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O bJ ect | ves 2020 Lidar Overview -

e Availability of high resolution lidar data has
expanded greatly in the past decade - great tool
for characterizing and identifying active faults

 The UGS has been involved in multiple NEHRP
funded fault mapping projects since 2014

* New mapping made publically available through
the UGS’s Quaternary Fault and Fold Database
of Utah and the USGS’s Quaternary Fault and
Fold Database of the United States, and will be
used for updates to the USGS National Sesimic
Hazard Maps (20237?)

* Necessary to help characterize and identify
active faults in rapidly growing and urbanizing
parts of Utah
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Special-Study-Zones

e Special-study-zones are delineated
around each mapped trace

e Assist local governments with urban
planning and developing hazard
ordinances

* Help facilitate understanding of the
hazard by triggering additional
surface faulting studies

* Discussion later today!

ES
S,
N
O
~
wv

UTAH GEOLOGICAL SURVEY Meters

250 500




Wasatch Fault Zone (WFZ) Mapping

 Recently completed (in press) — UGS
Report of Investigation 280 (RI-280)

* |ncorporated (early 2020) into the
Utah Quaternary Fault and Fold
Database w/SSZ’s

e 10 segments mapped at 1:24,000
scale (or better) - 39 7.5 minute
guadrangles

* |dentified 60 potential paleoseismic
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Cache Valley Fault Mapping

* Mapping at 1:10,000 scale where
possible (GIS Data) — PDF Plates at
1:24,000 scale

 Generate special-study-areas

* |ncorporate into the Utah
Quaternary Fault and Fold
Database w/SSZ’s e

e 13-14 7.5 minute quadrangles et
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Cache Valley Fault Mapping

e Refining and identifiying
new fault scarps

 Multiple new possibly
Holocene-age scarps and
potential paleoseismic
sites

b o 75 150 300 5 600 e R Existing Q-Fault Mapping
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Cache Valley Fault Mapping

* Refining and identifiying e ET——

—— New Mapping

new fault scarps

 Multiple new possibly
Holocene-age scarps and
potential paleoseismic
sites
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Oquirrh - Topliff Hills Fault Zones

e 13 7.5 minute quads

* Very fast growing
urban area

 Utah Valley
University -
mapping/trenching -
Topliff Hills (next
talk)
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St. George Regional Airport

C) M 5.0 - 5.9 Earthquake

Southern Utah Fault Mapping

Collaborative with the Arizona Geological
Survey - Phil Peartree

St. George - largest population center in Utah
outside of the Wasatch front, fastest growing
metro area in the U.S. (2000-2006)

Hurricane, Washington, and Sevier/Toroweap
faults

One of the few places in the IMW with
consistent cross-border fault geometry &
attributes (BRPEWG priority)
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Additional Mapping

UGS Mapping Program - Geologic mapping
around the state of Utah, specifically along
the Wasatch Front
— Identifying new faults, integrating with

UGS QFFDB when published

UGS Hazard Mapping - working on other
various quads (Moab, etc.)

e Adam McKean’s talk - new traces in Cedar

Valley
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Paleoseismic Investigation of the Levan and

s

Fayette Se ments D] the

S &%; =2

=R i
= ‘;‘:'Et/
’. / U s G s > G -“
L sc/ence for a changing world
-,

¥t US Geologlcal Survey
- '”:f Chrls DuRoss

e

. ;’z ; P

; Adam H“scock,.; P
Mlke Hyilandl.i-,-_;

 Emily Kleber R < Shannon e

, o4 ﬂmsey zabrusﬁ!v BLM Rich |eld"‘F|eId d’fﬁge;
Tyler Knudsen s &
h d Madsen Family Trust f% ? ; By $-Y;

1 g
- Ric G'rau-; Skyllne Excavators — Todd N|elson ' '{%;i%}

Adam McK‘éé,n-f

b Yuba Resesyolr State Park
Ben Erickson :



- -
Malad ?ity? £

e o

Little paleoseismic data — earthquake Bl e B
timing poorly constrained for LS, non Wihedr B moe S
existent on FS ¢ s

Both segments show evidence of
Holocene rupture

LS/FS segment boundary spillover

Lage discrepancy between geodetic e - W ‘o
and geologic strain rates for southern o R e

Potential role of salt tectonics

Brigham|City,
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» Jackson (1991) - single trench excavated near Skinner Peaks
— Evidence for 2 surface-faulting EQ's
— MRE 1.0 to 1.5 ka, PE prior to 3.1-3.9 ka
— Shallow bedrock encountered in footwall —
— Jackson logged/sampled Deep Creek exposure; MRE 0.9 to 1.1 ka

« Hylland and Machette (2008) — 31 fault-scarp profiles on the LS, 21 profiles on
the FS; collected C-14 samples from Deep Creek exposure as well as faulted
fan alluvium near Skinner Peaks Ages corroborate MRE timing at about 1 ka

* Hiscock and Hylland (2015) — performed detailed fault-trace mapping for the
LS and FS using 0.5-m LIDAR data
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Skinner Peaks
South Site

LS - Skinner Peaks South
Just south of Jackson's
trench

Near southern end of
segment, left-lateral step
over boundary

FS - Hells Kitchen South
South central part of
segment

Several km from range front

QTaf footwall block

geology.utah.gov



Jackson (1991) '_J_
Trench

3-4 meter scarp

Coarse, volcanic
derived fan material

L ocal bedrock:
Tertiary
volcaniclastics/tuffs

UTAH GEOLOGICAL SU

Scarp Height: ’é‘
3iSm —
- =
Vertical Surface B ne TR LR 1650 S
Offsct: 30m — = — — 2
5
- 1640 &=
1 1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100

Horizontal Distance (m)



Skinner Peaks South Site

~» Mapped 5 stratigraphic
units

« Unit 1: Highly
weathered tuffaceous

bedrock exposed in
FW.

» Units 2-5: Sandy fan
gravels, several
prominent buried soil
horizons.

North -
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STRATIGRAPHIC AND STRUCTURAL RELATIONS IN THE SOUTH WALL OF THE SKINNER PEAKS SOUTH TRENCH

Legend:
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us bedrock exposed in bottom of trench. Highly weathered,

eposit with lenses of gravel. Large visible channel cuts

b, more gravel than unit 2, lots of small gravel lenses.
d paleosoil.

b, very similar to unit 3, topped by very well-defined







3 main west-dipping fault traces

e 4.4-m wide zone of tilted, overturned,
and sheared blocks of strata

Mo ¢ ~2.6-m vertical offset across fault zone

B SPS-S-RCOS

35201K3

SPS-S-OSL-02

88:32ka
239+ 4.0ka (max)

‘

us bedrock exposed in bottom of trench. Highly weathered, N ":"'~<'» :

.

2 ameatas
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B

eposit with lenses of gravel. Large visible channel cuts

b, more gravel than unit 2, lots of small gravel lenses.
d paleosoil.

b, very similar to unit 3, topped by very well-defined
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* Mapped 4 stratigraphic units

* Unit 1: post-Bonneville
highstand loess




Scarp Height: 1.5 m
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Hells Kitchen
South Trench Site
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* 1-2 meter scarp
K,

ay, » Carbonate-derived fan
s material

» Tertiary bedrock (North
Horn, Flagstaff, Colton,
Green River formations),
Cretaceous Indianola
North Group
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STRATIGRAPHIC AND STRUCTURAL RELATIONS IN THE SOUTH WALL OF THE HELLS KITCHEN SOUTH TRENCH 2 G v o
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Unit 1 - Post-Bonneville highstand loess deposit at bottom of trench. Fine grained,
massive, clayey silt.

Unit 2 - Mixed loess and alluvial-fan gravels, some small gravel lenses, clayey silt
with gravel

Unit 3 - Alluvial-fan deposits, bottom contact channel cuts into Unit 2, well bedded,
gravely sand

Unit 4 - Youngest alluvial-fan and sheet flood deposits, well bedded, gravely sand

Colluvial Wedge 1 - Deposit associated with event HKS-P1, 50-60 cm thick, sharp bottom contact with



1-2-m wide zone of deformation
2 main west-dipping traces

1 anthithetic and warping of HW
/into main fault

HK3-8-RCO!

Unit 1 - Post-Bonneville highstand loess deposit at bottom of trench. Fine grained,
massive, clayey silt.

Unit 2 - Mixed loess and alluvial-fan gravels, some small gravel lenses, clayey silt
= with gravel

E Unit 3 - Alluvial-fan deposits, bottom contact channel cuts into Unit 2, well bedded,
gravely sand

Unit 4 - Youngest alluvial-fan and sheet flood deposits, well bedded, gravely sand

Colluvial Wedge 1 - Deposit associated with event HKS-P1, 50-60 cm thick, sharp bottom contact with
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STRATIGRAPHIC AND STRUCTURAL RELATIONS IN THE NORTH WALL OF THE HELLS KITCHEN SOUTH TRENCH
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« SPS-12RC, 7 OSL
« HKS - 5RC, 5 OSL

RC samples processed by PaleoResearch Inst., Golden, CO
and analyzed by NOSAMS Lab, Woods Hole, MA

OSL samples processed/analyzed by USGS lab, Denver, CO

—— UTAH GEOLOGICAL SURVEY geology.utah.gov
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Radiocarbon Samples

Luminescence Samples

SPS-S-RCO2 1.6+ 0.1ka
SPS.S-RC04: 39+ 0.1%a
SPS-N-RC09:34+01ka

SPS-5-RCOS:
SPS-S5-RCEa:
SPS-5-RCEL:

SPS-S-0OSL-05: 1.0 2 0.3 ka

SPS-P1: 1.6+ 0.1 ka
SPS-S-RCO7D: 1.6 £ 0.7 ka SPS-N-RC100. 1
SPS.S.RCO72:08+01ka SPS-N-RC10a: 2

Im

Gravely aiuvial fan SPS-S-05L.04: 204205k

SPS-S-05L-03: 25+ 0.8 ka

SPS.S.RCO3 34+ 01ka SPS-S-RCOS: 3.6+ 0.1 ka

SPS-5-05L-01: 163+ 24 ka
SPS-S-0SL-02: 2.9+ 4.0 ks

EXPLANATION
Radiocarbon (bulk soil)

Luminescence

4 Stangraphic unt
SPS-P1

. Faultscarp dertred

UTAH
cotluvium

DNR
-G

Palecearthquake
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Radiocarbon Samples

Luminescence Samples

HKS-P1: 5.4+ 0.1 ka

- Bedded alluvial fan A (0) HKS-S-RC09: 5.9 + 0.1 ka

o ol .0

Alluvial fan with channel cuts o

Mixed loess and alluvial fan gravel (o)

HKS-P2:11.2 + 1.4 ka

Post-Bonneville loess o

Bedded alluvial fan HKS-S-RC03: 54+ 0.2ka  HKS-S-RC01: 0.2 +0.2ka

4A (NS  HKS-S-RC04:54+0.1ka  HKS-S-RC02: 5.7+ 0.1 ka

HKS-S-OSL-02: 3.4 + 0.6 ka
HKS-S-OSL-03: 11.6 + 2.3 ka

HKS-S-OSL-01: 11.3 + 1.2 ka

HKS-S-OSL-04: 4.6 + 0.9 ka

HKS-S-OSL-05: 12.7 + 1.6 ka

EXPLANATION Samples:
4A —
Unit —— 4  Stratigraphic unit A

Fault-scarp-derived (@)
Paleoearthquake —— HKS-P1 colluvium

Radiocarbon (bulk soil)
Radiocarbon (macrocharcoal)

Luminescence

F X
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* LS single-event scarp
— MRE 1.6 £ 0.1 ka; PE >16.3 £ 2.4 ka
— Recurrence 14.7 = 2.5 ky
— Slip Rate 0.20-0.28 mm/yr
* FS HKS single-event scarp; secondary evidence for scarp forming PE
— MRES5.4£0.1ka; PE11.2 1.4 ka
— Recurrence 4.6 to 7.3 ky

— Slip Rate 0.17-0.33 mm/yr
« Trenched scarps likely Basin and Range extension rather than salt tectonics

— Moab area faults (Guerrero and others, 2015)
— High slip rates, short recurrence times

— High per event displacements for fault length

' UTAH GEOLOGICAL SURVEY geology.utah.gov
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Adam McKean, Adam Hiscock, ChristianHardwick, and Will Hurlbut
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Outline

* Review evidence for East Cedar
Valley fault zone and western fault

* Introduce Cedar Valley Lake
* Review new fault strands

e Conclusions




New Gravity Data

Goshen Pass Quadrangle
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Groundwater
Evidence
For Faulting

North-south trending normal fault on the
eastern margin of the valley is a conduit for
fault-parallel groundwater flow and a

barrier to groundwater flow across the fault.

Jordan and Sabbah, 2012
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Groundwater Evidence
For Faulting

Warm groundwater found along concealed
East Cedar Valley fault zone, likely
circulating up from depth along the fault
damage zone.

“The area east of Eagle Mountain town
center has the most elevated groundwater
temperature, having four wells less than 540
feet (165 m) deep in which water
temperatures range from 23.5 t0 29.1°C
(74.3-84.4°F).”

Jordan and Sabbah, 2012
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5140 ft. (1567 m) Lake Bonneville
Highstand

Cedar Valley

Bonneville Flood
e 4985 ft. (1519 m) Cedar Valley

North Threshold (NT) (Cedar
Pass)

* 4950 ft. (1509 m) Cedar Valley
South Threshold (ST) (near
Goshen Pass)

1500

Adjusted altitude (m)

e 4940 ft. (1506 m) Cedar Valley
South Threshold (ST) (near
Goshen Pass)

4900 ft. (1494 m) Cedar Valley
Lake (CV)

<= 4775 ft. (1455 m) Provo Shoreline
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Goshen Pass quadrangle Soldiers Pass quadrangle
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Potentially similar to the surface rupture
caused by the 1934 Hansel Valley Earthquake?
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Conclusions

* Another example of lidar’s value for fault mapping
and for identifying pre-historic small offset
earthquake surface fault ruptures

East Cedar Valley fault zone

Northern
 Multiple lines of evidence for a concealed fault

Central
e Confirmation of scarps in pre-Bonneville deposits

South

* New mapping shows scarps in both pre-Bonneville -

and Bonneville age deposits
Queried intrabasin fault
* New mapping shows a scarp in both Bonneville
age deposits and younger eolian deposits
Western fault
e Suspected concealed fault confirmed by gravity
data, likely pre-Quaternary structure
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A Field Test of Portable OSL—Using 345
Samples from the Deep Creek Colluvial
Wedge Exposure to Explore Earthquake-
Timing Uncertainty

Christopher DuRoss, Harrison Gray, Ryan Gold, Sylvia Nicovich, Shannon
Mahan, Michael Hylland, Emily Kleber, Adam Hiscock, and Greg McDonald

v
Utah Quaternary Fault Parameters Working Group, February 2020
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Motivation

» Accurate models of earthquake probability and
hazard rely on high-quality paleoseismic data
(e.g., earthquake timing, recurrence, slip rate).

»However, these records can be spatially/temporally

incomplete. For example, based on few

paleoseismic sites, surface-rupturing earthquakes,

and/or constraining ages.

Working Group on
Utah Earthquake
Probabilities (2016)
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Principal Questions

We set out to test several aspects of normal fault colluvial sedimentation and
surface burial using geochronology:

1. Are we able to separate the signal of colluvial-wedge progradation over a
surface soil from the noise of age scatter?

2. Does soil age from charcoal positively correlate with depth within a soil A
horizon?

3. How does number of samples (and their stratigraphic context) affect
earthquake-timing uncertainty?



Optically Stimulated Luminescence

»OSL: Date the last time e
|} N\

sediment (quartz grains)
was exposed to light
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Deep
Creek

»Clear
expression of
Holocene
surface faulting

»Holocene
alluvial-fan
gravel and
Wasatch fault
exposed
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Previous Work

» A faulted soil A horizon buried by colluvium suggests a single

surface-faulting earthquake
v’ Vertical displacement: 1.8 m
<~1000 yr

v Timing:

Geochronology: .
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CW — W: Colluvial wedge wash facies
“.CW — D: Colluvial wedge debris facies
A Soil A horizon
AF: Alluvial-fan gravel
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v ~345 samples

for portable
OSL

v’ 6 full OSL
samples

»Radiocarbon
(charcoal
separation) ;
v/ 10 samples of &&
buried A :
horizon

v/ 10 samples of
colluvial
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From here...

» Process full OSL and *4C ages

» Calculate earthquake timing
using multiple combinations
of ages

» Explore implications for:

1. the sampling and dating of
paleoseismic exposures,

2. the use of portable OSL in the
field, and

3. how sample quantity and
stratigraphic context influence
estimates of earthquake-
timing uncertainty.
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Topliff Hill Paleoseismic Site:

Six Events since 69.3 ka on the Topliff Hills Fault
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Topliff Hills Fault

- 25 km-long, west-
dipping fault

. Linked to South
Oquirrh Mountains

fault (SOMF)?

. Utah’'s second

longest Fault system,

>250 km length

« Within 40 km of the
Wasatch front
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Profiling:
Blue lines
_~ = Shorelines

Green lines
~~ = Scarps

Scarp Height Profiling

Net Vertical Displacement on Scarps
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Trench 1

Trench 2




Faulting in Trench 2 is expressed along three fault traces across a
two-meter wide zone.

Cumulative displacement is 0.5 +/ 0.05 meters.
The fault zone is overlain by several younger fan deposits.

This event evidence contributes at least part of the two-meter dis-
placement of the Bonneville highstand.

Trench 2 - South Wall (T2S)

Explanation

) Bulk Soil Sample
¢ C14 Sample

" Fault

0 2m
I

Soil A-Horizon
Boulder

Clast-Supported
Matrix-Supported



Correlative Fan Units? Topliff Hill Site = Trench 1

Footwall
Event2 15 4984/ 105k4

Footwall
Event 1

Explanation

Modern Soil A-horizon

Most Recenent Event (MRE-6)
Penultimate Event (PE-5)
Anti-Penultimate Event (APE-4)

PAPE Soil

Pre-Anti-Penultimate Event (PAPE-3)  * €14 Sample

Footwall Wedge (FWE-2) - Bulk Soil Sample

Matrix-Supported Fan Units ® 05 sample

Clast-Supported Fan Units / Fault Type 1
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Profiling:

e S Shoreline Profiling

_~ = Shorelines

Shoreline Profiling

Green lines
~~ = Scarps
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" bench elevation
Horizontal distance (m)
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Timing of Ruptures
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OSL Sampling

Optically Stimulated Luminescence (OSL) is
used to date the last time quartz sediment
was exposed to light. The collected
sediments are exposed to blue-green light
and trapped electrons are released and
emit a photon of light. The time is
calculated by dividing the equivalent dose
(natural luminescence of a sample) by the
environmental dose rate.

Age (kyr) = Equivalent Dose (Gy) / Dose
Rate (Gy/kyr)

More information available at usu.edu/geo/luminlab
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2
ionizing energy is
stored in crystal lattice
and builds up over time
following burial 40K

8Rb 235 238

3 Core recovered
by geologists:

6 Sample aliquots are heated and optically stimulated
to determine the natural OSL signal, The aliquot is
then irradiated, heated and stimulated several more
times with increasing dose, Dose is plotted versus
OSL to determine the equivalent dose necessary to
produce the natural OSL signal. The equivalent dose
(De) is then divided by the environmental dose rate to
determine age.

4

34 Natural OSL signal

OSL (arbitrary units)
- N

o

0 10 20 30 40
Beta () dose (Gy)

1
1
: De /dose rate = AGE
: .
50

OSL sample
extracted, processed
and analyzed under

darkroom conditions

5 sediment analyzed
for environmental
dose rate

Mallinson, D., 2008. A Brief Description of Optically Stimulated Luminescence

Dating, http://core.ecu.edu/geology/mallinsond/OSL



USGS Earthquake Geology
Intermountain West (IMW)

Ryan Gold, USGS Intermountain West Regional Coordinator
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USGS National Seismic Hazard Model 2023

* Factored into building codes
and impacts billions of
dollars in construction

* Impacts insurance rates

e Guide for emergency
planning

e 2023 update process
underway. Current focus
(2020) on source fault
model. More details
tomorrow.

Two-percent probability of exceedance in 50 years map of peak ground acceleration




USGS - Ongoing Research and Collaboration in IMW

* Wasatch Front (UGS, UVU) v—*—
» Teton Range (BoR, USFS, '

WGS, Univ. of ID, BGC) S RN vy
* Las Vegas (NBMG, UNR, - NE'C'a“f o 22

UNLV) D’ , 37 i" Wasatch
* NE California (PG&E, Univ. ’ Reno/Tahoe / P

of Oregon) e

idgecres 2

* Walker Lane (NBMG, UNR) .' Eg l:lLatS b 1 Y
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* Ridgecrest (CGS, SoCal,
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USGS External Grants Program, FY2019 (last year)

* $4.3M competitive

research grants funded 15%

: CEUS
e 212 Proposals received, o

66 funded (31% success & EEW
rate)

* IMW funded 9
proposals ($519k)

EP/IS 12%

ECEUS mEEW mEP/IS ESI mIMW m®mNAT mNC mPNA mSC



Intermountain West External Grants funding
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IMW External Grants 2020 (in progress)

* IMW received 17 proposals (down
from 23 proposals in FY19).

 Total request S750k. Best case
scenario: S433k will be funded.

* Average proposal in fund/fund if
possible category: $43.3k (FY20),
down from ~$57.7k in FY19.

* FY20 Federal budget passed (Dec
2019).

Funding by state
NV: 1 grant funded; 3 in “hold” status
UT: 0.5 grant funded
ID: 1 grant in “hold” status

AZ: 0.5 grant funded grant in “hold”
status

MT: 1 grant in “hold” status

CO: 1 grant funded

IMW general: 1 grant funded
Meetings/Workshops: 1 grant funded



External Grants — guidance going forward (FY21)

* Look for program announcement in March 2020.
* Proposal dues in “May 2020.

* Panel meets in August — please contact me ( ) if you'd
be interested in serving and won’t have conflict of interest (e.g.,
submitting a proposal this year or from an institution submitting
proposals).

e USGS letters of commitment.
* Panels scrutinize history of publishing USGS-funded research.


mailto:rgold@usgs.gov

/Updates to Utah geology input data

for 2023 USGS National Seismic
. Hazard Model

4

Alex Hatem, Ryan Gold, Rich Briggs, Ned Field, Peter Powers, Camille Collett
USGS-Golden, CO



Motivation

» USGS plans to release an update to
U.S. National Seismic Hazard
Model (NSHM) in 2023

« Geologic inputs have not been
updated for NSHM since 2014,
despite a map release in 2018

 Poorly organized geologic data for

Population density

inputs to deformation model

Petersen et al., 2019



Goals

* Provide NSHM group with most
up-to-date knowledge of
earthquake geology across the U.S.

« Organize geologic data into a
useable, shareable format

 Create a database of what is known
along active faults nationwide

Population density
(per km)
| 25-250

Petersen et al., 2019



Our objectives

1. Bring the rest of the country up A /\ /\

to California (UCERF3) standard
2. Add recent studies to dataset
3. Densify fault network & reassess L
fault geometries




UCERF3 & WGUEP 2016 headers

Quality rating (QR1: offset feature, QR2: dating, QR3: overall)

Recency USGS Slip UCERF2 UCERF3 U‘:::s
ection R
UCERF3 Fault Section ID# Style Dip Rake of . -« ol B e Estimate UCERF3 assigned rate comments a4aq pporte Preferred Maximum Minimum
Activity Category Rate Bounds Rate R R R Component Offset (m) offset (m) Offset (m) Offset Feature
(mefyr)  (mmfyr) - (mmfyr) ) 1 2 3  (offset)
| Site-specific Data
Maxi Mini Slip rate ti
ucznrsah Reported - g e Preferred S::::::‘ St::‘:gn; Preferred Maximum  Minimum Dating Me Ipf::me me
Site Name tonghide | tathide | ™ | smomamisk | T | componast | SipRaw | ShpRate StartAge (ka) K K EndAge  EndAge  EndAge k
Strike Rate (ka) (ka) category (ka)
parallel, RN (shprate)  (mm/yr)  (mm/yr)
mm/yr)
Table 4.6-1. Estimated surface-faulting earthquakes < 18 ka for the WGUEP Wasatch Front region.
WASATCH FAULT ZONE
: Estimated
Quant.lt_\,/ WGUEP WGUER . Documented Number
Segment Most Recent Quality : Recurrence | Displacement
S . T Slip Rate Paleoearthquakes | Earthquakes (V) Comments
Name Deformation | Paleoseismic Interval (m)
5 (mm/yr) <18 ka <18 ka
Data“ (kyr) -
min/pref/max




2014 National Seismic Hazard Maps - Source Parameters

NSHM 2014 =

Example: East Cache fault zone

No metadata fields for NSHM
“hazfaults” included in source
parameter page

Some geologic info
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Our hmeline

‘May 29| December 31,2020

l l l l l I NSHM deadline for fault

. - . p . . arameter database for
(Contact regional partners| [ present preliminary | [ New fault parameter Invite regional leaders to [ Prepare database for } fncl?; sToriin 20 0 Zg o d‘; /
faultparameter | contributions are due! Sl N ekl inigalieiease

database at SSA >/ additions to fault parameter
database

Incorporate new geologic data to
fault parameter database; update
fault source model

parameter database using

[ Create nation-wide fault |
| UCERF3 standard

* Time is tight, but we will do what we can

 This will hopefully become a regularly updated
database, so what is not included this time will be
considered in future iterations



What data do we need to achieve
these goals?

 Geologic slip rates
 Paleoearthquake data

» Slip per event estimates
 Fault geometries

....and metadata!



How can you contribute/get involved?

» Microsoft form is accessible online for all agencies

* Flexibility in how to get your data to me
 form is not the only vehicle!



General fault info

"Paleo-Sites" data contributions

Please use this form to send data 1o Alex Hatem, who is leading the compllation and review these submissions
for use In the National Seismic Hazard Map geologic source parameters. By filing out this form, you understand
that data will be used at the discretion of database compllers and final modeling decsions, and agree t©
communicate with Alex Hatem (Mendenhall post-doc In Golden USGS office/GHSC) If questions with your data
arise. You can reach Alex by emall at ghatemidusgs.00y or by phone at 303-273-8474.

THE DEADLINE TO CONTRIBUTE NEW DATA USING THIS FORM IS MAY 29, 2020,

BE SURE TO CLICK SUBMIT AT THE END OF LAST PAGE FOR ALEX TO RECEIVE YOUR RESPONSES!

Your aame *

Erour your e

a
Fault name, ncuding segment ¥ appicabie *

r, Gty jomtad)

Lreey vour oreeesy

Is thes faclt aiready excuded as an EQ source in Haafaults?

Vw2 g OF MG Py BERSLANR LK
Gewverpte MAas IIQ M heve.

I not, s ths faukt v the Qfaults Satabase?

Vw2 e OF Qs teve ACRS LRSS A LY
Do vou? Aty AN e ey NEIEE /R SR AT O DRI

el

TS Uk 5 2 hartaett

Does this fault require updated geometry in the fault source database compared to the
Hazfauls 2018 source data?

U s, plesse make such changes withe the sonkflow outined by Paler Fomers (Qmaonersditsos oov).

Not sure

Site name, If applicable

Enter your anywer

Site latitude and longitude (decimal degrees preferred), if apphcable

Entor your answr



Geologic data fields within form

» Slip rates

 Time interval, dating method, uncertainty in measurements, how many
EQ intervals included in each rate, ratings, etc...

 Paleoearthquakes
« Oxcal input files, number of events, depositional hiatuses, ratings, etc...

» Slip per event
« Show your work!



Citation information

« Willing to accept anything
for internal review, but
unpublished/unreviewed
work may not be included
in the final database

« Our preference is peer-
reviewed articles

« Because USGS is a public
entity, all data should be
available to the public

Section 5

Citation information

This is for my reference so that I may dive a little deeper into your data and pull out more metadata as needed.

Are the data you wish to submit published in a peer-reviewed journal?

Yes

No

If yes, can you please provide a quick reference? (i.e., Brownstein, Tucker and Weiss, 2019,
BSSA)

If no, how are these data preserved (i.e., abstract, field trip guide, etc)? What is the *full*
citation for the work?

If possible, please email me a digital/scanned copy of the "gray" literature where I can find the data you
entered in this form (ahatem@usgs.gov)

Enter your answer



Overall interpretation

 Attempt to capture the
nuance in geologic data
that may not be well-

Optional--your opinion!

Final thoughts on your data

expressed otherwise in

the form What do you honestly think of the data you are about to submit? How should the model use
. . . these data as input? (for example: do you think they deserve low, equal, high weight?) Are

queSthIlS / publlcatlon OIl there caveats that I should consider but have not yet been made clear in this form?

this Site Enter your answer



Importance of
database science

« Apparent sampling bias of
slip rates in California as
sampled by Dawson and
Weldon, 2013 for UCERF3

 Does this bias matter for
hazard calculations?

* How does hazard change
when using similarly aged

— Conduct sensitivity analyses

data density
low I | high

750-2600

130-750

11-130

1-11

maximum age of slip rate range (kyr)

<0.2 0.2-1 1-5 >5
slip rate category (mm/yr)



Importance of site-specific data

 Capture changes in geologic behavior along faults
measured as points on a line

- Example for why this matters:
Potential to highlight non-geometric segmentation
(could be expressed as slip rate gradients along strike)



State of Utah data



USGS Qfaults:

thin black lines :
USGS NSHM & .
faults (‘hazfaults’): N , T WGEUP modeled
thick blue lines e faults incl. as
USGS ' ~ Qfaults:
‘site i tioati ;. orange highlights
SItE_INVEStZAtons . Faults of concern
white dots " (Lund, 2005;
}JSGS re}ne‘?’ed . WGUEP 2016):
paleo_sites’ pink lines
aqua stars
USGS ‘paleo_sites’
ID’ed/to be
reviewed:

yellow diamonds




Room for
Improvement

* Focus on improving
USGS NSHM faults to
match WGUEP
modelled faults

» Utilize state knowledge
in national model




Contributions are
welcome from now
until May 29, 2020!

Alex Hatem
ahatem@usgs.gov

303-273-8474
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