688	179.0	737	5539		
55.1	225	1688	180.7	737	5539		
55.6	265	1670	182.3	870	5480		
56.1	280	1679	184.0	918	5509		
56.6	280	1688	185.6	918	5539		
57.1	267	1716	187.2	876	5629		
57.6	256	1707	188.9	839	5599		
58.1	278	1716	190.5	912	5629		
58.6	280	1707	192.2	918	5599		
59.1	294	1735	193.8	965	5692		
59.6	320	1725	195.4	1051	5660		
60.1	326	1725	197.1	1071	5660		
60.6	320	1716	198.7	1051	5629		
61.1	301	1725	200.4	989	5660		
61.6	299	1735	202.0	981	5692		
62.1	312	1735	203.6	1024	5692		
62.6	326	1725	205.3	1071	5660		
63.1	320	1707	206.9	1051	5599		
63.6	309	1707	208.6 1015		5599		
64.1	296	1725	210.2	972	5660		
64.6	267	1735	211.8	876	5692		

	Velo	ocity		Velocity			
Depth	V-S _H	V-p	Depth	V- S _H	V-p		
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)		
65.1	261	1735	213.5	857	5692		
65.6	271	1754	215.1	890	5755		
66.1	284	1754	216.8	933	5755		
66.6	284	1764	218.4	933	5788		
67.1	280	1754	220.0	918	5755		
67.6	296	1744	221.7	972	5723		
68.1	301	1744	223.3	989	5723		
68.6	320	1754	225.0	1051	5755		
69.1	326	1754	226.6	1071	5755		
69.6	320	1754	228.2	1051	5755		
70.1	315	1754	229.9	1032	5755		
70.6	310	1725	231.5	1016	5660		
71.1	320	1725	233.2	1051	5660		
71.6	320	1735	234.8	1051	5692		
72.1	320	1735	236.5	1051	5692		
72.6	326	1735	238.1	1071	5692		
73.1	336	1735	239.7	1103	5692		
73.6	356	1716	241.4	1168	5629		
74.1	349	1725	243.0	1145	5660		

Table A-1, continued.	UDOT 400' Boring	J, S - R1 quality	assurance
analysis P- a	and S _H -wave data (	collected 8/10/0	2

	Velocity			Velocity			Velocity			Velocity	
Depth	V-S _H	V-p	Depth	V- S _H	V-p	Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)	(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
69.6	471	1675	228.2	1547	5494	89.6	477	1799	293.9	1566	5904
70.1	414	1661	229.9	1359	5451	90.1	469	1784	295.5	1538	5853
70.6	402	1640	231.5	1319	5380	90.6	452	1744	297.1	1484	5723
71.1	430	1606	233.2	1411	5269	91.1	442	1707	298.8	1451	5599
71.6	428	1619	234.8	1404	5310	91.6	409	1675	300.4	1341	5494
72.1	417	1631	236.5	1368	5352	92.1	396	1675	302.1	1301	5494
72.6	396	1661	238.1	1301	5451	92.6	372	1666	303.7	1221	5465
73.1	393	1661	239.7	1288	5451	93.1	347	1627	305.3	1140	5338
73.6	389	1640	241.4	1275	5380	93.6	344	1574	307.0	1130	5164
74.1	372	1602	243.0	1221	5256	94.1	338	1586	308.6	1108	5203
74.6	360	1644	244.7	1181	5394	94.6	372	1566	310.3	1221	5138
75.1	362	1614	246.3	1187	5297	95.1	387	1586	311.9	1269	5203
75.6	379	1675	247.9	1244	5494	95.6	398	1586	313.5	1307	5203
76.1	374	1614	249.6	1226	5297	96.1	440	1606	315.2	1443	5269
76.6	393	1684	251.2	1288	5524	96.6	426	1661	316.8	1397	5451
77.1	396	1619	252.9	1301	5310	97.1	435	1688	318.5	1427	5539
77.6	391	1631	254.5	1281	5352	97.6	442	1702	320.1	1451	5584
78.1	393	1623	256.1	1288	5324	98.1	448	1702	321.8	1469	5584
78.6	389	1635	257.8	1275	5366	98.6	458	1749	323.4	1502	5739
79.1	383	1635	259.4	1256	5366	99.1	447	1684	325.0	1467	5524
79.6	381	1679	261.1	1250	5509	99.6	450	1606	326.7	1476	5269
80.1	403	1684	262.7	1321	5524	100.1	530	1586	328.3	1740	5203
80.6	407	1730	264.3	1334	5676	100.6	534	1644	330.0	1752	5394
81.1	411	1730	266.0	1348	5676	101.1	569	1648	331.6	1866	5408
81.6	403	1725	267.6	1321	5660	101.6	557	1635	333.2	1827	5366
82.1	394	1693	269.3	1293	5554	102.1	545	1635	334.9	1789	5366
82.6	363	1661	270.9	1192	5451	102.6	489	1614	336.5	1605	5297
83.1	338	1684	272.5	1108	5524	103.1	480	1640	338.2	1575	5380
83.6	334	1644	274.2	1097	5394	103.6	469	1716	339.8	1538	5629
84.1	333	1602	275.8	1094	5256	104.1	489	1735	341.4	1605	5692
84.6	336	1606	277.5	1103	5269	104.6	495	1716	343.1	1625	5629
85.1	341	1606	279.1	1120	5269	105.1	505	1702	344.7	1656	5584
85.6	347	1614	280.7	1140	5297	105.6	515	1702	346.4	1689	5584
86.1	369	1623	282.4	1209	5324	106.1	530	1740	348.0	1740	5707
86.6	394	1670	284.0	1294	5480	106.6	529	1725	349.6	1734	5660
87.1	414	1675	285.7	1359	5494	107.1	525	1675	351.3	1723	5494
87.6	423	1666	287.3	1388	5465	107.6	522	1754	352.9	1711	5755
88.1	445	1675	288.9	1459	5494	108.1	531	1725	354.6	1743	5660
88.6	480	1754	290.6	1575	5755	108.6	538	1702	356.2	1764	5584
89.1	486	1769	292.2	1595	5804	109.1	549	1657	357.8	1801	5436

Table A-2. UDOT 400' Boring, S - R1 quality assurance analysis P- and S_H -wave data collected 4/15/03
	Velocity			Velocity		
Depth	V-S _H	V-p	Depth	V- S _H	V-p	
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)	
109.6	569	1644	359.5	1868	5394	
110.1	590	1640	361.1	1936	5380	
110.6	595	1594	362.8	1951	5229	
111.1	577	1606	364.4	1894	5269	
111.6	581	1574	366.0	1908	5164	
112.1	590	1590	367.7	1936	5216	
112.6	590	1590	369.3	1936	5216	
113.1	590	1631	371.0	1936	5352	
113.6	557	1623	372.6	1827	5324	
114.1	609	1614	374.2	1996	5297	
114.6	599	1623	375.9	1966	5324	
115.1	599	1606	377.5	1966	5269	
115.6	590	1623	379.2	1936	5324	
116.1	609	1627	380.8	1996	5338	
116.6	595	1661	382.4	1951	5451	
117.1	618	1679	384.1	2028	5509	
117.6	618	1735	385.7	2028	5692	
118.1	665	1721	387.4	2183	5645	
118.6	720	1789	389.0	2363	5870	

Table A-2, continued. UDOT 400' Boring, S - R1 quality assurance analysis P- and  $S_{\rm H}$  -wave data collected 4/15/03

## Appendix 3

## Cross Hole data by Dr. James Bay, Utah State University



Test Description at I-15 and 2100 South

We measured p and shear wave velocities like the description above. Because we could not obtain clear phase due to the long spacing (B1-B3), we moved our source from B1 to B2 for 38ft-4ft measurements.



Cross hole testing at I-15 and 2100 South from Utah State University

Figure 1. Velocity profile



Figure 2. Shear wave velocity



Figure 3. P-wave velocity



Figure 4. Picks for Vs at B1-B2 (156ft-40ft)



Figure 5. Picks for Vs at B2-B1 (38ft-4ft)







Figure 7. Picks for Vs at B2-B3 (38ft-4ft)



Figure 8. Picks for Vp at B1-B2 (156ft-40ft)



Figure 9. Picks for Vp at B2-B1 (38ft-4ft)



Figure 10. Picks for Vp at B2-B3 interval (60ft-40ft)



Figure 11. Picks for Vp at B2-B3 (38ft-4ft)

Direct Mea	surement B	1-B2			
Depth,	Spacing,	Shear	Wave	P-W	ave
ft	ft	∆t, msec	Vs, ft/sec	∆t, msec	Vp, ft/sec
156	12.9721	11.963	1084.35	2.0447	6344.25
152	12.9593	12.451	1040.82	2.2583	5738.52
148	12.9465	13.214	979.757	2.3499	5509.39
144	12.9335	13.092	987.895	2.3804	5433.34
140	12.9192	15.381	839.944	2.5635	5039.67
136	12.9114	17.365	743.531	2.6245	4919.57
132	12.9042	15.503	832.369	2.7466	4698.25
128	12.8945	13.947	924.533	2.2888	5633.72
124	12.8851	14.099	913.903	2.4109	5344.52
120	12.8719	12.665	1016.33	2.2583	5699.8
116	12.8624	13.763	934.562	2.3193	5545.8
112	12.8581	15.045	854.64	2.5635	5015.82
108	12.8614	13.763	934.488	2.3804	5403.02
104	12.8776	14.282	901.664	2.2888	5626.34
100	12.9003	14.526	888.084	2.2278	5790.61
97	12.9178	15.778	818.721	2.3193	5569.69
94	12.9326	17.761	728.146	2.4414	5297.21
91	12.9429	17.731	729.961	2.4414	5301.44
88	12.9497	17.151	755.041	2.2888	5657.86
85	12.9525	18.921	684.559	2.3804	5441.33
82	12.9527	19.012	681.291	2.2583	5735.6
80	12.9512	17.975	720.51	2.3804	5440.75
78	12.9486	17.212	752.299	2.3499	5510.26
76	12.9451	17.426	742.864	2.3499	5508.8
74	12.9411	17.883	723.653	2.3193	5579.74
72	12.9367	18.127	713.67	2.3193	5577.84
70	12.9321	18.402	702.754	2.3193	5575.85
68	12.9279	18.799	687.688	2.3193	5574.03
66	12.9245	18.555	696.551	2.2888	5646.85
64	12.9218	20.142	641.533	2.4414	5292.77
62	12.92	20.538	629.077	2.3804	5427.65
60	12.9193	21.362	604.78	2.2278	5799.14
58	12.921	20.874	618.997	2.4414	5292.43
56	12.9251	20.386	634.02	2.3804	5429.82
54	12.9302	21.667	596.768	2.4872	5198.69
52	12.9359	21.484	602.116	2.3499	5504.85
50	12.9422	19.958	648.471	2.3193	5580.21
48	12.9513	19.775	654.934	2.3041	5620.98
46	12.9628	18.372	705.573	2.4719	5244.06
44	12.9743	18.921	685.707	2.4567	5281.17
42	12.9858	19.043	681.919	2.3804	5455.3
40	12.9968	20.386	637.537	2.4567	5290.36

Direct Measurement B2-B1								
Depth,	Spacing,	Shear	Wave	P-W	ave			
ft	ft	∆t, msec	Vs, ft/sec	∆t, msec	Vp, ft/sec			
38	13.0072	21.698	599.467	2.4414	5327.78			
36	13.0166	21.667	600.756	2.6855	4846.99			
34	13.0259	22.156	587.917	2.4719	5269.59			
32	13.0342	22.858	570.224	2.8687	4543.58			
30	13.0418	28.107	464.004	2.7771	4696.18			
28	13.0505	26.764	487.613	3.1433	4151.84			
26	13.0599	24.994	522.521	2.7161	4808.33			
24	13.068	23.804	548.985	2.7466	4757.89			
22	13.0748	23.499	556.399	2.4719	5289.38			
20	13.0805	22.583	579.217	2.4414	5357.77			
18	13.0828	21.637	604.648	2.4414	5358.71			
16	13.0834	20.905	625.851	2.4109	5426.77			
14	13.0841	20.538	637.066	2.3804	5496.58			
12	13.0843	20.172	648.635					
10	13.0854	19.47	672.078					
8	13.0891	15.625	837.704					
6	13.0959	15.686	834.878					
4	13.1058	15.411	850.417					

B1: Borehole 1 B2: Borehole 2

B2: Borehole 3

Interval Measurement B2-B3

Depth,	Spacing,	Shear	Wave	P-W	/ave		
ft	ft	∆t, msec	Vs, ft/sec	∆t, msec	Vp, ft/sec		
60	11.899	19.471	611.112	2.3193	5130.41		
58	11.8898	20.02	593.898	2.2583	5264.95		
56	11.8762	20.63	575.677				
54	11.8669	19.959	594.566	2.4566	4830.64		
52	11.8631	17.762	667.894	2.4414	4859.15		
50	11.8638	17.151	691.728				
48	11.8653	17.517	677.358				
46	11.861	20.08	590.685				
44	11.8541	17.456	679.085				
42	11.8486	18.005	658.072				
40	11.8436	18.371	644.692				

B1: Borehole 1 B2: Borehole 2

B2: Borehole 3

Direct Measurement B2-B3

Depth,	Spacing,	Shear Wave		P-W	ave
ft	ft	∆t, msec	Vs, ft/sec	∆t, msec	Vp, ft/sec
38	11.8409	18.951	624.815	2.1515	5503.54
36	11.8271	20.111	588.091		
34	11.8133	20.752	569.26	2.1667	5452.2
32	11.8023	21.515	548.562	2.4719	4774.59
30	11.793	25.238	467.271		
28	11.7784	23.59	499.298	2.6245	4487.88
26	11.7638	23.01	511.247	2.7466	4283.04
24	11.7554	22.4	524.796	2.4719	4755.63
22	11.7528	22.308	526.843	2.1973	5348.75
20	11.7568	23.56	499.017	2.1973	5350.58
18	11.7557	18.677	629.42	2.1362	5503.08
16	11.7524	17.517	670.915	2.1973	5348.57
14	11.7552	17.334	678.159	2.3499	5002.43
12	11.7655	17.853	659.023		
10	11.782	17.639	667.949		
8	11.7966	14.16	833.095		

Conviet Interpr Run No: Job No: Client: Project Site: Locatiu Convi Convi Convi CPT Jan CPT Jan CPT Th Convi CPT Fi Water Avera Su Wk	: Inc GF etation D. : 96-0705 : 96-308 : Danes I : 115 240 SV-CS-1 on: 600W 2 : 20 TO te: 96/22/1 ne: 00:53 le: 308CS1 le: 308CS1 Table (m) ging Incre	T Interpre- stput - Rei 2-1243-2134 1 Noore 05 Project 11 Andy Ave N A 081 04 1.com : ment (m):	3.80 0.25 12.50	.06 (ft):	12.5				Page:	1		
Phi M Dr M	ethod : ethod : Unit Weight	ta Assigne	Robertson Jawiolkow d to Soil	and Cam ski - Al Zones	panella, 19 L Sands	/63						
Depth	Depth	AvgQt	Avgfs	AvgRf	E.Stress	Ryd. Pr.	N60 (blow	(N1)60	Su (kPa)	Dr (%)	Phi (deg.)	OCR (ratio)
(ft)	(	(KPA)	(KPa)		(198)	(10-6)	(DICM				0.0	1.0
0.41	0.12	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0
2.05	0.62	0.0	0.0	0.0	12.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0
3.69	1.12	0.0	0.0	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	1.0
5.33	1.38	0.0	0.0	0.0	26.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0
6.15	1.88	0.0	0.0	0.0	36.6	0.0	0.0	0.0	0.0	0.0	0.0	1.0
6.97	2.12	1974.3	58.3	3.9	45.6	0.0	15.1	21.8	116.8	0.0	0.0	6.0
8.61	2.62	721.5	24.1	3.3	49.9	0.0	7.2	10.0	53.7	0.0	0.0	6.0
10.25	3.12	1007.2	38.4	3.8	58.7	0.0	10.1	12.9	75.9	0.0	0.0	6.0
11.07	3.38	997.3	43.7	4.4	63.1	0.0	10.0	12.3	74.7	0.0	0.0	6.0
12.71	3.88	1025.0	17.6	1.7	71.3	0.7	5.1	5.9	76.2	0.0	0.0	6.0
13.53	4.12	1352.6	39.5	2.9	73.3	3.2	9.9	11.2	192.0	31.4	36.0	6.0
15.17	4.62	5487.5	28.8	0.5	77.5	8.1	13.7	15.2	0.0	53.7	40.0	1.0
15.99	5.12	8279.4	112.4	1.4	82.1	13.0	20.7	22.4	0.0	64.7	42.0	1.0
17.63	5.38	5207.9	149.9	2.9	84.3	15.5	20.8	22.2	408.7	51.0	40.0	10.0
18.45	5.88	2548.9	88.5	3.5	88.4	20.4	12.7	13.3	195.2	0.0	0.0	6.0
20.09	6.12	1488.7	49.6	3.3	90.4	22.8	9.9	10.2	110.0	0.0	0.0	6.0
20.92	6.62	1373.6	33.6	2.4	94.5	27.7	6.9	6.9	100.1	0.0	0.0	6.0
22.56	6.88	1490.7	41.5	2.8	96.6	30.2	7.5	7.4	109.1	0.0	0.0	6.D
23.38	7.12	791.3	12.7	1.6	100.7	35.1	4.0	3.9	52.4	0.0	0.0	3.0
25.02	7.62	1006.7	17.8	1.8	102.7	37.5	5.0	4.9	69.3	0.0	0.0	3.0
25.84	7.88	907.4	17.1	1.9	106.8	42.4	4.5	4.3	60.7	0.0	0.0	3.0
27.48	8.38	768.0	11.4	1.5	108.9	44.9	3.8	3.6	49.1	0.0	0.0	1.5
28.30	8.88	717.5	12.2	1.7	113.0	49.8	3.6	3.3	44.4	0.0	0.0	1.5
29.94	9.12	653.2	10.6	1.6	115.0	52.2	3.3	3.0	38.9	0.0	0.0	1.5
31.58	9.62	662.3	8.0	1.2	119.1	57.1	3.3	3.0	38.9	0.0	0.0	1.5
32.40	9.88	634.4	7.6	1-2	121.2	59.6	3.2	2.8	36.3	0.0	0.0	1.5
34.04	10.38	708.4	7.8	1.1	125.2	64.5	3.5	3.1	41.5	0.0	0.0	1.5
34.86	10.62	705.3	.7.9	1.1	127.3	67.0	3.5	3.1	40.9	0.0	0.0	1.5
36.50	11.12	627.5	7.3	1.2	131.4	71.9	3.1	2.7	33.9	0.0	0.0	1.5
37.32	11.38	706.1	6.9	1.0	133.4	74.3	3.5	3.0	39.9	0.0	0.0	1.5
38.96	11.88	1410.2	23.0	1.6	137.5	79.2	5.6	4.7	95.5	30.0	30.0	3.0
39.78	12.12	815.8	9.8	2.8	139.6	81.7	9,9	8.1	140.0	0.0	0.0	3.0
41.42	12.62	1865.0	52.8	2.8	143.7	86.6	9.3	7.6	130.8	0.0	0.0	3.0
42.24	12.88	1741.5	36.7	6.6	145.7	GA*0	0./	· · ·	120.3	0.0	0.0	2.0

)

· · · · · · · · · · · · · · · · · · ·	tes . Chi interscetation	
CONVICT	The Chi ture brare and	
tun lin:	96-0709-1243-2138	
	3000011 000	

Depth (ft)	Depth (#)	AvgQt (kPa)	Avgis (kPa)	AvgRf (%)	E.Stress (kPa)	Nyd. Pr. (kPa)	K60 (blow	(N1)60 s/ft)	SU (kPa)	(¥)	Phi (deg.)	(ratio)
43.06	13.12	2012.4	49.6	2.5	147.8	91.5	10.1	8.1	141.9	0.0	0.0	3.0
43.88	13.38	1179.6	20.0	2.3	151.9	96.4	6.6	5.3	86.4	0.0	0.0	3.0
44.70	13.88	9207.7	207.3	2.3	154.0	98.8	30.7	24.2	0.0	58.7	40.0	1.0
46.34	14.12	4775.6	238.5	5.0	156.0	101.3	47.8	37.4	361.5	0.0	0.0	3.0
47.16	14.38	1303.9	271 3	2.2	157.9	105.2	41.5	32.1	0.0	66.8	40.0	1.0
47.98	14.62	9037.4	230.9	2.6	162.2	108.6	30.1	23.2	0.0	57.4	40.0	1.0
49.62	15.12	1362.8	29.4	2.2	164.3	111.1	6.8	5.2	87.0	0.0	0.0	3.0
50.44	15.38	2615.9	45.4	1.7	166.3	113.6	10.5	6.6	122.4	30.0	30.0	3.0
51.26	15.62	7130.7	183.6	2.6	170.4	118.5	28.6	21.4	548.1	50.0	38.0	6.0
52.90	16.12	1552.0	64.3	4.1	172.4	120.9	15.5	11.6	100.7	0.0	0.0	3.0
53.72	16.38	1354.3	32.7	2.4	174.4	123.4	6.8	5.9	84.5	0.0	0.0	1.2
54.54	16.62	996.5	16.2	1.5	178.5	128.3	5.0	3.6	54.9	0.0	0.0	1.5
55.36	16.68	1152.6	20.1	1.7	180.5	130.7	5.8	4.2	67.3	0.0	0.0	1.5
57.00	17.38	1025.3	16.7	1.6	182.6	133.2	5.1	3.7	56.8	0.0	0.0	1.2
57.82	17.62	970.2	15.4	1.6	184.6	135.6	1.7	3.3	69.2	0.0	0.0	1.5
58.64	17.88	1190.3	30.4	2.5	188.7	140.5	7.8	5.5	97.9	0.0	0.0	3.0
60.28	18.38	1710.1	38.5	2.3	190.8	143.0	8.6	6.1	110.1	0.0	0.0	3.0
61.10	18.62	1642.0	39.3	2.4	192.8	145.4	8.2	5.8	104.3	0.0	0.0	3.0
61.93	18.88	1328.5	22.7	1.7	194.9	150.3	7.1	5.0	85.8	0.0	0.0	1.5
62.75	19.12	1423.2	36.3	2.2	199.0	152.8	8.1	5.6	101.7	0.0	0.0	3.0
64.39	19.62	1434.5	27.6	1.9	201.0	155.2	7.2	5.0	86.3	0.0	0.0	1.5
65.21	19.88	1573.3	33.6	2.1	203.1	157.7	.7.9	3.2	97.0	0.0	0.0	3.0
66.03	20.12	2212.3	35.1	2.5	205.1	162.6	7.7	5.2	93.2	0.0	0.0	1.5
66.85	20.38	1635.2	28.9	1.8	209.2	165.1	6.5	4.4	100.9	30.0	30.0	1.5
68.49	20.88	2671.4	77.4	2.9	211.2	167.5	13.4	.9.0	163.4	0.0	0.0	3.0
69.31	21.12	7023.8	178.3	2.5	213.3	170.0	28.1	18.8	242.5	0.0	30.0	6.0
70.13	21.38	3009.1	96.6	3.0	217.4	174.9	16.2	10.8	228.0	0.0	0.0	6.0
71.77	21.88	3491.4	93.3	2.7	219.4	177.3	14.0	9.2	247.6	30.0	32.0	6.0
72.59	22.12	4821.8	145.9	3.0	221.5	179.8	19.3	12.7	268 9	35.0	0.0	6.0
73.41	22.38	3767.5	126.4	3.4	225.6	184.7	27.7	18.1	0.0	50.3	38.0	1.0
8.8	22.88	9840.1	183.5	1.9	227.8	187.1	32.8	21.3	0.0	55.0	38.0	1.0
75.87	23.12	6276.9	134.5	2.1	230.0	189.6	20.9	13.5	0.0	42.0	34.0	1.0
76.69	23.38	2394.9	58.8	2.5	232.1	192.0	¥.6	5.6	112.4	0.0	0.0	1.5
77.51	23.62	1833.2	51.3	1 1	734.7	196.9	9.1	5.8	111.3	0.0	0.0	1.5
78.33	24.12	5859.2	216.9	3.7	238.2	199.4	29.3	18.6	433.7	0.0	0.0	6.0
79.97	24.38	20828.6	512.7	2.5	240.3	201.8	69.4	43.8	0.0	75.7	42.0	1.0
80.79	24.62	25250.9	664.5	2.6	242.5	204.3	137.1	52.9	0.0	83.4	42.0	1.0
51.61	24.88	27420.0	680.1	2.9	247.0	209.2	86.3	53.7	0.0	81.6	42.0	1.0
3.25	25.38	31205.1	867.8	2.8	249.2	211.7	156.0	96.7	0.0	86.8	42.0	1.0
84.07	25.62	32359.0	955.6	3.0	251.5	214.1	161.8	99.8	0.0	87.7	42.0	1.0
84.89	25.88	30145.7	718 3	2.0	256.1	219.0	80.9	49.5	0.0	87.5	44.0	1.0
M.53	26.34	28740.9	296.6	1.0	258.5	221.5	57.5	35.0	0.0	83.9	42.0	1.0
87.35	26.62	23376.1	408.6	1.7	260.8	223.9	58.4	35.4	0.0	77.9	42.0	1.0
88.17	26.88	22917.7	268.9	1.	263.2	226.4	52.5	31.4	0.0	80.8	42.0	i 13
86.99	27.12	26159.7	314.7	1.1	268.0	231.3	56.2	33.6	0.0	82.7	42.0	1.0
90.63	27.62	29914.5	322.9	1.1	270.5	233.7	59.8	35.6	0.0	84.4	42.0	1.0
91.45	27.88	29720.3	262.9	0.1	272.9	236.2	59.4	35.2	0.0	84.1	42.0	
92.27	28.12	28661.7	241.6	0.1	277.7	256.6	28.8	16.9	0.0	56.7	38.0	5 1.7
93.09	28.38	3190.0	85.3	2.3	7 279.8	243.5	12.8	7.5	213.3	30.0	30.0	3.0
94.7	28.88	2722.4	72.0	2.	6 281.9	246.0	10.9	6.3	175.6	30.0	30.0	9 3.0
	29.12	2052.3	54.1	2.	6 283.9	248.4	10.3	6.0	121.6	0.0	0.0	
· · · · · ·					- 754 6	250 0	7.9	4.6	113.8			
96.37	29.38	1984.0	41.0	5	1 288.0	253.3		2.0	125.0	30.0	30.	i 1.9
96.37	29.38	2103.6	42.6	2.	0 288.0	253.3	8.4	4.9	125.0 130.2	30.	0 30. 0 30.	0 1.

Page: 2

I

Constec	Inc CPT Interpretation
Run No:	96-0709-1243-2138

## Page: 3

CPT Fil	e: 308CS1	1.COR	-									
Depth (ft)	Depth (m)	AvgOt (kPa)	AvgFs (kPa)	AvgRf (%)	E.Stress (kPa)	Kyd. Pr. (LPa)	N60 (blow	(K1)60 45/ft)	Su (kPa)	Dr (%)	Phi (deg.)	(ratio)
99.65	30.38	2501.7	56.9	2.3	294.2	260.7	10.0	5.7	155.7	30.0	30.0	3.0
101.29	30.88	6143.6	190.1	3.1	298.3	265.6	24.6	13.9	446.4	37.6	32.0 38.0	6.0
102.94	31.38	22889.1	528.2	2.3	302.6	270.5	76.3	42.9	0.0	75.1 75.0	40.0	1.0
103.76	31.68	24130.9	570.9	2.4	306.9	275.4	80.4	44.9	0.0	76.5	40.0	1.0
105.40	32.38	28412.8	361.9	1.3	311.5	280.3	56.8	31.5	0.0	80.9	42.0	1.0
107.86	32.88	26054.0	148.6	0.6	316.3	285.2	52.1	28.7	0.0	78.2 69.2	42.0	1.0
109.50	33.38	6704.3	118.3	1.8	321.1	290.1	22.3	12.2	0.0	39.1 30.0	34.0 30.0	1.0
111.14	33.88	2306.5	37.8	1.6	325.2	295.0	9.2	5.0	134.9	30.0 30.0	30.0 30.0	1.5
112.78	34.38	2097.9	31.2	1.5	329.3	299.9	8.4	4.5	117.5	30.0 30.0	30.0 30.0	1.5
114.42	34.88	2050.9	26.1	1.3	333.4	304.8	8.2	4.5	113.0	30.0 30.0	30.0	1.5
116.06	35.38	2118.6	26.6	1.3	337.5	309.8	8.5 9.8	4.5	117.7	30.0	30.0	1.5
117.70	35.88	4377.8	98.1 263.6	2.2	341.6 343.7	314.7	17.5	9.3 21.8	297.7	30.0	30.0	1.0
119.34	36.38	3715.1	116.7 89.6	3.1 2.6	345.8	319.6	18.6	7.2	222.1	30.0	30.0	3.0
120.98	36.88	2586.1	39.5	1.5	349.9	324.5	10.3	5.4	152.9	30.0	30.0	1.5

Depth	Depth	Vs	Vs	
(m)	(ft)	(m/s)	(ft/s)	
1.7	5.58			
2.7	8.86	263.03	862.96	
3.7	12.14	272.37	893.61	
4.7	15.42	317.87	1042.89	
5.7	18.70	305.07	1000.90	
6.7	21.98	336.52	1104.06	
7.7	25.26	299.41	982.31	
8.7	28.54	226.74	743.90	
9.7	31.82	259.92	852.75	
10.7	35.10	306.26	1004.78	
11.7	38.39	262.80	862.19	
12.7	41.67	273.64	897.78	
13.7	44.95	237.84	780.32	
14.7	48.23	249.76	819.43	
15.7	51.51	205.58	674.49	
16.7	54.79	203.92	669.03	
17.7	58.07	310.81	1019.73	
18.7	61.35	269.72	884.91	
19.7	64.63	289.67	950.36	
20.7	67.91	298.33	978.77	
21.7	71.19	238.24	781.64	
22.7	74.47	217.27	712.84	
23.7	77.75	222.60	730.32	
24.7	81.04	219.19	719.13	
25.7	84.32	272.35	893.54	
26.7	87.60	241.73	793.07	
27.7	90.88	221.63	727.13	
28.7	94.16	208.68	684.64	
29.7	97.44	200.72	658.53	
30.7	100.72	257.63	845.23	
31.7	104.00	341.16	1119.29	
32.7	107.28	296.18	971.72	
33.7	110.56	356.37	1169.19	
34.7	113.84	298.40	978.99	
35.7	117.12	269.81	885.19	
36.7	120.41	247.74	812.80	

Table 4.2 UDOT 123 S. & I-15 Shear Wave Velocity Data

Vs30 (ft/s)	877.91
Vs30 (m/s)	267.59



Figure 4.1 UDOT 123 S. & I-15 Shear Wave Velocity Profile

Depth	Depth	Vs	Vs
(m)	(ft)	(m/s)	ft(s)
0.6	1.97		
1.6	5.25	138.18	453.34
2.6	8.53	139.28	456.96
3.6	11.81	137.93	452.54
4.6	15.09	231.06	758.08
5.6	18.37	204.71	671.62
6.6	21.65	245.07	804.04
7.6	24.93	220.91	724.77
8.6	28.21	238.56	782.66
9.6	31.50	221.23	725.82
10.6	34.78	202.88	665.61
11.6	38.06	215.66	707.53
12.6	41.34	221.45	726.53
13.6	44.62	197.02	646.40
14.6	47.90	239.01	784.15
15.6	51.18	221.55	726.86
16.6	54.46	227.11	745.10
17.6	57.74	233.50	766.05
18.6	61.02	239.67	786.32
19.6	64.30	220.15	722.27
20.6	67.58	193.33	634.29
21.6	70.87	214.50	703.74
22.6	74.15	261.68	858.52
23.6	77.43	283.99	931.72
24.6	80.71	242.05	794.13
25.6	83.99	254.38	834.56
26.6	87.27	234.13	768.13
27.6	90.55	227.22	745.45
28.6	93.83	251.83	826.20
29.6	97.11	251.20	824.14
30.6	100.39	328.88	1078.99
31.6	103.67	327.81	1075.47
32.6	106.95	319.43	1047.99

Table 4.3 UDOT 123 S. & I-15 Shear Wave Velocity Data

Vs30 (ft/s)	725.60	
Vs30 (m/s)	221.17	



Figure 4.2 UDOT 123 S. & I-15 Shear Wave Velocity Profile

Donth	Donth	\/o	
Depth	Depth	VS	VS
(m)	(π)	(m/s)	(TU/S)
0.65	2.13		
1.65	5.41	210.68	691.20
2.65	8.69	161.30	529.19
3.65	11.97	201.15	659.93
4.65	15.26	150.84	494.89
5.65	18.54	144.57	474.31
6.65	21.82	184.36	604.84
7.65	25.10	195.57	641.63
8.65	28.38	184.74	606.10
9.65	31.66	170.27	558.64
10.65	34.94	148.08	485.83
11.65	38.22	148.97	488.74
12.65	41.50	185.46	608.45
13.65	44.78	223.13	732.06
14.65	48.06	190.05	623.51
15.65	51.34	245.01	803.85
16.65	54.63	245.02	803.86
17.65	57.91	262.38	860.83
18.65	61.19	267.29	876.95
19.65	64.47	272.39	893.68
20.65	67.75	259.66	851.91
21.65	71.03	226.18	742.05
22.65	74.31	295.77	970.37
23.65	77.59	287.27	942.49
24.65	80.87	462.83	1518.47
25.65	84.15	287.27	942.50
26.65	87.43	290.61	953.46
27.65	90.71	285.63	937.12
28.65	93.99	295.77	970.39
29.65	97.28	316.37	1037.95
30.65	100.56	354.51	1163.09

 Table 4.4 UDOT SR201/Redwood Shear Wave Velocity Data

Vs30 (ft/s)	737.45
Vs30 (m/s)	224.78



Figure 4.3 UDOT SR201/Redwood Shear Wave Velocity Profile

$\underline{\mathbf{u}}$	. Ogden .	<b>51 St. Int</b>	erchange. 5	near wave
	Depth	Depth	Vs	Vs
	(m)	(ft)	(m/s)	(ft/s)
	0.6	1.97		
	1.6	5.25	189.96	623.21
	2.6	8.53	206.08	676.10
	3.6	11.81	173.89	570.48
	4.6	15.09	162.92	534.52
	5.6	18.37	149.98	492.05
	6.6	21.65	201.42	660.81
	7.6	24.93	181.48	595.39
	8.6	28.21	186.04	610.35
	9.6	31.50	176.91	580.40
	10.6	34.78	190.13	623.77
	11.6	38.06	192.39	631.18
┢	12.6	41.34	201.36	660.61
	13.6	44.62	221.00	725.05
	14.6	47.90	221.52	726.77
	15.6	51.18	227.09	745.03
	16.6	54.46	233.48	765.99
	17.6	57.74	216.31	709.68
-	18.6	61.02	232.97	764.32
	19.6	64.30	231.36	759.06
	20.6	67.58	240.27	788.29
	21.6	70.87	234.09	768.02
	22.6	74.15	247.43	811.77
	23.6	77.43	255.67	838.79
	24.6	80.71	248.06	813.83
	25.6	83.99	282.40	926.51
	26.6	87 27	248.07	813.87
	27.6	90.55	281.62	923.93
	28.6	93.83	277 71	911 12
	29.6	97 11	261 72	858.66
	30.6	100.39	293 19	961.91
$\vdash$	31.6	103.67	261.05	856 44
$\vdash$	32.6	106.95	312 44	1025.06
$\vdash$	33.6	110 23	261.05	856 46
$\vdash$	34.6	113.52	302.07	991 02
┢	35.6	116.80	254 41	834.68
┢	36.6	120.08	276.97	908.68
┢	37.6	123.36	309.56	1015 59
	38.6	126.64	312 46	1025 12
-	39.6	129.92	284.06	931.93
$\vdash$	40.6	133 20	312 46	1025 13
$\vdash$	41.6	136 48	311 49	1021.94
┢	42.6	139 76	293.22	962.01
┢	43.6	143.04	312 47	1025 15
┢	44.6	146.32	322.55	1058 22
⊢	45.6	149.60	292.37	959 21
	-0.0	1-0.00	202.01	000.21

Table 4.6 UDO<u>T Ogden 31st St. Interchange. Shear Wave</u> Velocity Data

Vs30 (ft/s)	722.58
Vs30 (m/s)	220.24



Figure 4.5 UDOT Ogden 31st St Interchange Shear Wave Velocity Profile

Depth	Depth	Vs	Vs
(m)	(ft)	(m/s)	(ft/s)
0.5	1.64		
1.5	4.92	210.27	689.85
2.5	8.20	231.01	757.88
3.5	11.48	231.54	759.64
4.5	14.76	223.62	733.65
5.5	18.04	257.81	845.82
6.5	21.33	278.67	914.25
7.5	24.61	264.95	869.24
8.5	27.89	294.13	964.98
9.5	31.17	303.25	994.91
10.5	34.45	286.00	938.31
11.5	37.73	322.08	1056.70
12.5	41.01	286.99	941.54
13.5	44.29	303.62	996.11
14.5	47.57	265.71	871.73
15.5	50.85	312.24	1024.40
16.5	54.13	303.73	996.48
17.5	57.41	303.76	996.56
18.5	60.69	320.33	1050.93
19.5	63.98	273.08	895.93
20.5	67.26	247.41	811.70
21.5	70.54	482.89	1584.26
22.5	73.82	425.37	1395.55
23.5	77.10	442.32	1451.17
24.5	80.38	485.28	1592.11
25.5	83.66	425.41	1395.67
26.5	86.94	504.91	1656.51
27.5	90.22	398.30	1306.76
28.5	93.50	564.84	1853.12
29.5	96.78	471.59	1547.20
30.5	100.06	515.36	1690.78

Table 4.8 Metro Water District Shear Wave Velocity Data

Vs30(ft/s)	1053.46	
Vs30(m/s)	321.10	



Figure 4.7 Metro Water District Shear Wave Velocity Profile

Depth	Depth	Vs	Vs
(m)	(ft)	(m/s)	(ft/s)
0.6	1.97		
1.6	5.25	110.54	362.67
2.6	8.53	133.28	437.26
3.6	11.81	158.18	518.96
4.6	15.09	155.74	510.95
5.6	18.37	149.98	492.05
6.6	21.65	163.92	537.79
7.6	24.93	186.23	610.97
8.6	28.21	191.03	626.72
9.6	31.50	196.80	645.65
10.6	34.78	180.50	592.19
11.6	38.06	138.49	454.35
12.6	41.34	148.62	487.59
13.6	44.62	194.72	638.84
14.6	47.90	160.36	526.12
15.6	51.18	160.38	526.18
16.6	54.46	148.70	487.86
17.6	57.74	166.84	547.36
18.6	61.02	185.77	609.47
19.6	64.30	246.18	807.67
20.6	67.58	245.59	805.72
21.6	70.87	241.44	792.13
22.6	74.15	184.77	606.20
23.6	77.43	164.15	538.53
24.6	80.71	190.42	624.71
25.6	83.99	258.32	847.50
26.6	87.27	295.78	970.39
27.6	90.55	303.87	996.95
28.6	93.83	265.89	872.35
29.6	97.11	236.35	775.43
30.6	100.39	193.38	634.45

 Table 4.11 Salt
 Lake County Maintenance Facility Shear Wave Velocity Data

Vs30 (ft/s)	605.94
Vs30 (m/s)	184.69



Figure 4.10 Salt Lake County Maintenance Facility Shear Wave Velocity Profile

Depth	Depth	Vs	Vs
(m)	(ft)	(m/s)	(ft/s)
2.6	8.53		
3.6	11.81	204.74	671.72
4.6	15.09	169.63	556.53
5.6	18.37	286.13	938.72
6.6	21.65	285.92	938.05
7.6	24.93	235.53	772.74
8.6	28.21	221.10	725.39
9.6	31.50	246.97	810.26
10.6	34.78	221.33	726.12
11.6	38.06	200.90	659.12
12.6	41.34	177.08	580.96
13.6	44.62	197.02	646.40
14.6	47.90	260.17	853.58
15.6	51.18	201.45	660.91
16.6	54.46	206.89	678.77
17.6	57.74	253.00	830.05
18.6	61.02	295.69	970.10
19.6	64.30	272.34	893.50
20.6	67.58	304.74	999.78
21.6	70.87	265.85	872.19
22.6	74.15	332.10	1089.55
23.6	77.43	366.17	1201.34
24.6	80.71	313.38	1028.13
25.6	83.99	316.36	1037.92
26.6	87.27	295.78	970.39
27.6	90.55	285.64	937.13
28.6	93.83	316.38	1037.98
29.6	97.11	276.95	908.61
30.6	100.39	316.39	1038.01

Table 4.16 UTA 5300 S Trax Bridge Shear Wave Velocity Data

Vs30 (ft/s)	901.14
Vs30 (m/s)	274.67



Figure 4.15 UTA 5300 S Trax Bridge Shear Wave Velocity Profile

Depth	Denth	Vs	Vs	
(m)	(ft)	(m/s)	(ft/s)	
0.55	1.80	(11/3) (103)		
1.55	5.00	160 53 526 66		
2.55	9.09	151 30	106 30	
2.55	0.37	101.30	490.39	
3.55	11.00	120.00	411.10	
4.35	14.93	173.15	506.07	
5.55	18.21	164.90	541.01	
6.55	21.49	213.50	700.46	
7.55	24.77	213.79	701.40	
8.55	28.05	213.98	702.01	
9.55	31.33	220.74	724.19	
10.55	34.61	247.07	810.58	
11.55	37.89	259.34	850.86	
12.55	41.17	241.24	791.45	
13.55	44.45	241.87	793.51	
14.55	47.74	252.93	829.80	
15.55	51.02	241.93	793.73	
16.55	54.30	221.57	726.92	
17.55	57.58	246.76	809.56	
18.55	60.86	247.38	811.62	
19.55	64.14	283.14	928.93	
20.55	67.42	248.02	813.72	
21.55	70.70	254.35	834.46	
22.55	73.98	241.45	792.16	
23.55	77.26	235.77	773.50	
24.55	80.54	284.81	934.40	
25.55	83.82	241.47	792.23	
26.55	87.11	302.95	993.91	
27.55	90.39	302.04	990.93	
28.55	93.67	248.70	815.93	
29.55	96.95	281.63	923.97	
30.55	100.23	268.76	881.75	

 Table 4.17 UTA Trax Weber County Shear Wave Velocity Data

Vs30 (ft/s)	750.57
Vs30 (m/s)	228.78





Depth	Depth	Vs Vs		
(m)	(ft)	(m/s)	(ft/s)	
0.55	1.80			
1.55	5.09	206.45 677.31		
2.55	8.37	242.70	42.70 796.25	
3.55	11.65	210.77 691.49		
4.55	14.93	205.98 675.76		
5.55	18.21	190.54	625.12	
6.55	21.49	201.40	660.76	
7.55	24.77	191.22	627.36	
8.55	28.05	186.03	610.33	
9.55	31.33	186.14	14 610.70	
10.55	34.61	207.95	682.24	
11.55	37.89	221.39	726.34	
12.55	41.17	258.74	848.86	
13.55	44.45	265.67	871.60	
14.55	47.74	253.57	831.91	
15.55	51.02	279.88	918.24	
16.55	54.30	279.13	915.76	
17.55	57.58	259.57	851.61	
18.55	60.86	284.74	934.17	
19.55	64.14	265.82	872.11	
20.55	67.42	247.41	811.70	
21.55	70.70	265.85	5 872.19	
22.55	73.98	253.07	' 830.26	
23.55	77.26	265.86	872.25	
24.55	80.54	259.66	851.88	
25.55	83.82	272.40	893.69	
26.55	87.11	295.78	970.38	
27.55	90.39	272.41	893.72	
28.55	93.67	273.16	896.18	
29.55	96.95	312.43	1025.02	
30.55	100.23	303.89	996.9982	

 Table 4.23 North Davis Jr. High Shear Wave Velocity Data

Vs30 (ft/s)	807.14
Vs30 (m/s)	246.02



Figure 4.22 North Davis Jr. High Shear Wave Velocity Profile



Fig. 4.4 Experimental dispersion curve measured at the Plain City Landfill (PCL), Weber County, Utah.



Fig. 4.5 Comparison of experimental and theoretical dispersion curves from the Plain City Landfill (PCL), Weber County, Utah.



Shear Wave Velocity, m/s

Fig. 4.6 Shear wave velocity profile determined from SASW testing at the Plain City Landfill (PCL), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 154 m/s, which corresponds to an IBC 2006 site class E. The shear wave velocity profile is well resolved to a depth of 37 m and poorly resolved from 37 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	347	649	0.30	1.92
0.4	0.5	128	240	0.30	1.89
0.9	1.1	126	236	0.30	1.89
2.0	2.3	128	1500	0.49	1.89
4.3	2.6	130	1500	0.49	1.89
6.8	3.1	138	1500	0.49	1.89
9.9	4.5	140	1500	0.49	1.89
14.4	6.2	143	1500	0.49	1.89
20.7	9.7	209	1500	0.49	1.92
30.4	6.7	239	1500	0.49	1.92
37.0	6.4	239*	1500	0.49	1.92
43.4	Half-Space	$450^{*}$	1500	0.45	1.96

Table 4.1Tabulated measured and assumed layer properties at the Plain City Landfill<br/>(PCL), Weber County, Utah.

* Poorly resolved


Fig. 4.9 Experimental dispersion curve measured at the Syracuse Cemetery (SCS), Davis County, Utah.



Fig. 4.10 Comparison of experimental and theoretical dispersion curves from the Syracuse Cemetery (SCS), Davis County, Utah.



Fig. 4.11 Shear wave velocity profile determined from SASW testing at the Syracuse Cemetery (SCS), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 244 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 37.9 m and poorly resolved from 37.9 m to 50 m.

N	leasured Value	es	Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.5	99	185	0.30	1.89
0.5	1.0	142	266	0.30	1.89
1.5	1.4	171	320	0.30	1.92
2.9	2.5	185	346	0.30	1.92
5.4	3.2	225	1500	0.48	1.92
8.6	4.1	261	1500	0.48	1.92
12.7	6.7	271	1500	0.48	1.92
19.4	8.3	304	1500	0.48	1.96
27.7	10.2	315	1500	0.48	1.96
37.9	Half-Space	379*	1500	0.47	1.96

Table 4.2Tabulated measured and assumed layer properties at the Syracuse Cemetery<br/>(SCS), Davis County, Utah.



Fig. 4.14 Experimental dispersion curve measured at Central Davis Jr. High School (CDJ), Davis County, Utah.



Fig. 4.15 Comparison of experimental and theoretical dispersion curves from Central Davis Jr. High School (CDJ), Davis County, Utah.



Fig. 4.17 Shear wave velocity profile determined from SASW testing at Central Davis Jr. High School (CDJ), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 221 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	66	124	0.3	1.89
0.3	0.4	123	231	0.3	1.89
0.7	0.8	155	290	0.3	1.89
1.5	1.4	160	299	0.3	1.90
2.9	2.3	179	335	0.3	1.92
5.2	3.9	217	1500	0.49	1.92
9.1	6.6	218	1500	0.49	1.92
15.7	11.0	250	1500	0.48	1.92
26.7	3.3	408	1500	0.46	1.96
30.0	Half-Space	408*	1500	0.46	1.96

Table 4.3Tabulated measured and assumed layer properties at Central Davis Jr. High<br/>School (CDJ), Weber County, Utah.



Fig. 4.19 Experimental dispersion curve measured at Kanesville Elementary School (KSU), Weber County, Utah.



Fig. 4.20 Comparison of experimental and theoretical dispersion curves from Kanesville Elementary School (KSU), Weber County, Utah.



Fig. 4.21 Shear wave velocity profile determined from SASW testing at Kanesville Elementary School (KSU), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 167 m/s, which corresponds to an IBC 2006 site class E. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.2	152	284	0.3	1.89
0.2	0.4	79	148	0.3	1.89
0.7	1.1	128	240	0.3	1.89
1.8	3.2	165	309	0.3	1.89
4.9	4.1	123	1500	0.49	1.92
9.0	5.9	166	1500	0.49	1.92
14.9	10.1	192	1500	0.49	1.92
25.0	10.0	209	1500	0.49	1.92
35.0	6.1	209*	1500	0.49	1.92
41.1	Half-Space	567 [*]	1500	0.42	2.00

Table 4.4Tabulated measured and assumed layer properties at Kanesville Elementary<br/>School (KSU), Weber County, Utah.



Fig. 4.24 Experimental dispersion curve measured at the West Weber Field (WWF), Weber County, Utah.



Fig. 4.25 Comparison of experimental and theoretical dispersion curves from the West Weber Field (WWF), Weber County, Utah.



Fig. 4.26 Shear wave velocity profile determined from SASW testing at the West Weber Field (WWF), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 168 m/s, which corresponds to an IBC 2006 site class E. The shear wave velocity profile is well resolved to a depth of 40 m and poorly resolved from 40 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	58	108	0.3	1.89
0.3	0.8	80	150	0.3	1.89
1.1	1.1	123	230	0.3	1.89
2.2	2.0	130	244	0.3	1.89
4.2	3.2	160	1500	0.49	1.92
7.4	3.5	161	1500	0.49	1.92
10.9	5.1	167	1500	0.49	1.92
16.0	7.9	195	1500	0.49	1.92
23.9	9.2	232	1500	0.49	1.92
33.2	6.9	302	1500	0.48	1.96
40.0	4.9	302*	1500	0.48	1.96
44.9	Half-Space	513*	1500	0.43	2.00

Table 4.5Tabulated measured and assumed layer properties at the West Weber Field<br/>(WWF), Weber County, Utah.



Fig. 4.29 Experimental dispersion curve measured at Hooper Elementary School (HES), Weber County, Utah.



Fig. 4.30 Comparison of experimental and theoretical dispersion curves from Hooper Elementary School (HES), Weber County, Utah.



Shear Wave Velocity, m/s

Fig. 4.31 Shear wave velocity profile determined from SASW testing at Hooper Elementary School (HES), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 173 m/s, which corresponds to an IBC 2006 site class E. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	91	170	0.3	1.89
0.4	0.7	138	258	0.3	1.89
1.1	1.1	150	280	0.3	1.89
2.2	2.7	158	296	0.3	1.89
4.9	3.4	173	1500	0.49	1.89
8.3	5.6	177	1500	0.49	1.92
13.9	7.7	180	1500	0.49	1.92
21.6	9.3	185	1500	0.49	1.96
30.9	4.1	232	1500	0.49	1.96
35.0	8.9	232*	1500	0.49	1.96
43.9	Half-Space	499**	1500	0.44	1.96

Table 4.6Tabulated measured and assumed layer properties at Hooper Elementary<br/>School (HES), Weber County, Utah.

* Poorly resolved

** Poorly resolved and not shown in profile



Fig. 4.34 Experimental dispersion curve measured at East Layton Elementary School (ELE), Davis County, Utah.



Fig. 4.35 Comparison of experimental and theoretical dispersion curves from East Layton Elementary School (ELE), Davis County, Utah.



Fig. 4.36 Shear wave velocity profile determined from SASW testing at East Layton Elementary School (ELE), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 253 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 37.5 m and poorly resolved from 37.5 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	202	378	0.3	1.89
0.3	0.7	165	309	0.3	1.89
1.1	1.4	168	314	0.3	1.89
2.5	2.2	187	350	0.3	1.89
4.7	2.4	247	462	0.3	1.92
7.1	2.7	264	494	0.3	1.92
9.8	7.9	264	1500	0.48	1.92
17.7	9.1	280	1500	0.48	1.96
26.8	10.7	323	1500	0.48	1.96
37.5	13.0	387*	1500	0.46	2.00
50.5	Half-Space	636**	1500	0.39	2.00

Table 4.7Tabulated measured and assumed layer properties at East Layton Elementary<br/>School (ELE), Davis County, Utah.

* Poorly resolved

** Poorly resolved and not shown in profile



Fig. 4.39 Experimental dispersion curve measured at the Ogden Fire Station #2 (OF2), Weber County, Utah.



Fig. 4.40 Comparison of experimental and theoretical dispersion curves from the Ogden Fire Station #2 (OF2), Weber County, Utah.



Fig. 4.41 Shear wave velocity profile determined from SASW testing at the Ogden Fire Station #2 (OF2), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 202 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 33.2 m and poorly resolved from 33.2 m to 40 m.

N	leasured Value	es	Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	95	178	0.3	1.89
0.3	0.5	105	196	0.3	1.89
0.7	0.6	174	326	0.3	1.92
1.3	1.9	204	382	0.3	1.92
3.2	2.9	238	445	0.3	1.92
6.2	3.0	173	324	0.3	1.92
9.2	3.8	195	365	0.3	1.92
13.0	8.9	195	1500	0.49	1.92
21.9	11.3	239	1500	0.49	1.92
33.2	Half-Space	328*	1500	0.47	1.96

Table 4.8Tabulated measured and assumed layer properties at the Ogden Fire Station<br/>#2 (OF2), Weber County, Utah.



Fig. 4.45 Experimental dispersion curve measured at the Ogden Public Safety Building (OPS), Weber County, Utah.



Fig. 4.46 Comparison of experimental and theoretical dispersion curves from the Ogden Public Safety Building (OPS), Weber County, Utah.



Fig. 4.47 Shear wave velocity profile determined from SASW testing at the Ogden Public Safety Building (OPS), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 235 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35.7 m and poorly resolved from 35.7 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	227	425	0.3	1.92
0.4	0.5	230	430	0.3	1.92
0.8	0.9	226	423	0.3	1.92
1.7	1.6	193	361	0.3	1.92
3.3	2.7	194	363	0.3	1.92
6.0	3.9	195	365	0.3	1.92
9.9	5.8	207	387	0.3	1.92
15.7	8.9	263	1500	0.48	1.92
24.6	11.1	331	1500	0.47	1.96
35.7	Half-Space	353*	1500	0.47	1.96

Table 4.9Tabulated measured and assumed layer properties at the Ogden PublicSafety Building (OPS), Weber County, Utah.



Fig. 4.50 Experimental dispersion curve measured at Bell Jr. High School (BJH), Weber County, Utah.



Fig. 4.51 Comparison of experimental and theoretical dispersion curves from Bell Jr. High School (BJH), Weber County, Utah.



Fig. 4.52 Shear wave velocity profile determined from SASW testing at Bell Jr. High School (BJH), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 219 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 40 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.5	122	227	0.3	1.87
0.5	0.5	184	345	0.3	1.90
1.0	0.8	185	346	0.3	1.90
1.8	1.2	185	347	0.3	1.90
3.0	1.8	193	360	0.3	1.90
4.7	2.7	195	365	0.3	1.90
7.4	4.0	196	367	0.3	1.90
11.4	7.8	210	393	0.3	1.90
19.2	10.6	273	1500	0.49	1.95
29.8	Half-Space	395 [*]	1500	0.46	2.00

Table 4.10 Tabulated measured and assumed layer at Bell Jr. High School (BJH), Weber County, Utah.



Fig. 4.55 Experimental dispersion curve measured at the Uintah Town Hall (UTH), Weber County, Utah.



Fig. 4.56 Comparison of experimental and theoretical dispersion curves from the Uintah Town Hall (UTH), Weber County, Utah.



Fig. 4.57 Shear wave velocity profile determined from SASW testing at the Uintah Town Hall (UTH), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 325 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 34.4 m and poorly resolved from 34.4 m to 40 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.5	95	177	0.3	1.89
0.5	0.6	167	312	0.3	1.89
1.1	0.7	201	376	0.3	1.89
1.8	0.9	219	410	0.3	1.90
2.7	1.3	243	454	0.3	1.90
4.0	2.7	284	531	0.3	1.90
6.7	3.8	295	552	0.3	1.92
10.5	5.5	339	634	0.3	2.00
16.0	8.3	413	773	0.3	2.00
24.3	10.1	470	879	0.3	2.00
34.4	Half-Space	612*	1145	0.3	2.00

Table 4.11 Tabulated measured and assumed layer at the Uintah Town Hall (UTH), Weber County, Utah.



Fig. 4.60 Experimental dispersion curve measured at Mountain View Elementary (MVE), Weber County, Utah.



Fig. 4.61 Comparison of experimental and theoretical dispersion curves from Mountain View Elementary (MVE), Weber County, Utah.



Fig. 4.62 Shear wave velocity profile determined from SASW testing at Mountain View Elementary (MVE), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 204 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	78	146	0.3	1.89
0.4	0.8	84	157	0.3	1.89
1.2	1.2	141	264	0.3	1.89
2.4	1.9	167	312	0.3	1.89
4.3	2.9	187	350	0.3	1.92
7.2	4.0	211	395	0.3	1.92
11.2	6.3	215	402	0.3	1.92
17.5	9.7	242	1500	0.49	1.92
27.2	7.8	320	1500	0.48	1.96
35.0	11.2	320*	1500	0.48	1.96
46.2	Half-Space	539 [*]	1500	0.43	2.00

Table 4.12 Tabulated measured and assumed layer at Mountain View Elementary (MVE), Weber County, Utah.



Fig. 4.65 Experimental dispersion curve measured at Bates Elementary School (BES), Weber County, Utah.



Fig. 4.66 Comparison of experimental and theoretical dispersion curves from Bates Elementary School (BES), Weber County, Utah.



Fig. 4.67 Shear wave velocity profile determined from SASW testing at Bates Elementary School (BES), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 370 m/s, which corresponds to an IBC 2006 site class C. The shear wave velocity profile is well resolved to a depth of 41.2 m and poorly resolved from 41.2 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	168	314	0.3	1.89
0.4	0.5	171	320	0.3	1.92
0.9	0.8	228	427	0.3	1.92
1.7	1.2	265	496	0.3	1.92
2.9	1.8	314	587	0.3	1.92
4.7	2.7	330	617	0.3	2.00
7.3	4.0	359	672	0.3	2.00
11.3	6.8	409	765	0.3	2.00
18.1	9.7	449	840	0.3	2.00
27.8	13.4	461	863	0.3	2.00
41.2	Half Space	1100*	2058	0.3	2.10

Table 4.13 Tabulated measured and assumed layer at Bates Elementary School (BES), Weber County, Utah.


Fig. 4.70 Experimental dispersion curve measured at Weber State University (7212), Weber County, Utah.



Fig. 4.71 Comparison of experimental and theoretical dispersion curves from Weber State University (7212), Weber County, Utah.



Fig. 4.72 Shear wave velocity profile determined from SASW testing at Weber State University (7212), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 225 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 40 m and poorly resolved from 40 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.7	195	365	0.30	1.92
0.7	0.9	186	349	0.30	1.92
1.5	1.3	222	415	0.30	1.92
2.8	1.2	223	418	0.30	1.92
3.9	2.9	195	365	0.30	1.92
6.8	2.1	199	373	0.30	1.92
8.9	2.6	201	375	0.30	1.92
11.4	4.3	208	388	0.30	1.92
15.8	6.4	223	418	0.30	1.92
22.1	8.0	287	537	0.30	1.92
30.2	9.8	296	554	0.30	1.92
40.0	3.7	296*	554	0.30	1.92
43.6	Half-Space	741*	1385	0.30	2.08

Table 4.14 Tabulated measured and assumed layer at Weber State University (7212), Weber County, Utah.



Fig. 4.75 Experimental dispersion curve measured at South Ogden Jr. High School (SOJ), Weber County, Utah.



Fig. 4.76 Comparison of experimental and theoretical dispersion curves from South Ogden Jr. High School (SOJ), Weber County, Utah.



Fig. 4.77 Shear wave velocity profile determined from SASW testing at South Ogden Jr. High School (SOJ), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 206 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30.9 m and poorly resolved from 30.9 m to 40 m.

N	leasured Value	es	Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.5	58	109	0.3	1.92
0.5	0.8	176	329	0.3	1.92
1.3	1.1	182	341	0.3	1.92
2.4	2.7	203	380	0.3	1.92
5.1	3.6	200	374	0.3	1.92
8.7	5.2	201	376	0.3	1.92
13.9	7.9	211	395	0.3	1.92
21.8	9.1	260	486	0.3	1.92
30.9	Half-Space	470*	879	0.3	1.96

Table 4.15 Tabulated measured and assumed layer at South Ogden Jr. High School (SOJ), Weber County, Utah.



Fig. 4.80 Experimental dispersion curve measured at Wasatch Elementary School (WES), Weber County, Utah.



Fig. 4.81 Comparison of experimental and theoretical dispersion curves from Wasatch Elementary School (WES), Weber County, Utah.



Fig. 4.82 Shear wave velocity profile determined from SASW testing at Wasatch Elementary School (WES), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 348 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	116	218	0.30	1.89
0.3	0.4	129	241	0.30	1.89
0.7	1.3	254	475	0.30	1.92
2.0	1.3	314	588	0.30	1.96
3.3	1.7	330	616	0.30	1.96
5.0	2.3	337	631	0.30	1.96
7.3	3.8	233	436	0.30	1.92
11.1	4.0	351	657	0.30	1.96
15.1	6.7	455	851	0.30	1.96
21.8	8.2	486	909	0.30	1.96
35.0	13.2	486*	909	0.30	1.96
39.8	Half-Space	980 [*]	1833	0.30	2.08

Table 4.16 Tabulated measured and assumed layer at Wasatch Elementary School (WES), Weber County, Utah.



Fig. 4.85 Experimental dispersion curve measured at Highland Middle School (HMS), Weber County, Utah.



Fig. 4.86 Comparison of experimental and theoretical dispersion curves from Highland Middle School (HMS), Weber County, Utah.



Fig. 4.87 Shear wave velocity profile determined from SASW testing at Highland Middle School (HMS), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 215 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 40 m and poorly resolved from 40 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	96	180	0.3	1.89
0.3	0.8	99	185	0.3	1.89
1.1	1.0	146	273	0.3	1.89
2.1	1.5	147	275	0.3	1.89
3.6	2.4	170	318	0.3	1.92
6.0	3.6	217	406	0.3	1.92
9.6	4.1	235	440	0.3	1.92
13.7	8.1	255	477	0.3	1.92
21.8	11.4	261	488	0.3	1.92
33.2	6.8	379	709	0.3	1.96
40	4.3	379*	709	0.3	1.96
44.3	Half-Space	557 [*]	1042	0.3	2.00

Table 4.17 Tabulated measured and assumed layer at Highland Middle School (HMS), Weber County, Utah.



Fig. 4.90 Experimental dispersion curve measured at Lemond View Park (LVP), Weber County, Utah.



Fig. 4.91 Comparison of experimental and theoretical dispersion curves from Lemond View Park (LVP), Weber County, Utah.



Fig. 4.92 Shear wave velocity profile determined from SASW testing at Lemond View Park (LVP), Weber County, Utah.

The average shear wave velocity in the upper 30 m of soil is 330 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 32.9 m and poorly resolved from 32.9 m to 50 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	126	236	0.30	1.89
0.4	0.4	157	294	0.30	1.89
0.8	0.7	216	404	0.30	1.92
1.5	1.4	240	449	0.30	1.92
2.9	2.1	269	503	0.30	1.92
5.0	3.2	279	522	0.30	1.92
8.2	5.0	295	552	0.30	1.92
13.2	5.7	329	616	0.30	1.96
18.8	6.5	464	868	0.30	1.96
25.3	7.6	521	975	0.30	2.00
32.9	Half-Space	860*	1609	0.30	2.00

Table 4.18 Tabulated measured and assumed layer at Lemond View Park (LVP), Weber County, Utah.



Fig. 4.96 Experimental dispersion curve measured at the Lakeside Golf Coarse (LGC), Davis County, Utah.



Fig. 4.97 Comparison of experimental and theoretical dispersion curves from the Lakeside Golf Coarse (LGC), Davis County, Utah.



Fig. 4.98 Shear wave velocity profile determined from SASW at the Lakeside Golf Coarse (LGC), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 179 m/s, which corresponds to an IBC 2006 site class E. The uncertainties and scatter in the data make this a difficult site to classify because it is so close to site class D. The shear wave velocity profile is well resolved to a depth of 37.5 m and poorly resolved from 37.5 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	63	117	0.3	1.89
0.4	0.6	99	186	0.3	1.89
0.9	0.8	134	251	0.3	1.89
1.7	1.4	154	288	0.3	1.89
3.1	1.9	161	301	0.3	1.89
5.0	3.1	172	1500	0.49	1.90
8.1	5.0	173	1500	0.49	1.90
13.0	8.3	189	1500	0.49	1.90
21.3	16.2	223	1500	0.49	1.92
37.5	Half-Space	378*	1500	0.47	1.96

Table 4.19 Tabulated measured and assumed layer properties at the Lakeside Golf Coarse (LGC), Davis County, Utah.



Fig. 4.101 Experimental dispersion curve measured at the Davis County Fairgrounds (DCF), Davis County, Utah.



Fig. 4.102 Comparison of experimental and theoretical dispersion curves from the Davis County Fairgrounds (DCF), Davis County, Utah.



Fig. 4.103 Shear wave velocity profile determined from SASW at the Davis County Fairgrounds (DCF), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 192 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.5	83	156	0.3	1.89
0.5	0.8	117	219	0.3	1.89
1.3	1.2	137	256	0.3	1.89
2.5	2.1	138	1500	0.49	1.89
4.6	2.9	139	1500	0.49	1.90
7.5	4.2	179	1500	0.49	1.90
11.7	6.9	221	1500	0.49	1.90
18.6	9.1	249	1500	0.49	2.00
27.7	2.3	306	1500	0.48	2.00
30.0	14.8	306*	1500	0.48	2.00
44.8	Half-Space	447 [*]	1500	0.45	2.00

Table 4.20 Tabulated measured and assumed layer properties at the Davis County Fairgrounds (DCF), Davis County, Utah.



Wavelength, m

Fig. 4.106 Experimental dispersion curve measured at Kaysville Jr. High (KJH), Davis County, Utah.



Wavelength, m Fig. 4.107 Comparison of experimental and theoretical dispersion curves from Kaysville Jr. High (KJH), Davis County, Utah.



Fig. 4.108 Shear wave velocity profile determined from SASW at Kaysville Jr. High (KJH), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 196 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 40 m and poorly resolved from 40 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	173	324	0.3	1.92
0.4	0.8	180	337	0.3	1.92
1.2	1.4	180	338	0.3	1.92
2.6	2.7	181	1500	0.49	1.92
5.3	3.0	182	1500	0.49	1.92
8.3	5.0	183	1500	0.49	1.92
13.3	7.3	186	1500	0.49	1.92
20.6	11.1	230	1500	0.49	1.92
31.7	8.3	327	1500	0.48	1.96
40.0	3.9	327*	1500	0.48	1.96
43.9	Half-Space	441*	1500	0.45	1.96

Table 4.21 Tabulated measured and assumed layer properties at Kaysville Jr. High (KJH), Davis County, Utah.



Wavelength, m

Fig. 4.111 Experimental dispersion curve measured at Windridge Elementary School (WRS), Davis County, Utah.



Fig. 4.112 Comparison of experimental and theoretical dispersion curves from Windridge Elementary School (WRS), Davis County, Utah.



Fig. 4.113 Shear wave velocity profile determined from SASW at Windridge Elementary School (WRS), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 221 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	111	208	0.3	1.89
0.4	0.5	123	230	0.3	1.89
0.8	0.7	165	309	0.3	1.89
1.6	1.1	186	348	0.3	1.89
2.7	1.5	186	1500	0.49	1.89
4.1	2.3	189	1500	0.49	1.92
6.4	4.0	193	1500	0.49	1.92
10.4	5.8	213	1500	0.49	1.92
16.2	8.4	253	1500	0.49	1.92
24.5	10.5	309	1500	0.48	1.96
35.0	Half-Space	354*	1500	0.47	2.00

Table 4.22 Tabulated measured and assumed layer properties at Windridge Elementary School (WRS), Davis County, Utah.



Fig. 4.116 Experimental dispersion curve measured at Washington Elementary School (WSE), Davis County, Utah.



Fig. 4.117 Comparison of experimental and theoretical dispersion curves from Washington Elementary School (WSE), Davis County, Utah.



Fig. 4.118 Shear wave velocity profile determined from SASW at Washington Elementary School (WSE), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 268 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	265	496	0.3	1.90
0.4	0.5	176	329	0.3	1.90
0.9	0.7	153	286	0.3	1.90
1.6	1.1	151	283	0.3	1.90
2.7	1.6	184	344	0.3	1.90
4.3	2.4	228	427	0.3	1.90
6.7	3.6	234	438	0.3	1.90
10.3	5.3	277	1500	0.48	1.92
15.6	10.8	331	1500	0.47	1.96
26.4	8.6	379	1500	0.47	1.96
35.0	7.0	379*	1500	0.47	1.96
42.0	Half-Space	659 [*]	1500	0.38	2.00

Table 4.23 Tabulated measured and assumed layer properties at Washington Elementary School (WSE), Davis County, Utah.



Fig. 4.121 Experimental dispersion curve measured at the Utah Highway Patrol Building (UHP), Davis County, Utah.



Fig. 4.122 Comparison of experimental and theoretical dispersion curves from the Utah Highway Patrol Building (UHP), Davis County, Utah.



Fig. 4.123 Shear wave velocity profile determined from SASW at the Utah Highway Patrol Building (UHP), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 231 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 40 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	215	402	0.3	1.90
0.4	1.2	209	390	0.3	1.90
1.6	1.4	85	159	0.3	1.90
3.0	1.5	95	1500	0.49	1.90
4.5	2.9	193	1500	0.49	1.90
7.3	7.3	230	1500	0.49	1.92
14.6	7.8	295	1500	0.48	1.92
22.5	7.5	441	1500	0.45	1.96
30.0	3.5	441*	1500	0.45	1.96
33.5	Half-Space	507 [*]	1500	0.44	2.00

Table 4.24 Tabulated measured and assumed layer properties at the Utah Highway Patrol Building (UHP), Davis County, Utah.



Fig. 4.126 Experimental dispersion curve measured at Orchard Elementary School (OSE), Davis County, Utah.



Fig. 4.127 Comparison of experimental and theoretical dispersion curves from the Orchard Elementary School (OSE), Davis County, Utah.



Fig. 4.128 Shear wave velocity profile determined from SASW at Orchard Elementary School (OSE), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 278 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	137	256	0.3	1.90
0.4	0.5	160	299	0.3	1.90
0.9	0.9	247	462	0.3	1.90
1.8	1.5	261	488	0.3	1.90
3.3	2.3	263	492	0.3	1.90
5.6	5.1	264	494	0.3	1.92
10.7	7.4	267	1500	0.48	1.92
18.1	9.1	321	1500	0.48	1.96
27.2	7.8	344	1500	0.47	1.96
35.0	5.7	344*	1500	0.47	1.96
40.7	Half-Space	878*	1500	0.24	2.00

Table 4.25 Tabulated measured and assumed layer properties at Orchard Elementary School (OSE), Davis County, Utah.


Wavelength, m

Fig. 4.131 Experimental dispersion curve measured at Farmington Elementary School (FES), Davis County, Utah.



Fig. 4.132 Comparison of experimental and theoretical dispersion curves from Farmington Elementary School (FES), Davis County, Utah.



Fig. 4.133 Shear wave velocity profile determined from SASW at Farmington Elementary School (FES), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 238 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	108	202	0.3	1.89
0.3	0.6	131	245	0.3	1.89
0.9	1.0	144	270	0.3	1.89
1.9	1.6	146	273	0.3	1.89
3.5	3.3	161	301	0.3	1.90
6.8	10.3	208	389	0.3	1.90
17.1	10.7	408	764	0.3	1.90
27.8	7.3	450	841	0.3	1.92
35.0	4.7	450 [*]	841	0.3	1.92
39.6	Half-Space	589*	1102	0.3	2.00

Table 4.26 Tabulated measured and assumed layer properties at Farmington Elementary School (FES), Davis County, Utah.



Fig. 4.136 Experimental dispersion curve measured at Mueller Park Jr. High School (MPS), Davis County, Utah.



Fig. 4.137 Comparison of experimental and theoretical dispersion curves from Mueller Park Jr. High School (MPS), Davis County, Utah.



Fig. 4.138 Shear wave velocity profile determined from SASW at Mueller Park Jr. High School (MPS), Davis County, Utah.

The average shear wave velocity in the upper 30 m of soil is 292 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 40.9 m and poorly resolved from 40.9 m to 50 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	129	241	0.3	1.89
0.4	0.7	135	252	0.3	1.89
1.1	1.0	173	324	0.3	1.90
2.1	1.9	208	389	0.3	1.90
4.0	3.1	241	451	0.3	1.90
7.1	4.0	287	537	0.3	1.92
11.1	7.6	311	582	0.3	1.96
18.7	11.3	398	745	0.3	1.96
30.0	10.9	603	1128	0.3	2.00
40.9	Half-Space	795 [*]	1487	0.3	2.00

Table 4.27 Tabulated measured and assumed layer properties at Mueller Park Jr. High School (MPS), Davis County, Utah.



Fig. 4.164 Experimental dispersion curve measured at the Meadow School (MDS), Utah County, Utah.



Fig. 4.165 Comparison of experimental and theoretical dispersion curves from the Meadow School (MDS), Utah County, Utah.



Fig. 4.166 Shear wave velocity profile determined from SASW at the Meadow School (MDS), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 203 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 40 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.00	0.29	119	223	0.3	1.89
0.29	0.51	101	189	0.3	1.89
0.80	0.97	153	286	0.3	1.92
1.77	1.56	156	292	0.3	1.92
3.33	2.87	169	1500	0.49	1.92
6.20	3.56	197	1500	0.49	1.92
9.76	6.12	207	1500	0.49	1.92
15.88	9.50	221	1500	0.49	1.92
25.38	9.62	275	1500	0.48	1.92
35.00	4.35	275*	1500	0.48	1.92
39.35	Half-Space	650**	1500	0.38	1.96

Table 4.32 Tabulated measured and assumed layer properties at the Meadow School (MDS), Utah County, Utah.

* Poorly Resolved

** Poorly Resolved and not shown in profile



Fig. 4.169 Experimental dispersion curve measured at Lakeridge Jr. High School (LRJ), Utah County, Utah.



Wavelength, m Fig. 4.170 Comparison of experimental and theoretical dispersion curves from Lakeridge Jr. High School (LRJ), Utah County, Utah.



Fig. 4.171 Shear wave velocity profile determined from SASW at Lakeridge Jr. High School (LRJ), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 232 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 31.5 m and poorly resolved from 31.5 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.4	104	195	0.3	1.89
0.4	0.5	111	208	0.3	1.89
0.9	0.7	197	369	0.3	1.89
1.6	0.9	200	374	0.3	1.90
2.5	1.3	217	405	0.3	1.90
3.8	2.8	238	1500	0.49	1.90
6.6	5.5	238	1500	0.49	1.90
12.1	9.0	238	1500	0.49	1.90
21.2	10.4	260	1500	0.48	1.90
31.5	Half-Space	347*	1500	0.47	2.00

Table 4.33 Tabulated measured and assumed layer properties at Lakeridge Jr. High School (LRJ), Utah County, Utah.



Fig. 4.174 Experimental dispersion curve measured in Lakeshore (LSU), Utah County, Utah.



Fig. 4.175 Comparison of experimental and theoretical dispersion curves from Lakeshore (LSU), Utah County, Utah.



Fig. 4.176 Shear wave velocity profile determined from SASW in Lakeshore (LSU), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 169 m/s, which corresponds to an IBC 2006 site class E. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	96	180	0.30	1.89
0.3	0.4	110	206	0.30	1.89
0.7	0.7	116	217	0.30	1.89
1.4	1.4	136	1500	0.50	1.89
2.7	2.9	137	1500	0.50	1.89
5.6	4.3	144	1500	0.50	1.89
10.0	7.0	169	1500	0.49	1.92
16.9	8.1	185	1500	0.49	1.92
25.0	5.0	269	1500	0.48	1.92
30	4.5	269 [*]	1500	0.48	1.92
34.5	Half-Space	293*	1500	0.48	1.92

Table 4.34 Tabulated measured and assumed layer properties in Lakeshore (LSU), Utah County, Utah.



Fig. 4.179 Experimental dispersion curve measured at the Salem City Yard (SCY), Utah County, Utah.



Fig. 4.180 Comparison of experimental and theoretical dispersion curves from the Salem City Yard (SCY), Utah County, Utah.



Fig. 4.181 Shear wave velocity profile determined from SASW at the Salem City Yard (SCY), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 175 m/s, which corresponds to an IBC 2006 site class E. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 40 m.

N	leasured Value	es	Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.6	179	335	0.3	1.92
0.6	0.9	183	342	0.3	1.92
1.5	1.1	140	263	0.3	1.89
2.6	2.9	127	1500	0.49	1.89
5.4	3.6	142	1500	0.49	1.89
9.0	4.8	169	1500	0.49	1.92
13.7	8.3	189	1500	0.49	1.92
22.0	8.0	225	1500	0.49	1.92
30.0	3.2	225*	1500	0.48	1.92
33.2	Half-Space	286*	1500	0.48	1.92

Table 4.35 Tabulated measured and assumed layer properties at the Salem City Yard (SCY), Utah County, Utah.



Fig. 4.184 Experimental dispersion curve measured at the Woffinden Home (WOF), Utah County, Utah.



Fig. 4.185 Comparison of experimental and theoretical dispersion curves at the Woffinden Home (WOF), Utah County, Utah.



Fig. 4.186 Shear wave velocity profile determined from SASW at the Woffinden Home (WOF), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 157 m/s, which corresponds to an IBC 2006 site class E. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	56	105	0.3	1.87
0.3	0.8	65	122	0.3	1.87
1.1	1.2	101	188	0.3	1.87
2.3	1.9	152	1500	0.49	1.87
4.2	2.3	171	1500	0.49	1.87
6.5	3.7	172	1500	0.49	1.87
10.2	5.9	173	1500	0.49	1.87
16.1	8.3	174	1500	0.49	1.90
24.4	5.6	175	1500	0.49	1.90
30.0	7.0	175*	1500	0.49	1.90
37.0	Half-Space	385*	1500	0.46	1.92

Table 4.36 Tabulated measured and assumed layer properties at the Woffinden Home (WOF), Utah County, Utah.



Fig. 4.189 Experimental dispersion curve measured at the Tri City Golf Course (AMF), Utah County, Utah.



Wavelength, m Fig. 4.190 Comparison of experimental and theoretical dispersion curves at the Tri City Golf Course (AMF), Utah County, Utah.



Fig. 4.191 Shear wave velocity profile determined from SASW at the Tri City Golf Course (AMF), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 282 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 31.8 m and poorly resolved from 31.8 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.1	157	295	0.30	1.92
0.1	0.2	160	300	0.30	1.92
0.3	0.9	189	354	0.30	1.92
1.3	1.4	274	512	0.30	1.92
2.7	1.5	305	571	0.30	1.96
4.2	1.6	306	573	0.30	1.96
5.8	3.0	286	1500	0.48	1.92
8.8	5.9	287	1500	0.48	1.92
14.7	7.1	288	1500	0.48	1.92
21.8	10.0	290	1500	0.48	1.92
31.8	Half-Space	1090*	1780	0.20	2.08

Table 4.37 Tabulated measured and assumed layer properties at the Tri City Golf Course (AMF), Utah County, Utah.



Fig. 4.194 Experimental dispersion curve measured at Thanksgiving Point (TPU), Utah County, Utah.



Wavelength, m Fig. 4.195 Comparison of experimental and theoretical dispersion curves at Thanksgiving Point (TPU), Utah County, Utah.



Fig. 4.196 Shear wave velocity profile determined from SASW at Thanksgiving Point (TPU), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 246 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values			Assumed Values		
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.5	100	187	0.30	1.89
0.5	0.7	129	241	0.30	1.89
1.3	1.4	173	324	0.30	1.92
2.6	2.7	199	372	0.30	1.92
5.3	3.7	223	417	0.30	1.92
9.0	5.6	245	1500	0.49	1.92
14.7	7.8	306	1500	0.48	1.96
22.4	9.0	310	1500	0.48	1.96
31.4	3.6	313	1500	0.48	1.96
35.0	9.1	313*	1500	0.48	1.96
44.1	Half-Space	429 [*]	1500	0.46	1.96

Table 4.38 Tabulated measured and assumed layer properties at Thanksgiving Point (TPU), Utah County, Utah.



Fig. 4.199 Experimental dispersion curve measured at Dixon Jr. High School (DJH), Utah County, Utah.



Fig. 4.200 Comparison of experimental and theoretical dispersion curves from Dixon Jr. High School (DJH), Utah County, Utah.



Shear Wave Velocity, m/s

Fig. 4.201 Shear wave velocity profile determined from SASW testing at Dixon Jr. High School (DJH), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 211 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30.6 m and poorly resolved from 30.6 m to 40 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	90	168	0.3	1.89
0.3	0.5	108	202	0.3	1.89
0.8	0.6	169	316	0.3	1.92
1.4	0.7	187	350	0.3	1.92
2.1	1.7	211	395	0.3	1.92
3.8	1.8	249	466	0.3	1.92
5.6	2.1	194	363	0.3	1.92
7.7	4.9	178	333	0.3	1.92
12.6	6.2	179	1500	0.49	1.92
18.8	11.8	287	1500	0.48	1.92
30.6	Half-Space	349*	1500	0.47	1.96

Table 4.39 Tabulated measured and assumed layer properties at Dixon Jr. High School (DJH), Utah County, Utah.



Fig. 4.204 Experimental dispersion curve measured West of Utah Lake (WUL), Utah County, Utah.



Fig. 4.205 Comparison of experimental and theoretical dispersion curves from West of Utah Lake (WUL), Utah County, Utah.



Fig. 4.206 Shear wave velocity profile determined from SASW testing West of Utah Lake (WUL), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 236 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	110	206	0.30	1.89
0.3	0.4	111	208	0.30	1.89
0.7	1.2	169	315	0.30	1.89
1.9	2.4	169	317	0.30	1.92
4.3	3.9	170	318	0.30	1.92
8.2	4.8	256	479	0.30	1.92
13.0	6.4	288	1500	0.48	1.92
19.4	8.2	298	1500	0.48	1.92
27.6	2.4	300	1500	0.48	1.96
30.0	12.2	300*	1500	0.48	1.96
42.2	Half-Space	379*	1500	0.47	1.96

Table 4.40 Tabulated measured and assumed layer properties West of Utah Lake (WUL), Utah County, Utah.



Fig. 4.209 Experimental dispersion curve measured at the Mapleton Ambulance Building (MAB), Utah County, Utah.



Fig. 4.210 Comparison of experimental and theoretical dispersion curves from the Mapleton Ambulance Building (MAB), Utah County, Utah.



Fig. 4.211 Shear wave velocity profile determined from SASW testing at the Mapleton Ambulance Building (MAB), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 266 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

Measured Values		Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )
0.0	0.3	127	238	0.3	1.89
0.3	0.6	130	243	0.3	1.89
0.9	1.5	192	359	0.3	1.92
2.4	1.7	221	414	0.3	1.92
4.1	2.8	245	457	0.3	1.92
6.9	4.2	268	502	0.3	1.92
11.1	6.2	287	537	0.3	1.92
17.3	9.3	297	556	0.3	1.92
26.6	8.4	331	619	0.3	1.96
35.0	7.3	331*	619	0.3	1.96
42.3	Half-Space	530*	992	0.3	1.96

Table 4.41 Tabulated measured and assumed layer properties at the Mapleton Ambulance Building (MAB), Utah County, Utah.


Fig. 4.214 Experimental dispersion curve measured at Cedar Ridge Elementary School (CRE), Utah County, Utah.



Fig. 4.215 Comparison of experimental and theoretical dispersion curves from Cedar Ridge Elementary School (CRE), Utah County, Utah.



Fig. 4.216 Shear wave velocity profile determined from SASW testing at Cedar Ridge Elementary School (CRE), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 447 m/s, which corresponds to an IBC 2006 site class C. The shear wave velocity profile is well resolved to a depth of 40 m and poorly resolved from 40 m to 50 m.

Ν	leasured Value	es	Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )	
0.0	0.5	122	228	0.3	1.89	
0.5	0.7	160	299	0.3	1.89	
1.1	1.0	250	468	0.3	1.92	
2.1	1.4	285	533	0.3	1.92	
3.4	2.0	350	655	0.3	1.92	
5.4	2.9	430	805	0.3	2.00	
8.3	4.2	455	851	0.3	2.00	
12.5	6.1	528	988	0.3	2.00	
18.5	8.8	640	1197	0.3	2.00	
27.3	12.7	670	1254	0.3	2.00	
40.0	Half-Space	970 [*]	1815	0.3	2.10	

Table 4.42 Tabulated measured and assumed layer at Cedar Ridge Elementary School (CRE), Utah County, Utah.

* Poorly Resolved



Fig. 4.219 Experimental dispersion curve measured at Canyon Crest School (CCS), Utah County, Utah.



Fig. 4.220 Comparison of experimental and theoretical dispersion curves from Canyon Crest School (CCS), Utah County, Utah.



Fig. 4.221 Shear wave velocity profile determined from SASW testing at Canyon Crest School (CCS), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 267 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30 m and poorly resolved from 30 m to 40 m.

Ν	leasured Value	es	Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )	
0.0	0.5	150	281	0.3	1.89	
0.5	0.7	154	288	0.3	1.92	
1.2	1.0	163	305	0.3	1.92	
2.2	1.4	178	333	0.3	1.92	
3.6	2.2	188	352	0.3	1.92	
5.7	4.3	220	412	0.3	1.92	
10.0	6.0	239	447	0.3	1.96	
16.0	9.7	370	692	0.3	2.00	
25.7	4.3	500	935	0.3	2.00	
30.0	Half-Space	500*	935	0.3	2.00	

Table 4.43 Tabulated measured and assumed layer at Canyon Crest School (CCS), Utah County, Utah.

* Poorly Resolved



Fig. 4.224 Experimental dispersion curve measured at Canyon Crest School (CCS), Utah County, Utah.



Fig. 4.225 Comparison of experimental and theoretical dispersion curves from Canyon Crest School (CCS), Utah County, Utah.



Fig. 4.226 Shear wave velocity profile determined from SASW testing at Canyon Crest School (CCS), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 341 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 32.3 m and poorly resolved from 32.3 m to 50 m.

Ν	leasured Value	es	Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )	
0.0	0.3	201	376	0.30	1.92	
0.3	0.4	228	427	0.30	1.92	
0.7	1.0	271	507	0.30	1.92	
1.7	1.4	322	602	0.30	2.00	
3.1	1.9	366	685	0.30	2.00	
5.0	2.1	391	732	0.30	2.00	
7.1	5.1	413	773	0.30	2.00	
12.2	4.9	291	544	0.30	1.96	
17.1	6.2	330	617	0.30	2.00	
23.3	9.0	371	694	0.30	2.00	
32.3	Half-Space	498 [*]	932	0.30	2.00	

Table 4.44 Tabulated measured and assumed layer at Canyon Crest School (CCS), Utah County, Utah.

* Poorly Resolved



Fig. 4.229 Experimental dispersion curve measured at Pleasant Grove Jr. High School (PJH), Utah County, Utah.



Fig. 4.230 Comparison of experimental and theoretical dispersion curves from Pleasant Grove Jr. High School (PJH), Utah County, Utah.



Fig. 4.231 Shear wave velocity profile determined from SASW testing at Pleasant Grove Jr. High School (PJH), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 340 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 30.7 m and poorly resolved from 30.7 m to 40 m.

Ν	leasured Value	es	Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )	
0.0	0.3	149	279	0.3	1.89	
0.3	0.5	150	281	0.3	1.89	
0.9	0.9	150	281	0.3	1.89	
1.8	1.2	157	294	0.3	1.92	
2.9	1.4	209	391	0.3	1.92	
4.3	1.8	210	392	0.3	1.92	
6.0	2.0	266	497	0.3	1.92	
8.0	3.9	400	748	0.3	1.96	
11.9	7.9	480	898	0.3	1.96	
19.9	10.9	493	922	0.3	1.96	
30.7	Half-Space	1110*	2077	0.3	2.00	

Table 4.45 Tabulated measured and assumed layer at Pleasant Grove Jr. High School (PJH), Utah County, Utah.

* Poorly Resolved



Fig. 4.234 Experimental dispersion curve measured at Brigham Young University (BYU), Utah County, Utah.



Fig. 4.235 Comparison of experimental and theoretical dispersion curves from Brigham Young University (BYU), Utah County, Utah.



Fig. 4.236 Shear wave velocity profile determined from SASW testing at Brigham Young University (BYU), Utah County, Utah.

The average shear wave velocity in the upper 30 m of soil is 251 m/s, which corresponds to an IBC 2006 site class D. The shear wave velocity profile is well resolved to a depth of 31.2 m and poorly resolved from 31.2 m to 40 m.

N	leasured Value	es	Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )	
0.0	0.4	87	163	0.3	1.89	
0.4	0.9	114	213	0.3	1.89	
1.3	1.4	192	359	0.3	1.92	
2.7	2.1	208	389	0.3	1.92	
4.7	3.3	258	483	0.3	1.92	
8.0	6.5	269	503	0.3	1.92	
14.5	8.0	275	515	0.3	1.92	
22.4	8.8	345	645	0.3	1.96	
31.2	11.9	478*	894	0.3	1.96	
43.1	Half-Space	597**	1117	0.3	2.00	

Table 4.46 Tabulated measured and assumed layer properties at Brigham	Young
University (BYU), Utah County, Utah.	

* Poorly Resolved

** Poorly Resolved and not shown in profile



Fig. 4.142 Experimental dispersion curve measured at the Fire Training Tower (FTT), Salt Lake County, Utah.



Fig. 4.143 Comparison of experimental and theoretical dispersion curves from the Fire Training Tower (FTT), Salt Lake County, Utah.



Fig. 4.144 Shear wave velocity profile determined from SASW at the Fire Training Tower (FTT), Salt Lake County, Utah.

The average shear wave velocity in the upper 30 m of soil is 432 m/s, which corresponds to an IBC 2006 site class C. The shear wave velocity profile is well resolved to a depth of 35 m and poorly resolved from 35 m to 50 m.

N	leasured Value	es	Assumed Values			
Depth to Top of Layer (m)	Layer Thickness (m)	Shear Wave Velocity (m/s)	P-Wave Velocity (m/s)	Poisson's Ratio	Unit Weight (t/m ³ )	
0.0	0.3	190	356	0.3	1.90	
0.3	0.7	259	485	0.3	1.92	
0.9	1.3	309	578	0.3	2.00	
2.2	2.4	339	634	0.3	2.00	
4.6	3.1	380	711	0.3	2.00	
7.7	5.4	403	754	0.3	2.00	
13.1	8.4	479	896	0.3	2.00	
21.5	9.8	557	1042	0.3	2.00	
31.3	3.7	592	1108	0.3	2.00	
35.0	7.7	592 [*]	1108	0.3	2.00	
42.7	Half-Space	1032*	1931	0.3	2.02	

Table 4.28 Tabulated measured and assumed layer properties at the Fire Training Tower (FTT), Salt Lake County, Utah.

* Poorly Resolved

Figure 4.145 shows the shear wave velocity profile from the 2003 SASW study of the Salt Lake Valley by Gilbert (2003) compared to the 2005 profile. The SASW array from the previous study was located in a field to the south of the Fire Training Tower, on the opposite side relative to the location of the 2005 array. The two profiles are very similar and have Vs30 values that are nearly identical. The slight differences are likely due to geologic variability at the site. The comparison is a good demonstration of the repeatability of the SASW method.



Fig. 4.145 Comparison of shear wave velocity profiles determined from SASW at the Fire Training Tower (FTT), Salt Lake County, Utah.

### Saltair: Depth-converted stacked section



Figure 7b.



Sal	tair	Siesta	Drive
Depth(m	) Vs(m/s)	Depth	Vs
0	160	0	210
16	160	10	210
16	220	10	340
36	220	30	340
36	330	30	480
70	330	95	480
70	400	95	515
110	400	138	515
110	460	138	914
135	460	200	914
135	530		
225	530		

River Oaks		FTT		NOC	NOQ	
Depth	Vs	Depth	Vs	Depth	Vs	
0	195	0	430	Ó	550	
20	195	19	430	25	550	
20	550	19	600	25	1675	
150	550	75	600	150	1675	
		75	1040			

Provo A	Airport		Exchang	ge Park
Depth	Depth Vs		Depth	Vs
Ó	130		Ó	135
11	130		8	135
11	185		8	200
29	185		24	200
29	240		24	340
55	240		62	340
55	340		62	540
115	340		102	540
115	435		102	665
295	435			
295	695			
420	695			



Sal	tair	Siesta	Drive
Depth(m	) Vs(m/s)	Depth	Vs
0	160	0	210
16	160	10	210
16	220	10	340
36	220	30	340
36	330	30	480
70	330	95	480
70	400	95	515
110	400	138	515
110	460	138	914
135	460	200	914
135	530		
225	530		

River Oaks		FTT		NOC	NOQ	
Depth	Vs	Depth	Vs	Depth	Vs	
0	195	0	430	Ó	550	
20	195	19	430	25	550	
20	550	19	600	25	1675	
150	550	75	600	150	1675	
		75	1040			

Provo Airport			Exchang	ge Park
Depth	Depth Vs		Depth	Vs
Ó	130		Ó	135
11	130		8	135
11	185		8	200
29	185		24	200
29	240		24	340
55	240		62	340
55	340		62	540
115	340		102	540
115	435		102	665
295	435			
295	695			
420	695			



Siesta Drive Reflection section and Refraction model

Figure 9b



Sal	tair	Siesta	Drive
Depth(m	) Vs(m/s)	Depth	Vs
0	160	0	210
16	160	10	210
16	220	10	340
36	220	30	340
36	330	30	480
70	330	95	480
70	400	95	515
110	400	138	515
110	460	138	914
135	460	200	914
135	530		
225	530		

River	Oaks	<u> </u>	TT	NOC	ג
Depth	Vs	Depth	Vs	Depth	Vs
0	195	0	430	Ó	550
20	195	19	430	25	550
20	550	19	600	25	1675
150	550	75	600	150	1675
		75	1040		

Provo Airport			Exchang	ge Park
Depth	Depth Vs		Depth	Vs
Ó	130		Ó	135
11	130		8	135
11	185		8	200
29	185		24	200
29	240		24	340
55	240		62	340
55	340		62	540
115	340		102	540
115	435		102	665
295	435			
295	695			
420	695			



Sal	tair	Siesta	Drive
Depth(m	) Vs(m/s)	Depth	Vs
0	160	0	210
16	160	10	210
16	220	10	340
36	220	30	340
36	330	30	480
70	330	95	480
70	400	95	515
110	400	138	515
110	460	138	914
135	460	200	914
135	530		
225	530		

River	Oaks	<u> </u>	TT	NOC	ג
Depth	Vs	Depth	Vs	Depth	Vs
0	195	0	430	Ó	550
20	195	19	430	25	550
20	550	19	600	25	1675
150	550	75	600	150	1675
		75	1040		

Provo Airport			Exchang	ge Park
Depth	Depth Vs		Depth	Vs
Ó	130		Ó	135
11	130		8	135
11	185		8	200
29	185		24	200
29	240		24	340
55	240		62	340
55	340		62	540
115	340		102	540
115	435		102	665
295	435			
295	695			
420	695			









red=S-timber Vs30=660 m/s green=S-minivib Vs30=620 m/s blue=theoretical exp. Vs30=760 m/s blue dash=theoretical lin. Vs30=670 m/s



#### NOQ S-timber model

Depth (m)	S-vel (m/s)
0.0	450
10.0	450
10.0	535
17.0	535
17.0	1290
30.0	1290



Sal	tair	Siesta	Drive
Depth(m	) Vs(m/s)	Depth	Vs
0	160	0	210
16	160	10	210
16	220	10	340
36	220	30	340
36	330	30	480
70	330	95	480
70	400	95	515
110	400	138	515
110	460	138	914
135	460	200	914
135	530		
225	530		

River	Oaks	<u> </u>	TT	NOC	ג
Depth	Vs	Depth	Vs	Depth	Vs
0	195	0	430	Ó	550
20	195	19	430	25	550
20	550	19	600	25	1675
150	550	75	600	150	1675
		75	1040		

Provo Airport			Exchang	ge Park
Depth	Depth Vs		Depth	Vs
Ó	130		Ó	135
11	130		8	135
11	185		8	200
29	185		24	200
29	240		24	340
55	240		62	340
55	340		62	540
115	340		102	540
115	435		102	665
295	435			
295	695			
420	695			



Sal	tair	Siesta	Drive
Depth(m	) Vs(m/s)	Depth	Vs
0	160	0	210
16	160	10	210
16	220	10	340
36	220	30	340
36	330	30	480
70	330	95	480
70	400	95	515
110	400	138	515
110	460	138	914
135	460	200	914
135	530		
225	530		

River	Oaks	<u> </u>	TT	NOC	ג
Depth	Vs	Depth	Vs	Depth	Vs
0	195	0	430	Ó	550
20	195	19	430	25	550
20	550	19	600	25	1675
150	550	75	600	150	1675
		75	1040		

Provo Airport		Exchang	ge Park
Depth	Vs	Depth	Vs
Ó	130	Ó	135
11	130	8	135
11	185	8	200
29	185	24	200
29	240	24	340
55	240	62	340
55	340	62	540
115	340	102	540
115	435	102	665
295	435		
295	695		
420	695		

#### b



FF 4002,4004,4006,4008, 10-20-60-100 Hz bp filter, no AGC

FF 4014,4016, 10-20-60-100 Hz bp filter, no AGC

#### Hayfida Velocity (m/s) 1000 1500 a, 500 2000 0 10 20 30 40 Depth (m) 50 60 70 80 S-wave 90 P-wave 100

a

#### b

Site: Hayfield near Airport, Spanish Fork, UT

<u></u>			
S-vel (m/s)	Depth (m)	P-vel (m/s)	Depth (m)
78	0.0	285	0.0
78	4.0	285	2.0
160	4.0	1670	2.0
160	12.0	1670	20.0
370	12.0	1800	20.0
370	82.0	1900	95.0
410	82.0		
410	95.0		
Unreversed profile V/s30 = 200 m/s NEHRP (			/s NEHRP cla

Unreversed profile Vs30 = 200 m/s NEHRP class D Layer not observed from south end

#### С







a

Site: Clark Park, Spanish Fork, UT

S-vel (m/s)	Depth (m)	P-vel (m/s)	Depth (m)	
85	0.0	260	0.0	
85	0.5	260	2.0	
140	0.5	1510	2.0	
140	2.0	1510	10.0	
185	2.0	1600	50.0	
185	5.5	1700	70.0	
240	5.5			
240	18.0			
275	18.0	Vs30 = 230 m	/s NEHRP cla	ss D
275	35.0	Suggested by	y reflection da	ata
340	35.0	Data from ref	flections only	
340	50.0			
380	50.0	]		
380	95.0	]		



FF 5009,5012, 10-20-60-100 Hz bp filter, no AGC, 2-11-06

#### b



a

Site: Canyon Elementary, Spanish Fork, UT

S-vel (m/s)	Depth (m)	P-vel (m/s)	Depth (m)	
250	0.0	480	0.0	
250	3.0	480	5.0	
340	3.0	615	5.0	
340	9.0	615	26.0	
445	9.0	1945	26.0	
445	20.0	1945	30.0	
325	20.0	$V_{s30} = 350 \text{ m}$	s NEHRP da	se D
325	80.0			
1325	80.0	Possible stron	ig site resonar	ice at about
1325	85.0	11.0 HZ (based	i on reflection t	time from rock)

S-wave velocity estimated - no control and assuming it's bedrock S-wave velocity estimated by assuming a velocity that fits with reflection velocity from 80 m deep layer





K	96	Provo		
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)	
0	192	0	150	
20	192	10	150	
20	227	10	124	
40	227	14	124	
40	297	14	184	
46	297	28	184	

Sfai	irport	Youd		
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)	
0	114	0	229	
4	114	20	229	
4	212	20	236	
10	212	30	236	
10	314	30	326	
18	314	58	326	
18	237	58	388	
26	237	65.8	388	
26	330			
30	330			
30	223			
38	223			
38	306			
44	306			
44	266			
48	266			
48	579			
56.6	579			



K	96	Provo		
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)	
0	192	0	150	
20	192	10	150	
20	227	10	124	
40	227	14	124	
40	297	14	184	
46	297	28	184	

Sfai	irport	Youd		
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)	
0	114	0	229	
4	114	20	229	
4	212	20	236	
10	212	30	236	
10	314	30	326	
18	314	58	326	
18	237	58	388	
26	237	65.8	388	
26	330			
30	330			
30	223			
38	223			
38	306			
44	306			
44	266			
48	266			
48	579			
56.6	579			



K	96	Provo		
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)	
0	192	0	150	
20	192	10	150	
20	227	10	124	
40	227	14	124	
40	297	14	184	
46	297	28	184	

Sfai	irport	Youd		
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)	
0	114	0	229	
4	114	20	229	
4	212	20	236	
10	212	30	236	
10	314	30	326	
18	314	58	326	
18	237	58	388	
26	237	65.8	388	
26	330			
30	330			
30	223			
38	223			
38	306			
44	306			
44	266			
48	266			
48	579			
56.6	579			


K	96	Pr	ovo
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)
0	192	0	150
20	192	10	150
20	227	10	124
40	227	14	124
40	297	14	184
46	297	28	184

Sfai	irport	Yo	ud
Depth (m)	S vel (m/s)	Depth (m)	S vel (m/s)
0	114	0	229
4	114	20	229
4	212	20	236
10	212	30	236
10	314	30	326
18	314	58	326
18	237	58	388
26	237	65.8	388
26	330		
30	330		
30	223		
38	223		
38	306		
44	306		
44	266		
48	266		
48	579		
56.6	579		

	e e e e e e e e e e e e e e e e e e e	SITE #1							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's		Lat	40°50'54.0	00"N	
1	1.2	370.6	198.1	0.3		Long	111°55'36.	00"W	
2	6.1	1585.0	121.9	0.497					
3	6.1	1585.0	137.2	0.4962					
4	36.6	1585.0	243.8	0.4879					
5	30.5	1585.0	274.3	0.4846					
6	76.2	1585.0	457.2	0.4546					
7	45.7	1585.0	609.6	0.4132					
8	55555	2166.9	1158.2	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	1.2	198.1			0.0	1.2	198.1	1.2192	0.006154
1.2	7.3	121.9			1.2	7.3	121.9	6.096	0.05
7.3	13.4	137.2			7.3	13.4	137.2	6.096	0.044444
13.4	50.0	243.8			13.4	30.0	243.8	16.5888	0.068031
50.0	80.5	274.3							
80.5	156.7	457.2							
156.7	202.4	609.6							
202.4	203.4	1158.2							



30 0.16863 177.9045 Vs30 (m/s)

	Ś	SITE #2							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°58'43.	00"N		
1	1.2	370.6	198.1	0.3	Long	111°53'56	.00"W		
2	3.0	1585.0	121.9	0.497	-				
3	3.0	1585.0	137.2	0.4962					
4	15.2	1585.0	182.9	0.4953					
5	38.1	1585.0	304.8	0.4808					
6	61.0	1585.0	457.2	0.4546					
7	55555	1585.0	823.0	0.3154					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	1.2	198.1			0.0	1.2	198.1	1.2192	0.006154
1.2	4.3	121.9			1.2	4.3	121.9	3.048	0.025
4.3	7.3	137.2			4.3	7.3	137.2	3.048	0.022222
7.3	22.6	182.9			7.3	22.6	182.9	15.24	0.083333
22.6	60.7	304.8			22.6	60.7	304.8	38.1	0.125
60.7	121.6	457.2							
121.6	122.6	823.0							



## 60.6552 0.261709 231.7655 Vs30 (m/s)

	S	SITE #3							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°28'38.00"N			
1	0.2	171.1	91.4	0.3	Long	111°55'6.00''W			
2	0.3	290.8	155.4	0.3					
3	1.5	307.9	164.6	0.3					
4	12.2	1585.0	213.4	0.4908					
5	30.5	1585.0	274.3	0.4846					
6	51.8	1585.0	640.1	0.4026					
7	55555	1824.7	975.4	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	0.2	91.4			0.0	0.2	91.4	0.24384	0.002667
0.2	0.5	155.4			0.2	0.5	155.4	0.3048	0.001961
0.5	2.1	164.6			0.5	2.1	164.6	1.524	0.009259
2.1	14.3	213.4			2.1	14.3	213.4	12.192	0.057143
14.3	44.7	274.3			14.3	44.7	274.3	30.48	0.111111
44.7	96.6	640.1							
96.6	97.6	975.4							



44.74464 0.182141 245.6598 Vs30 (m/s)

5	SITE #4							
Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°38'31.40"N			
1.5	342.1	182.9	0.3	Long	111°58'19.60"W			
13.7	470.4	251.5	0.3					
30.5	741.3	396.2	0.3					
144.8	1585.0	518.2	0.4402					
55555	2280.9	1219.2	0.3					
to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
1.524	182.9			0	1.524	182.9	1.524	0.008333
15.24	251.5			1.524	15.24	251.5	13.716	0.054545
45.72	396.2			15.24	45.72	396.2	30.48	0.076923
190.5	518.2							
191.5	1219.2							
	to 1.524 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.25 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 15.24 15.24 15.25 19.55 19.55 19.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55	SITE #4   Thickness (m) Vp (m/s)   1.5 342.1   13.7 470.4   30.5 741.3   144.8 1585.0   55555 2280.9   to Vs (m/s)   1.524 182.9   15.24 251.5   45.72 396.2   190.5 518.2   191.5 1219.2	SITE #4Thickness (m) $Vp (m/s)$ $Vs (m/s)$ 1.5342.1182.913.7470.4251.530.5741.3396.2144.81585.0518.2555552280.91219.2toVs (m/s)1.524182.915.24251.545.72396.2190.5518.2191.51219.2	SITE #4Thickness (m)Vp (m/s)Vs (m/s)Poisson's $1.5$ $342.1$ $182.9$ $0.3$ $13.7$ $470.4$ $251.5$ $0.3$ $30.5$ $741.3$ $396.2$ $0.3$ $144.8$ $1585.0$ $518.2$ $0.4402$ $55555$ $2280.9$ $1219.2$ $0.3$ toVs (m/s) $1.524$ $182.9$ $15.24$ $251.5$ $45.72$ $396.2$ $190.5$ $518.2$ $191.5$ $1219.2$	SITE #4Thickness (m)Vp (m/s)Vs (m/s)Poisson'sLat $1.5$ $342.1$ $182.9$ $0.3$ Long $13.7$ $470.4$ $251.5$ $0.3$ $30.5$ $741.3$ $396.2$ $0.3$ $144.8$ $1585.0$ $518.2$ $0.4402$ $55555$ $2280.9$ $1219.2$ $0.3$ toVs (m/s)from $1.524$ $182.9$ $0$ $15.24$ $251.5$ $1.524$ $45.72$ $396.2$ $15.24$ $190.5$ $518.2$ $15.24$ $191.5$ $1219.2$	SITE #4Thickness (m)Vp (m/s)Vs (m/s)Poisson'sLat $40^{\circ}38'31.40"N$ 1.5342.1182.90.3Long $111^{\circ}58'19.60"W$ 13.7470.4251.50.330.5741.3396.20.3144.81585.0518.20.4402555552280.91219.20.3toVs (m/s)1.524182.901.524182.901.524251.51.52415.24251.51.52415.24251.51.524190.5518.2191.51219.2	SITE #4Thickness (m)Vp (m/s)Vs (m/s)Poisson'sLat $40^{\circ}38'31.40"N$ 1.5342.1182.90.3Long $111^{\circ}58'19.60"W$ 13.7470.4251.50.330.5741.3396.20.3144.81585.0518.20.4402555552280.91219.20.3from to Vs (m/s)1.524182.915.24251.51.52415.24251.51.52415.24251.51.524190.5518.2191.51219.2	SITE #4Thickness (m)Vp (m/s)Vs (m/s)Poisson'sLat $40^{\circ}38'31.40''N$ 1.5342.1182.90.3Long111°58'19.60''W13.7470.4251.50.3111°58'19.60''W13.7470.4251.50.3111°58'19.60''W144.81585.0518.20.4402555552280.91219.20.3from to Vs (m/s)thickness1.524182.901.524182.91.524182.91.52415.24251.513.71645.72396.215.2445.72396.230.48190.5518.21219.215.2445.72396.2



		SITE #5							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°39'17.00"N			
1	1.4	433.4	231.6	0.3	Long	112° 6'34.00''W			
2	0.9	798.3	426.7	0.3					
3	3.0	513.2	304.8	0.3					
4	9.1	684.3	365.8	0.3					
5	30.5	1026.4	548.6	0.3					
6	55555	2280.9	1219.2	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	1.4	231.6			0.0	1.4	231.6	1.3716	0.005921
1.4	2.3	426.7			1.4	2.3	426.7	0.9144	0.002143
2.3	5.3	304.8			2.3	5.3	304.8	3.048	0.01
5.3	14.5	365.8			5.3	14.5	365.8	9.144	0.025
14.5	45.0	548.6			14.5	45.0	548.6	30.48	0.055556
45.0	46.0	1219.2							

. ...



44.958 0.098619 455.8735 Vs30 (m/s)

	5	SITE #6							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°38'19.00"N			
1	0.6	484.7	259.1	0.3	Long	l11°48'27.00"W	7		
2	1.8	724.2	387.1	0.3					
3	0.9	413.4	221.0	0.3					
4	1.5	327.9	175.3	0.3					
5	3.0	456.2	243.8	0.3					
6	67.1	1585.0	457.2	0.4546					
7	55555	2223.9	1188.7	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	0.6	259.1			0.0	0.6	259.1	0.6096	0.002353
0.6	2.4	387.1			0.6	2.4	387.1	1.8288	0.004724
2.4	3.4	221.0			2.4	3.4	221.0	0.9144	0.004138
3.4	4.9	175.3			3.4	4.9	175.3	1.524	0.008696
4.9	7.9	243.8			4.9	7.9	243.8	3.048	0.0125
7.9	75.0	457.2			7.9	75.0	457.2	67.056	0.146667
75.0	76.0	1188.7							



74.9808 0.179078 418.7056 Vs30 (m/s)

	5	SITE #7							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°33'4.00"N			
1	0.5	342.1	152.4	0.3	Long	112° 3'5.00"W			
2	0.9	456.2	243.8	0.3					
3	1.5	270.8	144.8	0.3					
4	12.2	370.6	274.3	0.3					
5	30.5	855.3	396.2	0.3					
6	45.7	1585.0	731.5	0.3647					
7	55555	1767.7	944.9	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	0.5	152.4			0.0	0.5	152.4	0.4572	0.003
0.5	1.4	243.8			0.5	1.4	243.8	0.9144	0.00375
1.4	2.9	144.8			1.4	2.9	144.8	1.524	0.010526
2.9	15.1	274.3			2.9	15.1	274.3	12.192	0.044444
15.1	45.6	396.2			15.1	45.6	396.2	30.48	0.076923
45.6	91.3	731.5							
91.3	92.3	944.9							



45.5676 0.138644 328.6666 Vs30 (m/s)

	e e	SITE #8							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°37'19.00"N			
1	0.2	142.6	76.2	0.3	Long	111°47'13.00"W			
2	0.3	313.6	167.6	0.3					
3	1.5	342.1	182.9	0.3					
4	3.0	513.2	274.3	0.3					
5	9.1	769.8	411.5	0.3					
6	15.2	1083.4	579.1	0.3					
7	30.5	1311.5	701.0	0.3					
8	55555	1767.7	944.9	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	0.2	76.2			0.0	0.2	76.2	0.18288	0.0024
0.2	0.5	167.6			0.2	0.5	167.6	0.3048	0.001818
0.5	2.0	182.9			0.5	2.0	182.9	1.524	0.008333
2.0	5.1	274.3			2.0	5.1	274.3	3.048	0.011111
5.1	14.2	411.5			5.1	14.2	411.5	9.144	0.022222
14.2	29.4	579.1			14.2	29.4	579.1	15.24	0.026316
29.4	59.9	701.0			29.4	59.9	701.0	30.48	0.043478
59.9	60.9	944.9							



59.92368 0.115679 518.0174 Vs30 (m/s)

	S	SITE #9							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°41'11.00"N			
1	0.5	342.1	182.9	0.3	Long	112° 5'7.00"W			
2	9.1	670.0	358.1	0.3					
3	20.7	855.3	457.2	0.3					
4	6.1	1585.0	457.2	0.4546					
5	61.0	1596.6	853.4	0.3					
6	55555	2166.9	1158.2	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	0.5	182.9			0.0	0.5	182.9	0.4572	0.0025
0.5	9.6	358.1			0.5	9.6	358.1	9.144	0.025532
9.6	30.3	457.2			9.6	30.3	457.2	20.7264	0.045333
30.3	36.4	457.2							
36.4	97.4	853.4							
97.4	98.4	1158.2							



30.3276 0.073365 413.3783 Vs30 (m/s)

	S	ITE #10							
# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°45'26.00"N			
1	0.5	299.4	160.0	0.3	Long	112° 1'38.00''W			
2	1.2	225.2	120.4	0.3	-				
3	3.0	1585.0	126.5	0.4968					
4	6.1	1585.0	205.7	0.4914					
5	6.1	1585.0	213.4	0.4908					
6	15.2	1585.0	243.8	0.4879					
7	39.6	1585.0	365.8	0.4719					
8	91.4	1585.0	518.2	0.4402					
9	55555	1585.0	823.0	0.3154					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	0.5	160.0			0.0	0.5	160.0	0.4572	0.002857
0.5	1.7	120.4			0.5	1.7	120.4	1.2192	0.010127
1.7	4.7	126.5			1.7	4.7	126.5	3.048	0.024096
4.7	10.8	205.7			4.7	10.8	205.7	6.096	0.02963
10.8	16.9	213.4			10.8	16.9	213.4	6.096	0.028571
16.9	32.2	243.8			16.9	32.2	243.8	15.24	0.0625
32.2	71.8	365.8							
71.8	163.2	518.2							
163.2	164.2	823.0							



32.1564 0.157781 203.8038 Vs30 (m/s)

## **SITE #11**

# of Layers	Thickness (m)	Vp (m/s)	Vs (m/s)	Poisson's	Lat	40°37'55.00"N			
1	0.3	182.5	97.5	0.3	Long	111°59'58.00''W			
2	0.5	342.1	182.9	0.3					
3	0.8	484.7	259.1	0.3					
4	3.0	513.2	274.3	0.3					
5	7.6	570.2	304.8	0.3					
6	7.6	798.3	426.7	0.3					
7	7.6	1585.0	365.8	0.4719					
8	30.5	1585.0	487.7	0.4477					
9	61.0	1743.5	609.6	0.4304					
10	55555	2223.9	1188.7	0.3					
from	to	Vs (m/s)			from	to	Vs (m/s)	thickness	Vsi
0.0	0.3	97.5			0.0	0.3	97.5	0.3048	0.003125
0.3	0.8	182.9			0.3	0.8	182.9	0.4572	0.0025
0.8	1.5	259.1			0.8	1.5	259.1	0.762	0.002941
1.5	4.6	274.3			1.5	4.6	274.3	3.048	0.011111
4.6	12.2	304.8			4.6	12.2	304.8	7.62	0.025
12.2	19.8	426.7			12.2	19.8	426.7	7.62	0.017857
19.8	27.4	365.8			19.8	27.4	365.8	7.62	0.020833
27.4	57.9	487.7			27.4	57.9	487.7	30.48	0.0625
57.9	118.9	609.6							
118.9	119.9	1188.7							



57.912 0.145868 397.0171 Vs30 (m/s)