

UTAH QUATERNARY FAULT PARAMETERS WORKING GROUP

Photo Courtesy of Ogden Standard Examiner

Cache Valley earthquake, 1962

Tuesday, February 9, 2010

UQFPWG

- One of three standing committees created to help set and coordinate Utah's earthquake-hazard research agenda.
- Reviews ongoing paleoseismic research in Utah, and updates the Utah consensus slip-rate and recurrence-interval database as necessary.
- Provides advice/insight regarding technical issues related to fault behavior in Utah & the Basin and Range Province.
- Identifies and prioritizes Utah Quaternary faults for future study.

2009 MEETING REVIEW

Presentations on paleoseismic work completed or in progress

- Nephi segment, Spring Lake trenching update UVU
- Weber segment, Rice Creek trenching results UGS
- Brigham City segment, trenching update USGS
- Geologic evidence for high-stress-drop earthquakes in the Rocky Mountains – USGS
- Results of tomographic imaging of the proposed Power Line trench site, Washington fault zone – UUGG
- Evaluating the seismic potential of the Joes Valley fault zone USBR
- New Lidar data for the southern Wasatch Front UUGG
- Update on contemporary deformation and stress field of the Wasatch Front – UUGG

DNR

Technical discussion items

- Issues regarding the generalization of the surface trace of the Salt Lake City segment of the Wasatch fault zone on the National Seismic Hazard Maps
- West Valley fault zone, Part 1 The "WVFZ Problem" and why it is an issue for the National Seismic Hazard Maps
- West Valley fault zone, Part 2 Other active, graben-producing fault pairs in Utah/Basin and Range Province and issues they raise regarding the National Seismic Hazard Maps

2010 FAULT PRIORITY LIST

2010 Highest Priority Faults/Fault Segments For Study							
Fault/Fault Section	Priority	Investigation Status	Investigating Institution				
Northern Salt Lake City segment WFZ	1	No activity					
West Valley fault zone	2	No activity					
Penultimate event Provo segment WFZ	3	Trench site reconnaissance	UGS				
Washington fault zone	4	Reconnaissance study	UGS				
Rozelle section, Great Salt Lake fault	5	No activity					
Other Priority Faults/Fault Segments Requiring Further Study							
Fault/Fault Section	Original UQFPWG Priority	Investigation Status	Investigating Institution				
Cedar City-Parowan monocline/ Paragonah fault	10	No activity					
Enoch graben	11	No activity					
Clarkston fault	13	No activity					
Gunnison fault	17	No activity					
Scipio Valley faults	18	No activity					
Faults beneath Bear Lake	19	No activity					
Eastern Bear Lake fault	20	No activity					
Carrington fault (Great Salt lake)	2007	No activity					
Bear River fault zone	2007	Scarp reconnaissance	USGS				
Faults/Fault Segment Studies Complete or Ongoing							
Fault/Fault Section	Original UQFPWG Priority	Investigation Status	Investigating Institution				
Nephi segment WFZ	1	UGS Special Study 124/USGS Map 2966/UVU study ongoing	UGS/USGS/UVU				
Weber segment WFZ – most recent event	3	On going	UGS/USGS				
Weber segment WFZ – multiple events	4	On going	UGS/USGS				
Utah Lake faults and folds	5	Ongoing	UUGG				
Great Salt Lake fault zone	6	Ongoing	UUGG				
Collinston and Clarkston Mountain segments WFZ	7	UGS Special Study 121	UGS				
Sevier/Toroweap fault	8	UGS Special Study 122	UGS				
East Cache fault zone	12	Ongoing	USU				
Wasatch Range back-valley faults	14	Ongoing	USBR				
Hurricane fault zone	15	UGS Special Study 119	UGS				
Levan segment WFZ	16	UGS Map 229	UGS				
Brigham City segment WFZ – most recent event	2007	Ongoing	UGS/USGS				

AGENDA

QUATERNARY FAULT PARAMETERS WORKING GROUP Tuesday, February 9, 2010 Utah Department of Natural Resources Building, Room 2000 (2nd floor) 1594 West North Temple, Salt Lake City

- 7:00 Continental breakfast
- 7:30 Introduction, overview of meeting, review of last year's activities; Bill Lund, UGS
- 8:00 Technical presentations of work completed or in progress
- 8:00 Brigham City segment, trenching update; Tony Crone/Steve Personius, USGS
 - 8:20 Washington fault northern segment, trenching update; Bill Lund/Tyler Knudsen, UGS
 - 8:40 Washington fault Southern Beltway trenching investigation; Dave Simon, Simon Bymaster, Inc.
 - 9:00 U.S. Bureau of Reclamation Utah fault studies update; Larry Anderson, USBR
 - 9:20 Bear River fault zone, trenching update; Suzanne Hecker, USGS
 - 9:40 East Cache fault zone, trenching update; Jim Evans, USU
- 10:00 Break

10:20 Technical presentations of work completed or in progress

10:20 – Salt Lake City segment/West Valley fault zone investigation, progress report; Mike Hylland, UGS 10:40 – Working Group on Utah Earthquake Probabilities; Ivan Wong, URS/Bill Lund, UGS

- 11:00Technical discussion itemRevised Weber segment slip-rate and recurrence-interval estimates; Chris DuRoss, UGS/Steve Personius, USGS
- 12:00 Lunch

AGENDA

(Continued)

- 1:00Technical discussion itemRevised Weber segment slip-rate and recurrence-interval estimates discussion
- 1:30 UQFPWG 2011 Quaternary fault study priorities
- 2:30 Adjourn

Update of Brigham City Segment Trenching Investigations at Pearsons, Kotter, and Hansons Canyons 2010 Utah Quaternary Fault Parameters Working Group

Chris DuRoss Stephen Personius Greg McDonald Anthony Crone Richard Briggs

Kotter Canyon trench

Introduction

Purpose:

- Determine elapsed time since most recent earthquake (MRE).
- Improve constraints on times, displacements, and lengths of MRE surface rupture.
- Refine correlation of MRE at paleoseismic study sites along the Brigham City Segment (BCS).
- Evaluate segmentation of northern Wasatch fault zone, specifically between the Weber segment (WS) and the BCS.
 segments

Brigham City Segment

About 37 km long

 From near Honeyville (Jim May Canyon) on north to Pleasant View salient on south

Previous paleoseismic studies

- Bowden Canyon (center)
- Box Elder Canyon (center)
- Pole Patch (on subsidiary fault at south end in segment boundary)

Why study the Brigham City segment?

- **1. Elapsed time since the MRE:**
 - UQFPWG Parameters for BCS
 - ◆ MRE: 2100±800 cal yr B.P.
 - Slip Rate: 0.6–1.4–4.5 mm/yr (max. range)
 - Recurrence Interval: 1300±400 yr (based on last five events)
 500–1300–2800 (max. range)
 - Does BCS have highest likelihood of next surface-rupturing earthquake?

2. Segmentation:

- Surficial mapping (Personius, 1991; DuRoss et al., 2010) indicates very young scarp at Pearsons Canyon near southern end of segment
- New results from northern Weber segment indicate surface ruptures at about 500-600 cal yr BP and about 1100-1300 cal yr BP
- Did younger Weber surface ruptures extend into southern BCS?

Pearsons North Trench Site

- Approximately 1- to 3-m-high scarp
- Small antithetic scarp <1 m high
- Formed on Holocene alluvial fan below Bonneville shoreline

Pearsons North Trench Site

- Diverse ranges of radiocarbon ages indicate abundant reworking of charcoal in deposits
- Bounding ages from scarp colluvium and debris-flow deposits above and buried soil on top of fan suggest MRE occurred about 1.1-1.3 ka

Pearsons North Trench Site

- Composite OxCal (v. 4.1) model of selected radiocarbon ages from Pearsons Canyon North trench site.
- After excluding obvious outliers, two minimum ages and one maximum age tightly constrain earthquake PC1 to 1.2-1.3 ka.

Hansen and Kotter Canyons Trench Sites

Sites are on northern part of BCS

Kotter Canyon Trench Site

- Diverse ranges of radiocarbon ages indicate abundant reworking of charcoal in deposits
- Stratigraphic evidence indicates two faulting events with preferred ages of 2.2-2.7 ka (KC1) and 3.2-3.8 ka (KC2).
- The two Kotter Canyon events correlate well with events Z (2.1 ± 0.8 ka) and Y (3.45 ± 0.3 ka) at Box Elder delta (ages from UQFPWG, 2005)

No soil on fan alluvium

Kotter Canyon Trench Site

- OxCal (v. 4.1) model of selected radiocarbon ages from Kotter Canyon trench site.
- After excluding obvious outliers, minimum and maximum ages constrain earthquake KC1 to 2.2-2.7 ka and earthquake KC2 to 3.2-3.8 ka

Hansen Canyon Trench Site

- Diverse ranges of radiocarbon ages indicate abundant reworking of charcoal in deposits
- One colluvial wedge on fan deposits
- Lack of minimum age constraints in scarp colluvium result in broad event-age estimate
- The Hansen Canyon MRE may correlate with events Z (2.1 ± 0.8 ka) or Y (3.45 ± 0.3 ka) at Box Elder delta (ages from UQFPWG, 2005)

New OxCal Model for Box Elder Delta

- Preliminary OxCal (v. 4.1) model, using data from Bowden Canyon (Personius, 1991) and Box Elder Delta site (McCalpin et al., 2002); program treats all constraints in systematic manner.
- "Legacy" soil age calibrations use
 "delta-R" of 200 ± 200 yr to
 account for mean residence time
 (MRT) of soil organic matter
- Timing estimates of most earthquakes are broad, primarily from lack of closely-limiting minimum ages and reliance on TL and MRT ¹⁴C dating.

Box Elder Delta OxCal model

- Model of last three BC segment earthquakes using age constraints from Personius (1991) and McCalpin et al., 2002).
- Modeled event ages have broad uncertainties, primarily because of lack of closelylimiting minimum ages

Box Elder Delta PDF plot

•

Plot of OxCalmodeled ages (PDF's) of last 4 surfacerupturing earthquakes on the BC segment in vicinity of Brigham City, using data from **Bowden Canyon** (Personius, 1991) and **Box Elder delta** (McCalpin et al., 2002), and MRT correction of 200 \pm 200 years

Results from 2008 trenching

- PDFs from Kotter Canyon (KC1, KC2) overlap with but are more narrowly defined and older than their assumed correlative events (BCZ, BCY) at Box Elder Delta
- Age of Pearsons Canyon MRE (PC1) is narrowly defined and younger than MRE elsewhere on segment

Combined OxCal results

- If the assumption of event correlation is correct (KC1=BCZ; KC2=BCY), then a combined OxCal model should yield improved age estimates
- Combined BCS model (light red PDFs) yields older event-age estimates for last 4 events and narrower age ranges
- Pearsons Canyon MRE (PC1) is younger than elsewhere on the BCS

Correlation of Pearsons event

- Event PC1 PDF does not overlap with MRE PDF (BCZ) from Brigham City area
- Event PC1 PDF does overlap with event RC2 PDF from Rice Ck site on northern Weber segment
- We conclude earthquake RC2 ruptured into southern Brigham City segment at least as far north as our Pearsons Canyon North trench site

Summary of BC segment Paleoseismology

Earthquake Timing

- Timing of last four events near Brigham City (2 sigma):
- BCZ: 1690-2320 cal yr
- BCY: 3250-3660 cal yr
- BCX: 3730-4930 cal yr
- BCW: 4830-6220 cal yr
- PC1: 1190-1280 cal yr (Weber segment RC2)

Summary of BC segment Paleoseismology

Earthquake Recurrence

- Recurrence time (mean and 1 sigma):
- EU-EV: 2580 ± 1360 yr EV-EW: 1460 ± 750 yr EY-EZ: 1370 ± 200 yr EW-EX: 1220 ± 460 yr EX-EY: 900 ± 320 yr
- MRE elapse time: 2060 ± 170 yr (UQFPWG: 2100 ± 800)
- Mean (last 4 intervals): 1230 ± 520 yr; COV=0.42
- Mean (last 5 intervals): 1500 ± 940 yr; COV=0.63 (UQFPWG: 1,300 ± 400)
- Mean (all 7 intervals): 2200 ± 2000 yr; COV=0.91

Preliminary Results

			Brigham City Segment		Weber segment
<u>Event</u>	<u>UQFPWG</u>	<u>BC Comb.</u> <u>OxCal</u>	Kotter Cyn.	<u>Pearsons N Cyn.</u>	Rice Creek
1	2.1 ± 0.8 ka	1.7-2.3 ka	2.2-2.7 ka	1.2-1.3 ka	0.5-0.6 ka
2	3.5 ± 0.3 ka	3.3-3.7 ka	3.3-3.8 ka	_	0.7-1.4 ka
3	4.7 ± 0.5 ka	3.7-4.9 ka	—		1.8-3.7 ka
4	6.0 ± 0.3 ka	4.8-6.2 ka			3.7-5.4 ka
5	7.5 ±1.0 ka	6.0-8.4 ka			5.5-7.5 ka
6	8.5 ±1.5 ka	7.1-12.3 ka			>7.8-9.9 ka
7	>13.6, <17.0 ka	14.7-17.1 ka			
8		16.9-17.9 ka			
M	SGS				

Brigham City Segment Conclusions

- 2008 trenching at Kotter Canyon confirms ~2 ka MRE 4 km north of Box Elder Delta
- Our OxCal analysis of all BCS paleoseismic data indicates:
- At least 8 paleoearthquakes on the BCS post-date the Bonneville Flood (17.2-18.4 ka)
- MRE near Brigham City: 1,690-2,320 cal yr BP (2 sigma)
- MRE elapse time: 2,060±170 yr (1 sigma) (from present)
- Mean of last 5 recurrence intervals: 1,500±940 yr (1 sigma)
- Mean of last 4 recurrence intervals: 1,230±520 yr (1 sigma)
- MRE at Pearsons Canyon: 1,190-1,280 cal yr BP; correlates with event RC2 at Rice Creek on Weber segment, indicating at least one Holocene earthquake ruptured through the southern segment boundary
- OxCal analysis of "legacy" and new chronological data are useful for site-to-site comparisons, refining event ages, and calculating robust recurrence-interval values and uncertainties

Remaining Issues on Brigham City Segment

- Location of northern termination of Weber RC2 (PC1) rupture between Pearsons Canyon and Box Elder delta
- Timing of Holocene ruptures near northern end of BC segment.
- Evidence for a submarine event "S" at Box Elder Delta
- Explanations for large apparent gap (6.4 \pm 1.5 ky) between events "U" and "T" at Box Elder delta—missing events?
- MRT correction values for legacy soil ages

WASHINGTON FAULT PALEOSEISMIC INVESTIGATION

William Lund and Tyler Knudsen Utah Geological Survey

www.geology.utah.gov

REGIONAL FAULT RELATIONS

www.geology.utah.gov

THREE FAULT SECTIONS

- Sullivan Draw
 - Mokaac
 - Northern

NORTHERN SECTION TRENDS INTO ST. GEORGE METROPOLITAN AREA

ST. GEORGE METRO URBANIZATION PLACES EVER MORE INFRASTRUCTURE AT RISK FROM A WASHINGTON FAULT EARTHQUAKE

UGS/AZGS TRENCH SITE IS ON THE ARIZONA STRIP THREE MILES SOUTH OF THE UTAH/ARIZONA BORDER

www.geology.utah.gov

DUTCHMAN DRAW AREA GEOLOGIC MAP

DUTCHMAN DRAW FAULT SCARP

UTAH GEOLOGICAL SURVEY

TRENCH SITE GEOLOGIC AND TOPOGRAPHIC MAP

SCARP PROFILE

www.geology.utah.gov

UTAH GEOLOGICAL SURVEY

TRENCHING RESULTS

UTAH GEOLOGICAL SURVEY

NORTH TRENCH FAULT ZONE (south wall)

SOUTH TRENCH (south wall)

SUMMARY OF TRENCHING RESULTS

- Two Holocene paleoearthquakes
 PE1 < 1530-1280 cal yr B.P. (shortly after?)</p>
 PE2 > 6900-6200 cal yr B.P. (shortly before?)
- No other events < 30.75 + 2.21 ka (erosion?)

Washington Fault Study

UDOT Project

Principal Investigators:

David Black (Rosenberg Associates) Peter Rowley (Geologic Mapping Inc.) David Simon (Simon Bymaster Inc.) Jon Hanson (Rosenberg Associates) William Lund (Utah Geological Survey) Four (4) lane divided highway with grade separated interchanges. 27 miles long from Exit 2 on I-15 to SR-9 in Hurricane.

Provides a critical transportation link for the St. George metropolitan

Project consists of six (6) phases.

GEOLOGIC HAZARDS AND ADVERSE CONSTRUCTION CONDITIONS ST. GEORGE-HURRICANE METROPOLITAN AREA, WASHINGTON COUNTY, UTAH

by William R. Lund, Tyler R. Knudsen, Garrett S. Vice, and Lucas M. Shaw

SB/

Geologic Hazards

SBI

Purpose of Investigation

 Evaluate surface-fault-rupture-hazards for Phase III of the Washington Fault Zone

 Prevent the siting and construction of elevated structures astride a Holocene-age fault

Assist with ongoing analyses

Task I: Research available literature, review aerial photographs, lineament analysis, detailed geologic mapping. Products include a detailed geologic map and a proposed Task II scope of work.

Task II: Detailed subsurface fault investigation to evaluate the location, age of latest movement, displacement per event, and recurrence interval for the Washington fault.

Task III: Present findings and recommendations in a written report.

Task I

Geologic Mapping

Peter Rowley Geologic Mapping Inc.

 Mapped at a scale of 1= 500 ft; prior mapping performed at 1 = 2000 ft

 Geologic mapping consisted of modifying published UGS geologic maps (Hayden, 2005)

Concentrated on the faults

Geologic Map

SB/

Findings - Task I

Several new faults, many splays identified

Refined existing geology maps of area

Along with GPS, provided greater confidence on fault locations

David Simon, P.G. (Simon Bymaster Inc.) Jon Russell Hanson, P.E. (Rosenberg Associates)

GOALS OF FAULT INVESTIGATION

Fault Locations

Displacement per surface-faulting event

Recurrence of surface-faulting events

Project Status

Excavated 13 with a track-hoe, varying in length from about 50 to 500 feet.

Trenches logged at a scale of 1-inch to 5 feet.

Evidence of faulting was carefully recorded and located by GPS field survey.

Project Status - continued

Trenching in 2007 by others (AGEC) in Washington Fields area exposed the main trace of the Washington fault. With limited time available before the trenches were closed, the UGS conducted a reconnaissance investigation of the exposed fault.

T-1 revealed a 13-foot-wide fault zone consisting of at least three splays that dip steeply to the west. Colluvial-wedge deposits provided evidence for three surface-faulting earthquakes that displaced mixed alluvial-colluvial-eolian deposits from about 1 foot to just less than 3.2 feet.

Project Status - continued

The UGS collected five samples of possible colluvial/eolian sand from within and below the colluvial wedges and submitted them to OSL for analysis to constrain the ages of the surface-faulting earthquakes.

OSL AGE ESTIMATES

Sample No.	Age (ka)	Remarks
WD-1	67.75 <u>+</u> 4.56	PE-1 colluvial wedge
WD-2	75.57 <u>+</u> 5.13	Pre-PE-1 basin-fill deposits
WD-3	18.59 <u>+</u> 1.16	PE-3 colluvial wedge
WD-4	30.59 ± 2.10	PE-2 colluvial wedge
WD-5	30.81 ± 2.11	PE-2 colluvial wedge

- Three post-76-ka earthquakes
- PE-1 shortly before ~68 ka (RI ~ 37 kyr)
- PE-2 shortly before ~31 ka (RI ~ 12 kyr)
- PE-3 shortly before ~19 ka
- Late Pleistocene MRE is more consistent with other studies

SB|

Project Status - continued

However, the dates obtained were not considered reliable due to the absence of a detailed trench log. As part of investigation we cleaned and logged the trench so that the UGS dates can be utilized.

Samples for age dating were obtained from 3 of the 13 trenches and have submitted to Paleo Research Institute (Golden, Colorado).

 In addition, charcoal samples obtained by the UGS from their Dutchman Draw (Arizona) fault study were also submitted for age dating.

Faulting

Exposures of fault were surprisingly variable over relatively short distances.

TRENCH 3

TRENCH 6

Trench 11

TRENCH 1

TRENCH T-4

Two surface faulting events documented, each with about 5 feet of net displacement.

WASHINGTON FIELDS TRENCH T-1

Three surface faulting events documented, each with about to 5 feet of net displacement.

RECOMMENDATIONS

Modification to proposed location of Interchange 10

Possible modifications to roadway alignment so road crosses Washington fault closer to 90 degrees

Recommended building setbacks

COLLUVIAL WEDGES

COLLUVIAL WEDGES

Thank You...

Questions...?

RECLANATION Managing Water in the West

Reclamation Studies in Utah Larry W. Anderson Seismotectonics & Geophysics Group UQFPWG – February 9, 2010

U.S. Department of the Interior Bureau of Reclamation

RECLAMATION

RECLAMATION

RECLAMATION
East Canyon & Echo Dams

- Late Quaternary Faulting in East Canyon Valley - Piety et al. (2010) – Results from trenching the Main Canyon fault
- Updated and revised PSHA Wong et al (in progress) – Complete in 2010

Arthur V. Watkins Dam

From Ostenaa & Wood (USBR, 1992)

E. Cache-C: 4 K to 15 K

E. Cache-S: 0.01- 1.0 (0.08) mm/yr

RECLAMATION

W. Cache-Wells: 0.04-1.0 (0.2) mm/yr

Bear River fault zone

Field Excursions, 2008-2009 Suzanne Hecker¹, David Schwartz¹, Francesca Cinti², Chris DuRoss³, Bill Lund³, Michael West⁴

¹U.S. Geological Survey
²Istituto Nazionale di Geofisica e Vulcanologia
³Utah Geological Survey
⁴Michael W. West & Associates, Inc.

Western Cordillera

Bear River fault zone

West, 1992

Bear River fault zone

Figure 57. Models for increasing scarp height from north to south along the Bear River fault zone: (A) two events of increasing north to south displacement and equal rapture length; (B) multiple events with increasing rupture length; (C) multiple events with decreasing rupture lengths. In all cases, a trench excavated in the northern part of the fault zone would consistently show two surface faulting events.

Future work ?....

Paleoseismic Investigation to Compare Surface Faulting Chronologies of the West Valley Fault Zone and Salt Lake City Segment of the Wasatch Fault Zone, Salt Lake County, Utah

> Christopher B. DuRoss and Michael D. Hylland Principal Investigators

Research funded by the Utah Geological Survey and U.S. Geological Survey, National Earthquake Hazards Reduction Program

Goals

- Resolve timing and displacement of individual surface-faulting earthquakes on WVFZ and northern part of SLCS
- (2) Clarify seismogenic relation (dependent or independent) between WVFZ and SLCS
- (3) Develop robust late Holocene recurrenceinterval and slip-rate estimates for the WVFZ and SLCS

Secondarily, want to evaluate along-strike temporal variability in surface faulting of the SLCS, and possibility of spillover or multi-segment rupture between SLCS and Weber segment

Evidence for Coseismic Rupture of the West Valley Fault and Wasatch Fault

Penrose Drive Site:

- Simple fault-trace geometry, no complicating mass-movement features
- Scarp appears unmodified
- Both up-thrown and down-thrown sides of scarp are well preserved
- Moderate scarp height (5-6 m)
- Anticipate geologic evidence for 2 or 3 events

Geologic Units:

- af2 Fan alluvium (middle Holocene – uppermost Pleistocene)
- afb Fan alluvium related to transgressive phase (upper Pleistocene)
- lpm Lacustrine clay and silt (regressive) (uppermost Pleistocene)
- lbg Lacustrine sand and gravel (transgressive) (upper Pleistocene)
- lbm Lacustrine clay and silt (transgressive) (upper Pleistocene)
- lbpm Lacustrine clay and silt (undivided) (upper Pleistocene)

Dresden Place Trenches (1986):

- ≥7 m deformation
- 3 m monoclinal warping—latest Pleistocene
- ≥4 m brittle deformation (fault offset)—Holocene

1 mile

Baileys Lake Site:

- Two scarps of different height (1 m and 0.5 m)
- Scarps appear relatively unmodified
- Anticipate geologic evidence for 2 or 3 events

Three Flags Site (1989):

- Scarp 0.5-0.8 m high
- 0.7 m vertical separation (Holocene)

Goggin Drain Site (1989):

- Scarp 1.8-2.0 m high
- 1.4-1.5 m vertical separation (Holocene)
- 3-4 m vertical separation (post-30 ka)

Generalized Late Quaternary Stratigraphy of Northern Salt Lake Valley

(modified from Keaton and Currey, 1989)

Epoch & Age		Marine Oxygen Isotope Stage	Lake Cycle		Schematic Temporal Column (incl. lake-cycle time picks)	Soils	Highstand Elevation
HOLOCENE	_	1	GREAT SALT LAKE (H and an	Holocene highstand) ncestral Jordan River	(Column not drawn to scale) ~3 ka ~3 ka Post-Gilbert alluvium & eolian deposits	Midvale soil	1287 m (4221-4223 ft)
		2	BONNEVILLE	Gilbert Phase Provo Phase Bonneville Phase	~10 ka ~11 ka XXXX Post-lowstand alluvium & eolian-rich colluvium <u>Red beds</u> ~12 ka	Graniteville soil	1294-1297 m (4245-4255 ft) 1460-1470 m (4780-4830 ft) 1565-1595 m (5130-5230 ft) 1347-1378 m
	late	3	L	Stansbury Phase	~30 ka Post-Cutler Dam alluvium & eolian-rich colluvium ~60 ka	Fielding Geosol	(4420-4520 ft)
		4		CUTLER DAM	~70 ka XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Promontory Geos	(4400 ft)
	middle	6		LITTLE VALLEY	~130 ka ~150 ka Time picks from TL ages (Little Valley and Cutler Dam) and uncalibrated ¹⁴ C yr B.P. (Bonneville and Great Salt Lake)	For Great So elevations a of Salt Lake	1493 m (4900 ft) It Lake and Bonneville lake cycles, re for shoreline features in vicinity Valley

Precipitation and Ground-Water Levels - Baileys Lake Site

Calculating Time-Dependent Probabilities of Large Earthquakes for the Wasatch Front

Working Group on Utah Earthquake Probabilities

Ivan G. Wong

Seismic Hazards Group URS Corporation Oakland, CA 94612

William R. Lund

Utah Geological Survey 88 Fiddler Canyon Rd, Suite C Cedar City, UT 84721

Salt Lake City, UT

9 February 2010

Introduction

- In the past two decades, estimates of the probabilities of large earthquakes occurring in a specified time period have been developed in California for the SF Bay area, southern California, and most recently, statewide as part of the Unified California Earthquake Rupture Forecast (UCERF).
- The key to these forecasts is the availability of "requisite" information on the expected mean frequency of earthquakes and the elapsed time since the most recent large earthquake.

Introduction (cont.)

Previous estimates of Wasatch Front earthquake probabilities have been made by individual authors using the limited data available at the time. The results of these investigations had little impact on public policy.

Conversely, the California Working Group probability estimates have found a broad audience, and have been used to heighten public earthquake awareness, as a basis for retrofitting lifeline infrastructure, for adopting unreinforced masonry retrofit ordinances, and for setting earthquake insurance rates.

Wasatch Front

- The level of information on past earthquakes along the Wasatch fault, along with regional seismicity and geodetic data, is now sufficiently robust to provide the basis for making probabilistic estimates of future large earthquakes within the Wasatch Front.
- The methodologies necessary to estimate probabilities have been developed and refined by the various California Working Groups, and their experience can now be applied in Utah.

A Working Group on Utah Earthquake Probabilities has been formed to develop an earthquake forecast for the Wasatch Front.

The analyses will include both time-dependent and time-independent probabilities for the Wasatch fault and other faults in the Wasatch Front region.

The WGUEP includes individuals who have extensive experience with the paleoseismology and seismology of faults in the Wasatch Front region, and who have participated in previous evaluations of seismic hazard using both time-dependent and time-independent approaches.

WGUEP Members

Walter Arabasz, UUSS Tony Crone, USGS Chris DuRoss, UGS Nico Luco, USGS Bill Lund, UGS (Coordinator) Susan Olig, URS Jim Pechmann, UUSS Steve Personius, USGS Mark Petersen, USGS David Schwartz, USGS Bob Smith, UUGG Ivan Wong, URS (Chair)

Approach

- An approach similar to that taken by the various California Working Groups will be followed by using SSHAC as guidelines.
- We will convene a series of workshops and meetings over a two-year period to review and develop model components. A SSHAC Level 2 process will be followed.
- Four models* will be implemented in the forecast process:
 - 1. Fault model
 - 2. Deformation model
 - 3. Earthquake rate model
 - 4. Probability model
- * Epistemic uncertainties in all model input parameters will be explicitly address by the WGUEP.

Products

- The WGUEP will calculate the probability of a large earthquake (M ≥ 6.5) in the Wasatch Front Region for a range of intervals varying from annually to 100 years.
- The earthquake probabilities that will be estimated are:
 - 1. Segment-specific for the Wasatch fault
 - 2. Total for the Wasatch fault
 - 3. Fault-specific for other major faults in the area
 - 4. Total for the Wasatch Front region.

Products (cont.)

The final forecast will undergo a formal internal USGS review, and will be sent to the National Earthquake Prediction Council for review and comment as well.

Media release of the WGUEP results will be handled by the UGS. Project results will be presented at meetings for the general public and at professional and scientific society meetings.

WEBER SEGMENT CONSENSUS DATA

Fault/Fault Section	<u>Lengt</u> Straight Line	<u>h (km)</u> Surface Trace	Earthquake Timing	Consensus Preferred Recurrence Interval	Consensus Preferred Vertical Slip Rate
Weber segment	56	61	Za 0.5+0.3 ka (partial segment rupture?) Zb 950+450 cal yr B.P. Y 3000+700 cal yr B.P. X 4500+700 cal yr B.P. W 6100+700 cal yr B.P.	Three most recent (W to Zb) interevent interval average recurrence: 1600±600 cal yr Four most recent (W to Za) interevent interval average recurrence: 1100±1400 cal yr WORKING GROUP PREFERRED RECURRENCE INTERVAL 500-1400-2400 yr	Y-Zb 0.6-0.9-1.4 mm/yr X-Y 1.0-1.9-4.3 mm/yr W-X 0.6-0.9-1.6 mm/yr Using an updated Lake Bonneville chronology and net-slip values from Nelson and Personius (1993) shows long-term slip rates as high as 2.0 mm/yr in Bonneville-phase deposits, and up to 1.3 mm/yr in Provo-phase deposits. WORKING GROUP PREFERRED VERTICAL SLIP RATE 0.6-1.2-4.3 mm/yr

UTAH GEOLOGICAL SURVEY

2011 UTAH QUATERNARY FAULT RESEARCH PRIORITIES

Photo from Special Collections Department University of Utah Libraries

Hansel Valley earthquake, 1934

2010 FAULT PRIORITY LIST

2010 Highest Priority Faults/Fault Segments For Study					
Fault/Fault Section	Priority	Investigation Status	Investigating Institution		
Northern Salt Lake City segment WFZ	1	No activity			
West Valley fault zone	2	No activity			
Penultimate event Provo segment WFZ	3	Trench site reconnaissance	UGS		
Washington fault zone	4 Reconnaissance study		UGS		
Rozelle section, Great Salt Lake fault	5 No activity				
Other Priori	ty Faults/Fault Segmen	ts Requiring Further Study			
Fault/Fault Section	Original UQFPWG Priority	Investigation Status	Investigating Institution		
Cedar City-Parowan monocline/ Paragonah fault	10	No activity			
Enoch graben	11	No activity			
Clarkston fault	13	No activity			
Gunnison fault	17	No activity			
Scipio Valley faults	18	No activity			
Faults beneath Bear Lake	19	No activity			
Eastern Bear Lake fault	20	No activity			
Carrington fault (Great Salt lake)	2007	No activity			
Bear River fault zone	2007	Scarp reconnaissance	USGS		
Faults/	/Fault Segment Studies	Complete or Ongoing			
Fault/Fault Section	Original UQFPWG Priority	Investigation Status	Investigating Institution		
Nephi segment WFZ	1	UGS Special Study 124/USGS Map 2966/UVU study ongoing	UGS/USGS/UVU		
Weber segment WFZ – most recent event	3	On going	UGS/USGS		
Weber segment WFZ – multiple events	4	On going	UGS/USGS		
Utah Lake faults and folds	5	Ongoing	UUGG		
Great Salt Lake fault zone	6	Ongoing	UUGG		
Collinston and Clarkston Mountain segments WFZ	7	UGS Special Study 121	UGS		
Sevier/Toroweap fault	8	UGS Special Study 122	UGS		
East Cache fault zone	12	Ongoing	USU		
Wasatch Range back-valley faults	14	Ongoing	USBR		
Hurricane fault zone	15	UGS Special Study 119	UGS		
Levan segment WFZ	16	UGS Map 229	UGS		
Brigham City segment WFZ – most recent event	2007	Ongoing	UGS/USGS		

2010 HIGHEST PRIORITY FAULTS/FAULT SEGMENTS FOR STUDY						
Fault/Fault Section	Priority	Investigation Status	Investigating Institution			
Northern Salt Lake City segment WFZ	1	Study funded (NEHRP)	UGS/USGS			
West Valley fault zone	2	Study funded (NEHRP)	UGS/USGS			
Penultimate event Provo segment WFZ	3	Trench site reconnaissance	UGS			
Washington fault zone	4	Two trenching studies ongoing	UGS/Simon•Bymaster, Inc.			
Rozelle section, Great Salt Lake fault	5	No activity				
OTHER PRIORITY FAULTS/FAULT SEGMENTS REQUIRING FURTHER STUDY						
Fault/Fault Section	Original UQFPWG Priority	Investigation Status	Investigating Institution			
Cedar City-Parowan monocline/ Paragonah fault	10	No activity				
Enoch graben	11	Cedar Valley earth fissure study	UGS			
Clarkston fault	13	No activity				
Gunnison fault	17	No activity				
Scipio Valley faults	18	No activity				
Faults beneath Bear Lake	19	No activity				
Eastern Bear Lake fault	20	No activity				
Carrington fault (Great Salt Lake)	2007	No activity				
Bear River fault zone	2007	Trenching study	USGS			
FAULTS/FAU	JLT SEGMENT ST	UDIES COMPLETE OR ONGOING				
Fault/Fault Section	Original UQFPWG Priority	Investigation Status	Investigating Institution			
Nephi segment WFZ	1	UGS Special Study 124/USGS Map 2966/ ongoing UVU study	UGS/USGS/UVU			
Weber segment WFZ – most recent event	3	UGS Special Study 130	UGS/USGS			
Weber segment WFZ – multiple events	4	UGS Special Study 130	UGS/USGS			
Utah Lake faults and folds	5	Ongoing	UUGG			
Great Salt Lake fault zone	6	Ongoing UUGG				
Collinston and Clarkston Mountain segments WFZ	7	UGS Special Study 121 UGS				
Sevier/Toroweap fault	8	UGS Special Study 122 UGS				
East Cache fault zone	12	Ongoing	USU			
Wasatch Range back-valley faults	14	Ongoing	USBR			
Hurricane fault zone	15	UGS Special Study 119	UGS			
Levan segment WFZ	16	UGS Map 229	UGS			
Brigham City segment WFZ – most recent event	2007	Ongoing	UGS/USGS			

www.geology.utah.gov

UTAH GEOLOGICAL SURVEY

Fault/Fault Segment	Original UQFPWG Priority (2005)		
Nephi segment WFZ	1		
West Valley fault zone	2		
Weber segment WFZ – most recent event	3		
Weber segment WFZ – multiple events	4		
Utah Lake faults and folds	5		
Great Salt Lake fault zone	6		
Collinston & Clarkston Mountain segments WFZ	7		
Sevier/Toroweap fault	8		
Washington fault	9		
Cedar City-Parowan monocline/ Paragonah fault*	10		
Enoch graben	11		
East Cache fault zone	12		
Clarkston fault [*]	13		
Wasatch Range back-valley faults	14		
Hurricane fault	15		
Levan segment WFZ	16		
Gunnison fault	17		
Scipio Valley faults	18		
Faults beneath Bear Lake	19		
Eastern Bear Lake fault	20		
Bear River fault zone	Added 2007		
Brigham City segment WFZ – most recent event	Added 2007		
Carrington fault (Great Salt Lake)	Added 2007		
Northern Salt Lake City segment WFZ	Added 2009		
Provo segment WFZ – penultimate event	Added 2007		
Rozelle section – Great Salt Lake Fault	Added 2007		

UQFPWG QUATERNARY FAULT STUDY PRIORITY LIST

Faults currently on Utah NSHM

SOME SUGGESTIONS FOR CONSIDERATION

UTAH FAULTS WITH LIMITED DATA THAT ARE INCLUDED ON THE **NSHM**

- •Clarkston fault, West Cache fault zone^{1, 2,}
- Hansel Valley fault²
- Joes Valley fault zone²
- Morgan fault ²
- North Promontory fault ²
 - Paragonah fault no trench data¹
- Stansbury fault no trench data ³
- Strawberry fault ²
- Wellsville fault, West Cache fault zone²

FAULTS REQUIRING MORE DATA

•Anderson Junction segment, Hurricane fault zone •Nephi segment, Wasatch fault zone

OTHER SUGGESTIONS RECEIVED

•Carrington fault ¹Currently on UQFPWG priority list, ²UQFPWG consensus slip-rate and recurrence-interval values using best available data, ³ Not previously considered by UOFPWG