Great Salt Lake Wetlands 2012 LiDAR Mapping Project

Box Elder, Weber, Davis, Salt Lake and Tooele Counties, Utah

COMPLETION REPORT

Table of Contents

Table of Contents	1
SUMMARY OVERVIEW	2
Executive Summary	2
Contractor	2
Scope Overview	2
Specifications for Deliverables	3
LiDAR Deliverables	3
Grid Model Deliverables	3
Miscellaneous Deliverables	3
Project Area Extents and Project Tile Index	3
LIDAR DATA REPORT	4
Pre-Flight Planning	4
Control	4
Final Planning – Procedures and Activities	5
Planning	5
Summary of Supporting Documents	5
Data Processing Procedures Report	6
Data Storage	6
Navigation System	6
LiDAR System	6
LIDAR QUALITY CONTROL REPORT	9
Methodology	9
Relative Accuracy	9
Within Swath Overlap Accuracy	9
Fundamental Vertical Accuracy	10
Conclusions	11
FLIGHT REPORT	12
GROUND CONTROL REPORT	13
Introduction	13
Ground Control Survey	13
Data Collection	13
Data Processing and Analysis	13
APPENDIX A – Index Maps and Area Boundaries	16
APPENDIX B – Flight Plan Maps	21
APPENDIX C – Raw Data File Listing	22

SUMMARY OVERVIEW

Executive Summary

This project encompasses five areas in five Utah counties and encompasses about 1147 square miles shown below. Data was collected on September and October, 2011.

Study Area	County	Size (mi ²)
Great Salt Lake Wetlands in three flight blocks labeled "North", "Middle", and "South	Salt Lake, Davis, Weber, Box Elder	834
Tooele	Tooele	251
Lower Bear River	Box Elder	62
Total		1147

Contractor

This project was completed under contract UGS110817 between Utah Automated Geographic Reference Center (Utah AGRC) and Utah State University (USU) LASSI Service Center.

Primary technical point of contact information:

Robert T. Pack, Ph.D., P.E robert.pack@usu.edu Utah State University LASSI Service Center 4110 Old Main Hill Logan, UT 84322-4110 PH 1-435-797-7049

Scope Overview

Our responsibilities included:

- Flight planning;
- Identification of ground control to be applied as airborne GNSS base stations and for DEM processing;
- Aerial data acquisition;
- > Collection of GNSS base station data during flight;
- > Collection of GNSS RTK ground data for application in DEM accuracy testing;
- Processing, calibration and classification of LiDAR returns;
- Output of data deliverables including metadata;
- Compilation of Project Completion Report, including Flight, Data Processing and LiDAR DEM Accuracy reporting in compliance with National Standards for Spatial Data Accuracy (NSSDA) guidelines.

Specifications for Deliverables

The required accuracy and file formats for each delivery was as follows:

LiDAR Deliverables	
Grid Projection:	UTM Zone 12N
Horizontal Datum:	NAD83(CORS96)
Vertical Datum:	NAVD88 using GEOID09
Tile Size:	2000 m X 2000 M
Average Post Spacing:	0.85 m
Average Data Density:	1.37 sh/m2
File Formats:	*.las (v. 1.2)
Classified Datasets:	ASPRS/LAS Default Classes

Grid Model Deliverables	
File Format:	IMG (.img)
Grid Projection:	UTM Zone 12N
Horizontal Datum:	NAV83(CORS96)
Vertical Datum:	NAVD88 using GEOID09
Tile Size:	2000 m X 2000 m
Cell Size:	1.00m

Miscellaneous Deliverables	
Breakpoint Files:	LAS 1.2 (.las) on specific code
Metadata Files:	FGDC compliant XML file. (.xml)
Project Tile Index:	Portable Document Format (.pdf)
Completion Report:	Portable Document Format (.pdf)

LiDAR data acquisition was performed using a Riegl LMS Q560 airborne laser sensor system capable of up to a maximum 200 kHz pulse repetition rate and collection of full waveform returns.

Project Area Extents and Project Tile Index

The tile layout and project extents for the five areas surveyed are provided in Appendix A. The number of tiles is summarized in Table 1.

Area	Number of Tiles
Bear River	40
Great Salt Lake (GSL) North	463
Great Salt Lake (GSL) Middle	83
Great Salt Lake (GSL) South	250
Tooele	98

Table 1 Project areas

Tiles were designed on a 2000 m by 2000 m grid and were automatically generated.

LIDAR DATA REPORT

Pre-Flight Planning

Appendix B provides a map showing flightline layout and target locations for the five subject areas. Table 3 provides the pre-flight mission parameters used for the project.

Mission Summar	y 750	m AGL	
	Rieg	gl Q560	
	Metric	English	
GSD - Cross Track	0.848 m	2.8 ft	
GSD - Long Track	0.848 m	2.8 ft	
Data Density	1.4 sh/m2	0.13 sh/ft2	
Shot/Pixel Size	0.40 m	1.3 ft	
Swath Width	866.0 m	2840.6 ft	
Flightline Spacing	519.6 m	1704.3 ft	
Shot or Frame Rate	67 kHz		
Total Numbers	0.55	Gpoints	

Table 3. Pre-flight mission parameters.

Control

The area surrounding the study area was searched for candidate vertical control monuments over which the GNSS ground station could be placed. The goal was to tie to A- or B-order vertical control, while at the same time, be within 10 km of the study area. A total of 8 ground control stations were used for this project.

The benchmarks were selected on the basis of (1) vertical control accuracy, (2) accessibility, (3) security for targets and the GPS base station. Five GPS base stations were established. Benchmarks on the north shore (B 94), in Weber County (H 23) and Tooele (H 51) were occupied for several days each. This enabled the calculation of strong static GPS solutions which have been compared with the published vertical coordinates. Moreover, each of these GPS stations were active during lidar flights thereby enabling differential GPS corrections.

At each of the stations, 5-foot diameter white circular targets were established, an example of which is shown in Figure 1 for station 314RM in Davis County. The surface of each target was leveled using a five foot long construction level. The target height was then determined using an automatic level. This was done using a back-sight to the monument and a fore-sight to the table surface (see Figure 1). The accuracy of the target height relative to the monument was consistently within about 1 cm. All eight targets were scanned by the lidar in at least one flightline.

The GPS base stations were set up directly over the given monument and the height to the antenna measured within 1 mm. This was used to compare calculated coordinates with published coordinates. In order to make proper comparisons, the heights measured at previous dates needed to be adjusted according to observed HTDP point velocities published by NGS for nearby CORS stations. These points were thereby brought up to date.

Figure 1. Example of lidar target along with equipment used to level its height relative to a nearby benchmark. This is benchmark 314RM in Davis County.

Final Planning – Procedures and Activities

<u>Planning</u>

Weather forecasts and project schedule identified an aerial acquisition window during the months of September and October 2011. Prior to each acquisition campaign, the following was completed:

- > Brief flight crew and ground support personnel on project requirements
- Investigate PDOP forecast for location (Flights to be conducted with PDOP below 3.0)
- Decision to mobilize Bob Pack to site to set up targets and GNSS base stations.
- Complete a reconnaissance of the project area was conducted to report on ground conditions.

It was planned such that each time the aircraft was mobilized out of Logan, Utah each of the five areas could be completed during a contiguous block of days.

Summary of Supporting Documents

- > CV NGS DATASHEETS.htm- NGS Data Sheets NGS benchmarks used
- PDOP Plots subdirectory contains PDOP forecasts for periods of data acquisition.

(The above listed documentation is provided in softcopy format only.)

Data Processing Procedures Report

Data Storage

After each flight, all raw navigation data, raw LiDAR data, raw image data, coverage data, and flight logs were off-loaded to a computer and an additional backup storage copy created.

Navigation System

The airborne GNSS data were processed from the five base station locations using GrafNet software from NovAtel. Data was also collected from nearby International GPS Service for Geodynamics (IGS) stations for the periods of the flight. Airborne GNSS data was processed based on the ITRF05 Ellipsoid model.

The computed trajectories and the base station coordinates were used in the processing of the IMU data using Inertial Explorer from Waypoint. A smoothed trajectory was produced with error estimates based on the separation between trajectories processed forward and backward in time. The trajectory files were then transformed to the NAD83(CORS96) and NAVD88(GEOID09) project datum and the UTM Zone 12N projection for use in the LiDAR processing.

LiDAR System

LiDAR waveform files were analyzed using RiAnalyze software to discriminate data points. These points are output in the internal coordinate system of the LiDAR scanner. Each data point is assigned an echo value so it can be used in point classification work. RiProcess then uses the trajectory files created from the raw navigation data to generate XYZ points in a world coordinate system. A boresight calibration and strip (single scan line) adjustment was performed in RiProcess to improve data accuracy. This project's data were processed in strip form, meaning each flight line was processed independently. Processing the lines individually provides the data analyst with the ability to quality control (QC) the overlap between lines. To assess trajectory integrity, individual flight strips were then checked against adjacent strips to ensure good matching in the dataset.

The low gradient terrain within the study area results in highly visible manifestations of errors within overlap regions. For example, on some of the shoreline slopes a gradual 10 cm drop in elevation can occur over a distance of 1000 m. Hence a 1 cm contour interval would be 100 m wide and a 2 cm vertical error would result in a 200 m shift in a contour location. It was therefore necessary to develop custom strip overlap adjustment methods that would not only optimize the lidar system calibration but also correct GPS/IMU navigation errors manifested within individual strips.

A method has been implemented that corrects for aircraft roll and aircraft altitude error detected by analyzing elevation differences in all overlapping strips simultaneously. Figure 2 shows an example color-coded map of overlapping regions where blue equals a -10 cm difference, cyan a -5 cm difference, green 0 cm, yellow +5 cm, and red +10 cm. Figure 3 shows the same series of strips after adjustment. Because the center of the overlap zone is where adjacent strips are mosaicked via a mosaic line, it is important that these lines are consistently green. As shown in Figure 3 this is the case for all strips which results in smooth contouring across the entire project. This wouldn't have been the case using traditional methods that ignore within-strip errors associated with the

GPS/IMU system.

Figure 2. Overlap data prior to within-strip correction, colored by elevation difference (blue = -10 cm, cyan = -5 cm, green = 0 cm, yellow = +5 cm, red = +10 cm).

Figure 3. Overlap data after the within-strip correction, colored by elevation difference (blue = -10 cm, cyan = -5 cm, green = 0 cm, yellow = +5cm, red = +10 cm).

Each flightline (strip) was then brought into TerraScan (by Terrasolid) in the project datum and coordinate system. These flightlines were then combined and several classification routines, customized for the given terrain and vegetation, were then run to classify the points into standard ASPRS/LAS default classifications.

Significant effort was given to the creation of automated routines that would detect the

Utah AGRC 2011 Lidar Acquisition

dozens of river banks and hundreds of lake shorelines within the subject areas. The routine then automatically creates polylines that then serve as breaklines for hydro-flattening. For this work, custom tools were developed using LAS-tools, a set of routines developed by Martin Isenburg (out of Germany), and custom Matlab scripts developed in-house. These breaklines, consisting of a series of closely spaced points were then added to the point cloud LAS files with a unique classification code. When combined in a LAS file with original lidar points, the quality of the hydro-flattening can immediately be exploited as a triangulated irregular network (TIN) in any LAS viewer or GIS system (such as ArcGIS).

Using the point classifications and breakline points, digital elevation models (DEMs) of the bare earth and digital surface models (DSMs) of all points were generated for each tile and carefully checked for data quality assurance.

LIDAR QUALITY CONTROL REPORT

Methodology

The QC check was intended to ensure that data would meet contractual standards set in FEMA (2003, Section A.8) and USGS NGP Guidelines v.13 (2010). Table 4 provides a summary of their standards for root mean squared error in the z (height) direction (RMSEz):

RMSEz	Condition	Source
7.0 cm	Relative accuracy within individual swaths	USGS
10.0 cm	Within swath overlap regions	USGS
12.5 cm	Fundamental vertical accuracy (in the clear)	USGS
18.5 cm	Under all major vegetation categories in flat areas	FEMA
37.0 cm	Under all major vegetation categories in hilly areas	FEMA

Table 4. Standards for RMSEz used in this project.

Relative Accuracy

Relative DEM accuracy was checked for the two typical terrain types within this project using RTK GPS surveys. Table 5 shows the results for these areas. The results show a relative accuracy of 3.8 cm within the typical rolling sagebrush terrain of the GSL shoreline. This is similar to the 2.8 cm relative accuracy achieve on the flat sagebrush areas of Cedar Valley (sister project). A relative accuracy of 3.6 cm is achieved in a subdivision in Hooper. These results are well under the 7.0 cm specification required by the contract.

Table 5. Relative accuracy checks.

Point	Area	# Points	RMSEz (cm)	Terrain Description
B94	North GSL	28	3.8	Sagebrush in rolling terrain
WC 108	Middle GSL	26	3.6	Hooper subdivision roads and shoulders

Within Swath Overlap Accuracy

Table 6 shows the mean and RMSEz difference between all DEM cells within overlapping regions. These statistics were calculated by custom Matlab scripts in USU's custom adjustment software. Table 6 shows that systematic shifts within a given overlap region are less than 1 cm. The RMSEz between overlapping surfaces is consistently between 2.3 and 6.3 cm These results are within the required 10 cm specification.

Area	Number of	Difference in Overlap (cm)		
Alea	Overlaps	Mean	RMSEz	
GSL Middle	31	0.1	5.0	
GSL BearRiver	10	0.0	6.3	
GSL South	112	0.0	4.8	
GSL North	202	-0.1	4.1	
GSL Tooele	56	0.0	2.3	
Ogden FEMA	39	-0.1	4.4	

Table 6. Mean and RMSEz difference between DEM cells within overlapping regions.

Fundamental Vertical Accuracy

It was proposed and accepted by AGRC that a series of 5' diameter LiDAR targets be used as a spot checks for fundamental vertical accuracy relative to a selection of know brass bench marks distributed around the subject area. The strategy was to place these targets prior to the flights and measure their height using the lidar results such that they could be compared to independently leveled heights measured in the field relative to the brass bench marks. Table 7 shows the results of this work for bench marks occupied by long GPS static observations associated with the lidar collection. The results indicate an average fundamental vertical accuracy of 8.1 cm for the three targets relative to the published bench mark elevations. It should be noted that the average difference between the GPS static measurements and the published elevations is 7.1 cm. Given the GPS residuals are in the order a less than 2 cm, it is possible some of the vertical error is associated with the published coordinates. Nevertheless, these results indicate the fundamental vertical accuracy is well within specifications required for this project.

Table 7. Fundamental vertical accuracy as determined at four lidar target locations with strong vertical control.

Target	RSMEz BM to	RSMEz BM	Description	
B 94 RESET*	0.029	0.058	Silts on GSL Shoreline	
H 23*	0.076	0.048	Swampy corner in silt	
H 51*	0.137	0.107	Silts on GSL Shoreline	
Average	0.081	0.071		

Five targets were also placed near benchmarks that were not occupied by our static GPS surveys. These differences were found to average 17.8 cm as shown in Table 8. The largest differences are associated with RTK surveyed benchmarks maintained by Salt Lake and Weber Counties. These county surveys focused on horizontal control and did not have clearly stated vertical accuracies. A 14.7 cm discrepancy was discovered with an old 1953 benchmark given a Class II vertical accuracy by NGS. However, only a 7.4 cm difference was found with a NGS Class I vertical benchmark found in the Bear River area. Given the 8 cm accuracy results in the previous table that are cross-checked with multi-day static GPS work, it is deemed unlikely that the main source of error is associated with the lidar survey. It is also possible that since their dates of publication, some of these points may have been subject to movement associated with settlement of the silts or construction disturbances. The investigation of the vertical accuracy of these published coordinates is beyond the scope of this contract. Nevertheless, these result suggest that adjustments of the lidar data by up to 26 cm (10

inches) may be necessary in order to match local datums based on weak vertical control.

Table 8. Vertical accuracy as determined relative to benchmarks with various vertical accuracies.

Target	RSMEz BM to TGT (m)	Source	Published Vertical Accuracy	Lidar Tile	Description
U 170	0.074	NGS	1967 Class I	BR Tile 31	Gravel adjacent to canal
Z 92	0.147	NGS	1953 Class II	GN Tile 262	Old BM on railway abutment
64-FMK	0.214	Weber Co	+/- 10 cm	GN Tile 434	Silts on GSL Shoreline
WC-108	0.193	Weber Co	RTK ?	GM Tile 53	Silts on GSL Shoreline
1S3W029A	0.263	Salt Lk Co	RTK ?	GS Tile 238	Silts on GSL Shoreline
Average	0.178				

Horizontal positional accuracy was not formally tested in this project and was not a specification of this contract.

Conclusions

Given results given above, the following can be concluded:

- There is a tested < 4 cm RMSEz relative accuracy,</p>
- There is a tested < 7 cm RMSEz overlap accuracy, and</p>
- > There is a tested < 8 cm RMSEz fundamental vertical accuracy.

FLIGHT REPORT

USU's Cessna 208B Skywagon remote sensing aircraft, N4630F, based out of Logan, Utah was utilized on this project. This aircraft was mobilized out of Logan Municipal Airport, Utah. The actual local flight times and duration of flights were controlled by weather, fuel consumption of the aircraft on the commute from Logan, Utah, and safety of flight operations around Hill Air Force Base and the Salt Lake International Airport. This limited our flexibility in planning for times when the GNSS constellation was most favorable thereby producing the highest number of satellites visible in the best geometric configuration relative to the GNSS receivers onboard the aircraft as well as at the base station on the ground.

Ordinarily two flights were performed per day, weather permitting. Flights originated from Logan, Utah each morning with a refueling stop at a local field at mid-day. Flight durations varied between 3 and 4 hours. At the beginning or end of most days, a calibration flight pattern was flown over the USU campus. This enabled the improvement of IMU to Lidar alignment which has a tendency to drift in virtually every lidar system.

Because of limitations associated with flying around Salt Lake International Airport, the GSL South block was flown at night. This involved two flights between midnight and 6:00am on October 13 & 14, 2011 and a flight between 2:00am and 6:00am on October 18, 2011. During these periods, virtually no interference with air traffic was encountered. The flight dates are summarized by Table 9.

	, et mg
Block	Dates
Bear River	28 September 2011
GSL North	27, 29, 30 September & 3, 4, 10 October 2011
GSL Middle	10-12 October 2011
GSL South	13, 14, 18 October 2011
Tooele	18 October 2011

Table 9. Summary of flight dates.

Navigation File(s):

A listing GPS base station files and raw flightline (LiDAR) files is given in Appendix C.

GROUND CONTROL REPORT

Introduction

A LiDAR survey was conducted for the purposes of developing a high-accuracy digital terrain model (DTM) of the Great Salt Lake Wetlands project area. In support of this work, ground control was established near the project area. This report summarizes the results.

Ground Control Survey

Table 10 provides a list of coordinates for each of the 9 bench marks used in this study. The benchmarks listed with a bold font were used as static GPS stations and were occupied during the lidar flights. Stations identified with an asterisk were used as base stations for RTK surveys subsequent to the flights.

STATION	PID	EPOCH	LATITUDE	LONGITUDE	NAVD88
Bear River					
U 170	MS0027	1991	41 40 52. (N)	112 05 36. (W)	1312.73
GSL North					
B 94 RESET*	MS0074	1991	41 35 56. (N)	112 17 58. (W)	1291.41
Z 92	MS0121	1991	41 25 16. (N)	112 03 00. (W)	1297.60
H 23*	Weber Co	2002	41 14 40. (N)	112 10 32. (W)	1286.37
64-FMK	Weber Co	2004	41 15 00. (N)	112 12 42. (W)	1285.46
GSL Middle	_	-	-		-
WC-108	Weber Co	2000	41 09 50.1 (N)	112 08 33.3 (W)	1292.07
GSL South					
314RM	Davis Co	2010	40 57 55.4 (N)	111 55 47.0 (W)	1284.24
1S3W029A	SLC	2008	40 46 08.7 (N)	112 09 17.1 (W)	1286.68
Tooele					
H 51*	LP0025	1991	40 39 56.10422(N)	112 27 29.72341(W)	1287.52

Table 10. List of benchmarks used in the five subject areas.

Data Collection

Using physical descriptions of benchmark locations, each of the 9 stations were occupied, some used for static GPS observations, some used for RTK data collections and all of which were used for lidar target analysis. The static observations were made with a NovAtel dual-frequency GPS receiver. RTK measurements were made with a Topcon GR-5 GNSS (including GLONASS) base/rover pair.

Data Processing and Analysis

Processing steps performed at each benchmark include ellipsoid to orthometric height conversion, horizontal time-dependent processing of point velocities for epoch adjustment, and target leveling relative to the benchmarks. Static GPS solutions are disclosed for those points occupied and lidar shot elevations have been compiled for

each of the targets. A summary of these processing results is given in Tables 11 and 12.

Station	NCC DID	Epoch		NAD83(H	ARN/	199	4)		NAVD88	Ellip.HT	∆ BM	∆ GPS	
Station	NGS PID	Date Lat Long		(m)	(m)	(m)	(m)						
BEAR RIVER													
U 170	MS0027	1991	41 4	0 52	. (N)	112	05	36.	(W)	1312.732	1297.002		
н	II	2011	п			"				1312.706	1296.976		
TGT U 170		2011								1313.306	1297.576		
TGT Lidar So	olutions -	BR Ti	le 31										
Shot 1										1313.38		0.074	
RSMEz										1313.38		0.0739	
GSL NORTH													
B 94 RESET*	MS0074	1991	41 3	5 56	. (N)	112	17	58.	(W)	1291.407	1275.367		
B 94 RESET A	Adj	2011	п			"				1259.301	1275.341		
TGT B 94		2011								1292.018	1275.978		
USU B 94 GPS	S Solution	2011	41 3	5 55	.90473(N)112	17	57.8	80501(W)		1275.312	-0.029	
TGT Lidar So	olutions -	GN Ti	le 63	& 8	1								
- Shot 1										1292.040		-0.022	-0.051
- Shot 2										1292.050		-0.032	-0.061
- Shot 3										1292.050		-0.032	-0.061
RSMEz										1292.047		0.0295	0.0583
Z 92	MS0121	1991	41 2	5 16	(N)	112	03	00.	(W)	1297.596	1281.246		
		2011	п			п			()	1297.570	1281.220		
TGT 7 92		2011								1298.379	1282.029		
TGT Lidar So	olutions -	GN Ti	le 26	2						110000077	1202.025		
- Shot 1		011 11		_						1298 540		-0 161	
- Shot 2										1298 510		-0 131	
PSME7										1298 525		0 1468	
ROMEZ										1270.525		0.1400	
н 23*	Weber Co	2002	41 1	4 40	(N)	112	10	32.	(W)	1286.369	1269.54		
H 23 Adi	MCDC1 CO	2002	"	1 10	. (11)	"	10	52.	(11)	1286 357	1269 528		
п 25 лај тат н 23		2011								1287 146	1270 317		
IISII H 23 GPG	S Solution	2011	41 1	4 4 0	82494 (N	112	10	32	45055(W)	1207.110	1269 499	-0 029	
TGT Lidar Sc	olutions -	CN Ti	10 13	5	.02191(10	, 2	10	52.	15055(₩)		1209.199	0.025	
Chot 1		GN II	TE IJ	J						1007 00		0 066	0 0 2 7
- Shot 1										1207.00		0.000	0.037
- Shot Z										1287.07		0.076	0.047
- Shot 3										1287.06		0.086	0.057
RSMEz										1287.07		0.076	0.048
64-FMK	Weber Co	2004	41 1	5 00	. (N)	112	12	42.	(W)	1285.463	1268.7		
"		2011	"			"				1285.454	1268.69		
TGT 64-FMK		2011								1286.111	1269.35		
TGT Lidar So	olutions -	GN Ti	le 43	4									
- Shot 1										1286.32		-0.209	
- Shot 2										1286.33		-0.219	
- Shot 3										1286.31		-0.199	
- Shot 4										1286.33		-0.219	
- Shot 5										1286.33		-0.219	
RSMEz										1286.324		0.2136	

Table 11. Ground control computations.

UtahStateUniversity LASSI Service Center

Station	NCC DID	Epoch	NAD83(HARN/1994)							4)	NAVD88	Ellip.HT	∆ BM	∆ GPS		
Station	NGS PID	Date	Lat Long		(m)	(m)	(m)	(m)								
GSL MIDDLE																
WC-108	Weber Co	2000	41	09	50.3	1 (N))	112	08	33.	3 ((W)	1292.073	1275.083		
"		2011	"					"					1292.059	1275.069		
TGT WC-108		2011											1292.010	1275.020		
TGT Lidar So	olutions -	GM 53														
- Shot 1													1291.81		0.200	
- Shot 2													1291.82		0.190	
- Shot 3													1291.82		0.190	
RSMEz													1291.82		0.1929	
GSL SOUTH																
314RM	Davis Co	2010	40	57	55.4	4 (N))	111	55	47.	0 ((W)	1284.239			
"		2011	"					"					1284.238			
TGT 314RM		2011											1286.002			
TGT Lidar So	olutions -	GS Ti	le	100												
- Shot 1													1285.23		0.772	
- Shot 2													1285.19		0.812	
- Shot 3													1285.18		0.822	
RSMEz													1285.20		0.8027	
1S3W029A	SLC	2008	40	46	08.	7 (N))	112	09	17.	1 ((W)	1286.680	1269.431		
"		2011	"					"					1286.676	1269.427		
TGT 1S3W0297	7	2011											1285.802	1268.553		
TGT Lidar So	olutions -	GS 23	8													
- Shot 1													1286.06		-0.258	
- Shot 2													1286.07		-0.268	
RSMEz													1286.065		0.263	
Tooele																
Н 51*	LP0025	1991	40	39	56.3	10422	2(N)	112	27	29.	723	341(W)	1287.517	1269.872		
"	"	2011	"					"					1287.491	1269.846		
TGT H 51		2011											1288.539	1270.894		
USU H 51 GPS	5 Solution	2011	40	39	56.3	10408	3(N)	112	27	29.	728	334(W)	1287.521	1269.876	0.03	
TGT Lidar So	olutions -	т 49														
- Shot 1													1288.66		-0.121	-0.091
- Shot 2													1288.69		-0.151	-0.121
RSMEz													1288.675		0.137	0.107

Table 12. Ground control computations (continued).

APPENDIX A – Index Maps and Area Boundaries

GSL North

Ren Y	151	1	63	1 (5.66	AUST	VALLA	4345	75	2.1	_		1	2	JE	25 1	55	DIN	1022	1 27.	CALL N	Gridon	6	1
RTH	2/201	ENGIN	EER	18	Sal		21	25	N m	seller.	2	3	4	504	34	-tr	100	214	125		大人	196	FBI	
ONTORY	200	104	8m	(50	25	12 3	1901m	ALS.	PAG	2		11	10			TEN	Choos	Dever	VIIIeP	the second	2	22)	2	
NTAINS	S	La	The	1428	35	24	20	ATCH	ER.	- ′	×.	53/2	10	11	12	T	2	11	-NR	Validate	THE	125	81/1	ĩ
55	15	-	25	12			13	14	15	16	17	18	19	20	21		X	I	ZM	and Are	12	A.S.	(B)	Ì
5.5	1 Con	Brok	[11]	22	21	20	20	12	203	in a	20	ant since	22	22	24		X	Honey	Thir	513	为兵	SSI	351	1
is Sit	1 man 1	Phot Na	22	18	44	23	20	41	28	29	30	31	32	33	34	33	30			LES.	57%	276	12	ŝ
Promontory	37	38	39	40	41	42	43	44	45	-46	47	48	49	50	51	52	53	34	14	237		20		Į
Gelden Sallee Nati	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	91	72		1.11	033m *	S F	18,180	1
Aita. Site	14		2				1000	- Ay.	and the second	22	68Um	UNIX	100		-		K			14	. Al	Ble	Real	1
115	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	1.6			192	A R
63-2-1	92	93	94	9 5	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	13	1 C		1845	
PROMONTO	JR/ 111	112	113	114	115	116	117	118	110	120	121	122	123	124	125	126	127	128	120	ngham	2540	Re V	Xa	
A CONTRACT						oun vy			-							r'Ce	inne	R		W-X	6		2	5
1 Charles	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	the	1	NC21	M.	ě
12 Mar	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	1	1	14	2	5
2123m	12	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	G	E CO	E BAU	2
123	4.63				100	101	100	102	10.	120 120	-	105	100	100	200	201	202	Bright	201	1 1 1		XT	Wasat	-
2 Contraction		187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	Ta	Reper	VU F	010
1	45135	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	84		1.1	
		225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243		318		
	King Start					240	0.00	200	100	-	4	-	and an	and a set	Staff"	200	200	2.00			Kin	16-5	ST A	1
1/3	325	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	100	225	21.0	1
35	Tes,	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	136	26	11 1	
	MA	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	122	121	1129	
1 L	25.6			100												1	W	Rest	ruale.	- h			1 Same	
L L		1 Co	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	145	Tobern	ŝ
1	2 pt	-	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	100		1
		GUN	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	K	STR.	Contra Contra	5
	28	5.74			200	260	2.4	262	262			A CONTRACT	BERT	quinty	240	1000	a a manuf		-		12	The		
	Li	Ar	33/	338	339	360	361	362	363	364	363	300	36/	368	369	3/0	3/1	3/2	3/3	3/4	16	A	North	X
		25	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	Farr	17		Tomen	1
	M	2	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	West	ST	1/2	39	1
	Qu	262	100	110	111	412	112	121	110	120	117	110	(10	120	122	(22	122	m	2	2	E	1/	1	ļ
	M	11762	409	410	411	412	415	414	415	410	41	410	419	420	421	422	425	424	1			X	Orde	
/	Gui	nison		425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	39 +	At	1	20	10	
	Bay	24	2 pr	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	18		(a)	Et-	-	7
		1	1	100	100	1	100	150	100		-		30	-	1		~	and a	1	Haven	X	2	(293)	1
				433	436	43/	438	439	400			1	1		2		in the	-	J	20	6	54.	5/9	
				461	462	463							100		15		-	0	geend	Hinchie	37	H	To to	
					1		ANT OF					3	3	1.50	1.000	0.01			- MA	TV fi	Na	13	Washing	6
	Tile Boi	inda	nv.		00000	000	-			400			Ba htt	se Ma p://got	p by E o.arcg	:SRI. A isonlin	vailab e.com	ie thro /maps	ugh th /World	e ArcG I-Topo_	Map	source	Centers.	
		anud	. y	0 1	,9003	,800	7,	600	11,	400	15,	200		14	h	C	10	+-		ni	ve	ro	ity	
	Data Co	overa	age				Me	ters						Л	911	J	LC	LL G	=U		ve	er S	ity	

LASSI Service Center

GSL Middle

GSL South

							X	-F	Clearfield	14	The second	1h	a	F	HOBDS CANYON	
	1	2	3	4	5	6	1		9	1 had	A	a Lugar	A	15		1
590 /5 AND	11	12	13	14	15	16	17	18	19	20	1	V	tà	2	ADANS DANY	
21	22	23	24	25	26	27	28	29	30	31	32	33	T		*****	vok 1
BUFALLO POWY	34	35	36	37	38	39	40	41	42	43	44	45	46	=X		N Y O N FRANCIS FEAR
	R	47	48	49	50	51	52	53	54	55	56	57	58	59	60	100
1004	J	61	62	63	64	65	66	67	68	69	70	71	72	73	74	NOTOA CAN
ACTING NO.	ARUEN IROCKS	75	76	77	78	7 9	80	<u>81</u>	82	<u>83</u>	<u>84</u>	85	86	87	88	Steforcame
))(200	89	90	91	9 2	93	94	95	96	9 7	<u>98</u>	99	100	101	102	BOUN
DRY CAN	BUFFALD CAPPOLD CANYON	103	104	105	106	107	108	109	110	111	112	113	114	115	11.6	Ogo CASIYON
	YII .	117	118	119	120	121	122	123	124	125	126	127	128	129	130	
	K	131	132	133	134	135	136	137	138	139	140	141	142	143	144	- Andrew
	1300w	145	146	147	148	149	150	151	152	153	154	155	156	157	158	THE WARD
		159	160	<u> 161</u>	162	163	164	165	166	167	168	169	170	171	172 000	nue Mich
		173	174	175	176	177	178	179	180	181	182	183	184	185	TINS &	-dilow gr
No. No.		186	187	188	189	190	191	192	193	194	195	196	197	198	15 m	CLAYON M
		<u>199</u>	200	201	202	203	204 SALT	205	206	207	208	209	210	211	Contraction Since 551/m	AND DAMEYS (ACLOW) (ACLOW) (ACLOW)
ja j	and a second	212	213	214	215	216	217	218	219	220	221	222	223	P.	Fast Contraction	Belley Agency
A Contraction	224	225	226	227	228	229	230	231	232	233	234	A	L	a		take Marten out
	235	236	237	238	239	240	241	242	243		Cont Course	2		Ta	1	CHO Long
	244	245	246	247				Wildle			7					Boss
Lake P.	248	249	250	S-		-0	-00	Mant. Area	1		Ta	\neg	Giendale Golf CHARM.			
human	açac	12	1	ir.	27		-	10		1	4		1.	- for		A state
Tile Bound	lary	01,	,5003,0	00	6,000	9,0	00	12,000	Bax http	se Map I o://goto.a	by ESRI arcgison	. Availat line.com	ble throu v/maps/\	gh the A Vorld-To	ArcGIS Resour	rce Centers.
Data Cove	erage			I	Meters				U	lta	hS	sta		Ur ASSI	service	Sity Center

UtahStateUniversity LASSI Service Center

Tooele

UtahStateUniversity LASSI Service Center

APPENDIX B – Flight Plan Maps

Flight line layout and target locations for the Great Salt Lake Wetlands

APPENDIX C – Raw Data File Listing

BEAR RIVER BLOCK:
Flown 09/28/2011
Navigation File(s):
Remote_20110928_01.log
Remote_20110928_02.log
Base Station File(s):
BaseStation_20110928.pdc
Raw Flightline (LIDAR)
Files:
110928_163228.sdf
110928_163543.sdf
110928_163943.sdf
110928_164406.s If
110928_164903.sdf
110928_165319.sdf
110928_165852.sdf
110928_170513.sdf
110928_171216.sdf
110928_171959.sdf
110928_172621.sdf
110928_173252.sdf
_
GSL NORTH BLOCK:
Flown 09/27 - 09/30, 10/03 –
10/04, 10/10
Navigation File(s):
Remote_GSL_20110927.log
Remote_GSL_20110927_02.
log
Remote_GSL_20110928_02.
log
Remote_GSL_20110929_01.
log
Remote_GSL_20110929_02.
log
Remote_GSL_20110930_01.
Remote_GSL_20110930_02.
log
Remote_20111003_01.log
Remote_20111003_02.log
Remote_20111004.log
Remote_20111010_01.log
Base Station File(s):
baseStation_2011092/and28

Base_GSL_20110929_01.pd С Base_GSL_20110929_02.pd С Base_GSL_20110930_01.pd С Base_GSL_20110930_02.pd С Base_GSL_20111004_01.pd С Base_GSL_20111004_02.pd Base_GSL_20111010_01.pd С Raw Flightline (LIDAR) Files: 110927_163856.sdf 110927_164125.sdf 110927 164408.sdf 110927_164523.sdf 110927 164952.sdf 110927_165538.sdf 110927 170112.sdf 110927_170658.sdf 110927_171233.sdf 110927_171834.sdf 110927_172420.sdf 110927_173029.sdf 110927_173600.sdf 110927_174158.sdf 110927 174740.sdf 110927_175426.sdf 110927_180008.sdf 110927_180606.sdf 110927_181136.sdf 110927_181729.sdf 110927_182248.sdf 110927_182843.sdf 110927 183423.sdf 110927_184027.sdf 110927 184610.sdf 110927_185208.sdf 110927 185751.sdf 110927_190414.sdf 110927_190947.sdf 110927_191608.sdf

110927_192210.sdf 110927 192851.sdf 110927_193445.sdf 110927 194137.sdf 110927_194748.sdf 110927_195455.sdf 110927_200127.sdf 110927_214153.sdf 110927 214420.sdf 110927_215123.sdf 110927_215849.sdf 110927_220623.sdf 110927_221350.sdf 110927 222115.sdf 110927_222837.sdf 110927_223629.sdf 110927_224428.sdf 110927_225210.sdf 110927 230001.sdf 110927_230909.sdf 110927_231159.sdf 110928 174124.sdf 110928_174458.sdf 110928 175008.sdf 110928_175737.sdf 110928_195133.sdf 110928 195906.sdf 110928_200630.sdf 110928 201335.sdf 110928_202103.sdf 110928_202828.sdf 110928_203525.sdf 110928_204222.sdf 110928 204918.sdf 110928_205553.sdf 110928_210222.sdf 110928 210830.sdf 110928_211417.sdf 110928 212010.sdf 110928_212528.sdf 110928_213052.sdf 110928 213601.sdf 110928_214057.sdf 110928 214538.sdf 110928_215016.sdf

110928_215446.sdf
110928_215846.sdf
110928_220244.sdf
110928_220628.sdf
110928_221117.sdf
110928 221807.sdf
110928 222502.sdf
110928 223835.sdf
110929 161016.sdf
(calibration)
110929_161248.sdf
(calibration)
110929_161639.sdf
(calibration)
110929_162747.sdf
110929_163444.sdf
110929_164129.sdf
110929_164826.sdf
110929_165515.sdf
110929_170207.sdf
110929_170912.sdf
110929_171624.sdf
110929_172306.sdf
110929_173019.sdf
110929_173719.sdf
110929_174415.sdf
110929_175114.sdf
110929_175812.sdf
110929_180503.sdf
110929_181153.sdf
110929_181853.sdf
110929_182542.sdf
110929_183252.sdf
110929_183939.sdf
110929_184632.sdf
110929_185345.sdf
110929_204033.sdf
110929_204750.sdf
110929_205439.sdf
110929_210119.sdf
110929_210833.sdf
110929_211533.sdf
110929_212224.sdf
110929_212921.sdf
110929_213614.sdf
110929_214319.sdf
110929 215013.sdf

110929_215714.sdf 110929 220409.sdf 110929_221119.sdf 110929 221812.sdf 110929_222517.sdf 110929_223217.sdf 110929 223915.sdf 110929_224602.sdf 110929 225325.sdf 110929_225958.sdf 110929 230658.sdf 110929 230904.sdf 110930_160418.sdf (calibration) 110930 160612.sdf (calibration) 110930_160837.sdf (calibration) 110930_162123.sdf 110930_162627.sdf 110930_163335.sdf 110930_164031.sdf 110930_164804.sdf 110930_165518.sdf 110930_170237.sdf 110930_170940.sdf 110930_171655.sdf 110930_172347.sdf 110930_173109.sdf 110930_173806.sdf 110930_174535.sdf 110930_175238.sdf 110930_175944.sdf 110930_180640.sdf 110930_181359.sdf 110930_182136.sdf 110930_182830.sdf 110930_202633.sdf 110930_202856.sdf 110930 203144.sdf 110930_203429.sdf 110930 203747.sdf 110930_204121.sdf 110930_204520.sdf 110930_204907.sdf 110930 205316.sdf 110930 205724.sdf 110930_210207.sdf 110930_210653.sdf

110930_211142.sdf 110930 211648.sdf 110930_212206.sdf 110930 212749.sdf 111003 171841.sdf 111003_172110.sdf 111003_172503.sdf 111003_173133.sdf 111003 173910.sdf 111003_174606.sdf 111003_175325.sdf 111003 180006.sdf 111003_180703.sdf 111003 181345.sdf 111003_182008.sdf 111003_182648.sdf 111003_183340.sdf 111003_184017.sdf 111003 184706.sdf 111003_185332.sdf 111003_185948.sdf 111003_190634.sdf 111003_191313.sdf 111003 191959.sdf 111003_192550.sdf 111003_193154.sdf 111003_193759.sdf 111003_194437.sdf 111003 195141.sdf 111003_195842.sdf 111003_215102.sdf 111003 215807.sdf 111003_220521.sdf 111003 221130.sdf 111003_221734.sdf 111003_222350.sdf 111003 223102.sdf 111003_223301.sdf 111003 223950.sdf 111003_224710.sdf 111003_225348.sdf 111003 230025.sdf 111003_230653.sdf 111003 231433.sdf 111003_232158.sdf 111003_233007.sdf 111003 233635.sdf 111003_234305.sdf 111004_192336.sdf

111004_192540.sdf 111004 195605.sdf 111010_181334.sdf (calibration) 111010 181543.sdf (calibration) 111010_181805.sdf (calibration) 111010_183812.sdf 111010_184606.sdf 111010_185324.sdf 111010_190032.sdf 111010_190749.sdf 111010_191503.sdf 111010_192253.sdf 111010_193027.sdf 111010_193803.sdf 111010_194535.sdf 111010_195257.sdf 111010_195950.sdf 111010_200659.sdf 111010 201346.sdf 111010_202017.sdf

GSL MIDDLE BLOCK:

Flown 10/10 – 10/12 **Navigation File:** Remote_20111010_02.log Remote_20111012_01.log **Base Station File:** Base GSL 20111010 02.pd С Base_GSL_20111011_01.pd С Base_GSL_20111012.pdc Raw Flightline (LIDAR) Files: 111010_220413.sdf 111010 220620.sdf 111010_220841.sdf 111010_221137.sdf 111010_221453.sdf 111010_221756.sdf 111010 222108.sdf 111010_222454.sdf 111010_222840.sdf 111010_223233.sdf 111010_223718.sdf 111010 224213.sdf 111010_224759.sdf

111010_225356.sdf 111010 225938.sdf 111010_230539.sdf 111010 231139.sdf 111010_231802.sdf 111012_172203.sdf (Calibration) 111012 172341.sdf (Calibration) 111012 172616.sdf (Calibration) 111012_174454.sdf 111012_175144.sdf 111012_175827.sdf 111012_180533.sdf 111012_181223.sdf 111012_181921.sdf 111012_182607.sdf 111012_183317.sdf 111012_184011.sdf 111012_184718.sdf 111012 185356.sdf 111012_190101.sdf 111012_190734.sdf 111012_191434.sdf 111012 192104.sdf 111012_192800.sdf 111012_193434.sdf 111012_194129.sdf 111012_195100.sdf

GSL SOUTH BLOCK:

Flown 10/13 - 10/14, 10/18 **Navigation File:** Remote_20111013_01.log Remote_20111013_02.log Remote 20111014 01.log Remore_20111014_02.log Remote_GSL_South_201110 18 01 **Base Station File:** 00052851.pdc 00052861.pdc 00052871.pdc 00052881.pdc 00052901.pdc **Raw Flightline (LIDAR)** Files: 111013_060816.sdf

111013_061515.sdf 111013 061730.sdf 111013_062014.sdf 111013 062304.sdf 111013_062617.sdf 111013_063405.sdf 111013_064138.sdf 111013_064924.sdf 111013 065718.sdf 111013_070508.sdf 111013_071243.sdf 111013 072024.sdf 111013_072800.sdf 111013 073543.sdf 111013_074301.sdf 111013_075030.sdf 111013_075747.sdf 111013_080523.sdf 111013 081245.sdf 111013_082023.sdf 111013_082745.sdf 111013 083518.sdf 111013_084246.sdf 111013 100810.sdf 111013_101529.sdf 111013_102237.sdf 111013_102936.sdf 111013_103659.sdf 111013 104416.sdf 111013_105138.sdf 111013_105844.sdf 111013_110531.sdf 111013_111304.sdf 111013 111936.sdf 111013_112608.sdf 111013_113227.sdf 111013_113846.sdf 111013_114455.sdf 111013_115108.sdf 111013_115649.sdf 111013_120217.sdf 111013_120800.sdf 111014_054202.sdf (calibration) 111014 054344.sdf (calibration) 111014_054550.sdf (calibration) 111014_061040.sdf

111014 061554.sdf
111014_062607.sdf
111014_063122.sdf
111014_063623.sdf
111014_064121 sdf
111014_064608 sdf
111014_065118 sdf
111014_065550 sdf
111014_070039 sdf
111014_070516 sdf
111014_071022 sdf
111014_071753 cdf
111014_071755.Sul
111014_072107.Sul
111014_072420.Sul
111014_072004.Sul
111014_073207.sdf
111014_073628.sdf
111014_074103.sdf
111014_074608.sdf
111014_0/5138.sdf
111014_075708.sdf
111014_080254.sdf
111014_080849.sdf
111014_081449.sdf
111014_082027.sdf
111014_082624.sdf
111014_083227.sdf
111014_094357.sdf
111014_095004.sdf
111014_095643.sdf
111014_100332.sdf
111014_101035.sdf
111014_101702.sdf
111014_102404.sdf
111014_103105.sdf
111014_103757.sdf
111014_104443.sdf
111014_105158.sdf
111014_105902.sdf
111014_110603.sdf
111014_111310.sdf
111014_112009.sdf
111014_112652.sdf
111014_113332.sdf
111014_114032.sdf
111014_114727.sdf
111014 120202.sdf

111018_083123.sdf (calibration) 111018 083301.sdf (calibration) 111018 083511.sdf (calibration) 111018_090012.sdf 111018_090707.sdf 111018_091402.sdf 111018_092053.sdf 111018_092813.sdf 111018_093514.sdf 111018_094229.sdf 111018_094925.sdf 111018_095610.sdf 111018_100309.sdf 111018_101015.sdf 111018_101739.sdf 111018_102509.sdf 111018_103159.sdf 111018_103912.sdf 111018_104444.sdf 111018_105001.sdf 111018_105409.sdf 111018_105711.sdf 111018_110028.sdf **GSL TOOLE BLOCK:** Flown 10/18 Navigation File: Remote_GSL_20111018_02. log Remote GSL 20111018 03. log **Base Station File:** 00052901.pdc Raw Flightline (LIDAR) Files: 111018 162607.sdf 111018_162924.sdf 111018_163515.sdf

111018_172207.sdf 111018 172553.sdf 111018_173007.sdf 111018 173352.sdf 111018_173800.sdf 111018_174142.sdf 111018_174408.sdf 111018_174806.sdf 111018 175213.sdf 111018_175646.sdf 111018_180113.sdf 111018_180526.sdf 111018_181012.sdf 111018_181440.sdf 111018_181914.sdf 111018_182357.sdf 111018_182845.sdf 111018_183313.sdf 111018_183750.sdf 111018_184220.sdf 111018_184719.sdf 111018_185208.sdf 111018_185644.sdf 111018 190130.sdf 111018_204911.sdf 111018_205408.sdf 111018_205901.sdf 111018_210355.sdf 111018 210851.sdf 111018_211342.sdf 111018_211813.sdf 111018 212307.sdf 111018_212723.sdf 111018 213138.sdf 111018_213549.sdf 111018_213955.sdf 111018_214343.sdf 111018_214713.sdf 111018 215029.sdf 111018_215345.sdf 111018_215658.sdf 111018 220149.sdf 111018_220347.sdf 111018 220702.sdf 111018_221104.sdf 111018_221529.sdf 111018 221930.sdf 111018_222314.sdf 111018_222636.sdf

111018_164153.sdf

111018_164648.sdf

111018_165105.sdf

111018_165606.sdf

111018_170029.sdf

111018_170524.sdf 111018_171002.sdf

111018 171442.sdf

111018_171824.sdf