QUARTERLY
TECHNICAL PROGRESS REPORT
Reporting Period
Start Date: April 1, 2007
End Date: June 30, 2007

MAJOR OIL PLAYS IN UTAH
AND VICINITY

Submitted by:
Utah Geological Survey
1594 West North Temple, Suite 3110
P.O. Box 146100
Salt Lake City, Utah 84114-6100
Ph.: (801) 537-3300/Fax: (801) 537-3400

Prepared for:
United States Department of Energy
National Energy Technology Laboratory

September 19, 2007
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product.
MAJOR OIL PLAYS IN UTAH
AND VICINITY

QUARTERLY
TECHNICAL PROGRESS REPORT
April 1, 2007 - June 30, 2007

by
Thomas C. Chidsey, Jr., Principal Investigator, Utah Geological Survey

Contract No. DE-FC26-02NT15133

Virginia Weyland, Contract Manager
U.S. Department of Energy
National Energy Technology Laboratory
1 West 3rd Street
Tulsa, OK 74103-3532

US/DOE Patent Clearance is not required prior to the publication of this document.
ABSTRACT

Utah oil fields have produced over 1.2 billion barrels (191 million m3) of oil and hold 256 million barrels (40.7 million m3) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 production increased due to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt play. The Utah Geological Survey believes this new upward production trend can continue by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play.

This report covers research activities for the twentieth quarter of the project (April 1 through June 30, 2007). This work included (1) continued analysis of the best practices used in the Pennsylvanian Paradox Formation play, Utah Paradox Basin, and (2) technology transfer activities.

The most prolific oil and gas play in the Paradox Basin is the Pennsylvanian Paradox Formation play. The Paradox Formation has produced over 500 million barrels (80 million m3) of sweet, paraffinic oil and 650 billion cubic feet of gas (18 billion m3) from more than 70 fields. The main producing zones are referred to as the Cane Creek, Desert Creek, and Ismay. Trap types include stratigraphic, stratigraphic with some structural influence, combination stratigraphic/structural, structural, and diagenetic. The Paradox Formation has heterogeneous reservoir properties because of depositional lithofacies with varying porosity and permeability, carbonate buildup (mound) relief and flooding surfaces (parasequence boundaries), fracturing, and diagenetic effects. Best late-term development practices include waterflood, carbon dioxide flood, and horizontal drilling programs.

Technology transfer activities during this quarter consisted of exhibiting a booth display of project materials at the 2007 Annual Convention of the American Association of Petroleum Geologists (AAPG), technical and non-technical presentations describing the new central Utah thrust belt Navajo Sandstone play, and publications. We also finalized a manuscript on the geology of Covenant field in the central Utah thrust belt play for inclusion in the Utah Geological Association’s 2007 guidebook on the geology of central Utah. Project team members joined Utah Stake Holders Board Members in attending the Uinta Basin Oil and Gas Collaborative Group meeting in Vernal, Utah. The project home page was updated on the Utah Geological Survey Web site.
CONTENTS

ABSTRACT..i
EXECUTIVE SUMMARY ... iii
INTRODUCTION ...1
 Project Overview ..1
 Project Benefits ...2
BEST PRACTICES FOR THE PENNSYLVANIAN PARADOX FORMATION, PARADOX
BASIN PLAY – DISCUSSION AND RESULTS..5
 Paradox Formation, Paradox Basin Play Description..5
 Data Collection ..8
TECHNOLOGY TRANSFER ...8
 Utah Geological Survey Survey Notes and Web Site ..10
 Presentations ..10
 Project Publications ..11
CONCLUSIONS AND RECOMMENDATIONS ...11
ACKNOWLEDGMENTS ...12
REFERENCES ..12

FIGURES

Figure 1. Oil production in Utah through 2006 ...1
Figure 2. Play areas, and oil and gas fields in the (A) Paradox Basin and (B) Uinta Basin......3
Figure 3. Play areas, and oil and gas fields in the (A) Utah-Wyoming thrust belt and (B) central
 Utah thrust belt ...4
Figure 4. Paradox Formation play area, major fields, and thickness of the Pennsylvanian rocks
 in Utah, Colorado, and Arizona ...6
Figure 5. Pennsylvanian stratigraphic chart for the Paradox Basin7
Figure 6. Location of the Paradox Formation Blanding sub-basin Desert Creek zone, Blanding
 sub-basin Ismay zone, and Aneth platform Desert Creek zone subplays9
EXECUTIVE SUMMARY

Utah oil fields have produced over 1.2 billion barrels (191 million m³) of oil and hold 256 million barrels (40.7 million m³) of proved reserves. The 13.7 million barrels (2.2 million m³) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 production increased due to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt play. The overall objectives of this study are to (1) continue adding new discoveries, (2) increase recoverable oil from existing field reservoirs, (3) prevent premature abandonment of numerous small fields, (4) increase deliverability through identifying the latest drilling, completion, and secondary/tertiary recovery techniques, and (5) reduce development costs and risk.

To achieve these objectives, the Utah Geological Survey is producing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. This research is partially funded by the Preferred Upstream Management Program (PUMPII) of the U.S. Department of Energy, National Petroleum Technology Office (NPTO) in Tulsa, Oklahoma. This report covers research activities for the twentieth quarter of the project (April 1 through June 30, 2007). This work included (1) continued analysis of the best practices used in the Pennsylvanian Paradox Formation play, Utah Paradox Basin, and (2) technology transfer activities.

The most prolific oil and gas play in the Paradox Basin is the Pennsylvanian Paradox Formation play. The Paradox Formation has produced over 500 million barrels (80 million m³) of sweet, paraffinic oil and 650 billion cubic feet of gas (18 billion m³) from more than 70 fields. The main producing zones are referred to as the Cane Creek, Desert Creek, and Ismay. Trap types include stratigraphic, stratigraphic with some structural influence, combination stratigraphic/structural, structural, and diagenetic. The Paradox Formation has heterogeneous reservoir properties because of depositional lithofacies with varying porosity and permeability, carbonate buildup (mound) relief and flooding surfaces (parasequence boundaries), fracturing, and diagenetic effects. Best late-term development practices include waterflood, carbon dioxide flood, and horizontal drilling programs.

Technology transfer activities during this quarter consisted of exhibiting a booth display of project materials at the 2007 Annual Convention of the American Association of Petroleum Geologists (AAPG) in Long Beach, California. Technical and non-technical presentations describing the geology of Covenant field and the central Utah thrust belt Navajo Sandstone oil play were given at the AAPG Annual Convention, Geological Society of America Rocky Mountain Section meeting, and the International Oil Scouts Association meeting. Abstracts describing Covenant and Greater Aneth fields, based on project work, were accepted for presentations at the 2007 AAPG Rocky Mountain Section Meeting in Snowbird, Utah. We also prepared the final manuscript on the geology of Covenant field in the central Utah thrust belt play for inclusion in the Utah Geological Association’s 2007 guidebook on the geology of central Utah. Project team members joined Utah Stake Holders Board Members in attending the Uinta Basin Oil and Gas Collaborative Group meeting in Vernal, Utah. The project home page was updated on the Utah Geological Survey Web site. Project team members published abstracts on the central Utah thrust belt Navajo Sandstone oil play and a Quarterly Technical Progress Report detailing project work, results, and recommendations.
INTRODUCTION

Project Overview

Utah oil fields have produced over 1.3 billion barrels (bbls) (191 million m3) (Utah Division of Oil, Gas and Mining, 2006). The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years. However, in late 2005 production increased (figure 1), due to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt play, and reversed the decline that began in the mid-1980s (Utah Division of Oil, Gas and Mining, 2006). Proven reserves are relatively high, at 256 million bbls (40.7 million m3) (Energy Information Administration, 2006). With higher oil prices now prevailing, secondary and tertiary recovery techniques should boost future production rates and ultimate recovery from known fields.

Utah’s drilling history has fluctuated greatly due to discoveries, oil and gas price trends, and changing exploration targets. Utah has entered another boom period rivaling the early 1980s. In 2006, the Utah Division of Oil, Gas and Mining issued a record 2062 drilling permits and 889 wells were spudded. Sustained high petroleum prices are providing the economic climate needed to entice more high-risk exploration investments (more wildcats), resulting in new discoveries.

Utah still contains large areas that are virtually unexplored. There is also significant potential for increased recovery from existing fields by employing improved reservoir characterization and the latest drilling, completion, and secondary/tertiary recovery technologies. New exploratory targets may be identified from three-dimensional (3D) seismic surveys. Development of potential prospects is within the economic and technical capabilities of both major and independent operators.

Figure 1. Oil production in Utah through 2006 showing an increase due, in part, to the discovery of Covenant field in the new central Utah thrust belt Jurassic Navajo Sandstone play. Source: Utah Division of Oil, Gas and Mining production records.
The primary goal of this study is to increase recoverable oil reserves from existing field reservoirs and new discoveries by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming (figures 2 and 3). These play portfolios will include descriptions (such as stratigraphy, diagenetic analysis, tectonic setting, reservoir characteristics, trap type, seal, and hydrocarbon source) and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; and descriptions of reservoir outcrop analogs for each play. Also included will be an analysis of land-use constraints on development, such as wilderness or roadless areas, and national parks within oil plays.

This report covers research activities for the twentieth quarter of the project (April 1 through June 30, 2007). This work included (1) continued analysis of the best practices used in the Pennsylvanian Paradox Formation play of the Paradox Basin, Utah, and (2) technology transfer activities.

Project Benefits

The overall goal of this multi-year project is enhanced petroleum production in the Rocky Mountain region. Specific benefits expected to result from this project include the following:

(1) improved reservoir characterization to prevent premature abandonment of numerous small fields in the Paradox and Uinta Basins,

(2) identification of the type of untapped compartments created by reservoir heterogeneity (for example, diagenesis and abrupt facies changes) to increase recoverable reserves,

(3) identification of the latest drilling, completion, and secondary/tertiary techniques to increase deliverability,

(4) identification of reservoir trends for field extension drilling and stimulating exploration in undeveloped parts of producing fairways,

(5) identification of technology used in other basins or producing trends with similar types of reservoirs that might improve production in Utah,

(6) identification of optimal well spacing/location to reduce the number of wells needed to successfully drain a reservoir, thus reducing development costs and risk, and allowing more productive use of limited energy investment dollars, and

(7) technology transfer to encourage new development and exploration efforts, and increase royalty income to the federal, state, local, Native American, and fee owners.
Figure 2. A - Oil and gas fields in the Paradox Basin of Utah, Colorado, and Arizona (modified from Harr, 1996). B - Oil and gas fields in the Uinta Basin of Utah (modified from Chidsey and others, 2004b). Play areas in the Paradox and Uinta Basins colored light orange.
Figure 3. A - Oil and gas fields, uplifts, and major thrust faults in the Utah-Wyoming thrust belt. B - Location of Covenant oil field, uplifts, and selected thrust systems in the central Utah thrust belt province. Numbers and sawteeth are on the hanging wall of the corresponding thrust system. Modified from Hintze (1980), Sprinkel and Chidsey (1993), and Peterson (2001). Play areas in the thrust belt colored light orange.
The Utah play portfolios produced by this project will provide an easy-to-use geologic, engineering, and geographic reference to help petroleum companies plan exploration, land-acquisition strategies, and field development. These portfolios may also help pipeline companies plan future facilities and pipelines. Other users of the portfolios will include petroleum engineers, petroleum land specialists, landowners, bankers and investors, economists, utility companies, manufacturers, county planners, and numerous government agencies.

The results of this project will be transferred to industry and other interested parties through establishment of Technical Advisory and Stake Holders Boards, an industry outreach program, and technical presentations at national and regional professional society meetings. All of this information will be made public through (1) the Utah Geological Survey (UGS) Web site, (2) an interactive, menu-driven digital product on compact disc, and (3) hard-copy publications in various technical or trade journals and UGS publications.

BEST PRACTICES FOR THE PENNSYLVANIAN PARADOX FORMATION, PARADOX BASIN PLAY – DISCUSSION AND RESULTS

Paradox Formation, Paradox Basin Play Description

The most prolific oil and gas play in the Paradox Basin is the Pennsylvanian Paradox Formation play (figure 4). The Paradox has produced over 500 million barrels of oil (BO [80 million m³]) and 650 billion cubic feet of gas (BCFG [18 billion m³]); however, much of the gas included in the production figures is cycled gas, including carbon dioxide, for pressure maintenance (Utah Division of Oil, Gas and Mining, 2006; Colorado Oil & Gas Conservation Commission, 2006). Greater Aneth field, Utah’s largest oil producer, was discovered in 1956, and it has produced over 444 million BO (70 million m³) (Utah Division of Oil, Gas and Mining, 2007). The remaining production is from nearly 100 small fields in the basin.

The play outline represents the maximum extent of petroleum potential in the geographical area as defined by producing reservoirs, hydrocarbon shows, and untested hypotheses. The attractiveness of the Paradox Formation play (and other Paradox Basin plays) to the petroleum industry depends on the likelihood of successful development, reserve potential, pipeline access, drilling costs, oil and gas prices, and environmental concerns. When evaluating these criteria, certain aspects of the Paradox Formation play may meet the exploration guidelines of major oil companies while other aspects meet the development guidelines of small, independent companies. Prospective drilling targets in the Paradox Formation play are delineated using high-quality two-dimensional (2-D) and three-dimensional (3-D) seismic data, 2-D and 3-D forward modeling/visualization tools, well control, dipmeter information, facies mapping, and detailed analyses of the diagenetic history.

Rapid subsidence of the Paradox Basin, particularly during the Pennsylvanian and then continuing into the Permian, accommodated large volumes of evaporitic and marine sediments that intertongue with non-marine arkosic material shed from the highland area to the northeast. Deposition in the basin produced a thick cyclical sequence of carbonates, evaporates, and organic-rich shale in a subtropical arid environment. A shallow-water carbonate shelf on the south and southwest margins of the basin that locally contained carbonate buildups. These carbonate buildups, and the material shed from their flanks, formed petroleum traps where reservoir-quality porosity and permeability have developed.
The Paradox Basin can generally be divided into three areas: the Paradox fold and fault belt in the north, the Blanding sub-basin in the south-southwest, and the Aneth platform in southeasternmost Utah (figure 2A). The area now occupied by the Paradox fold and fault belt was also the site of greatest Pennsylvanian/Permian subsidence and salt deposition. Folding in the Paradox fold and fault belt began as early as the Late Pennsylvanian as sediments were laid down thinly over, and thickly in areas between rising salt (Doelling, 2000). The Paradox fold and fault belt was created during the Late Cretaceous through Quaternary by a combination of (1) reactivation of basement normal faults, (2) salt flowage, dissolution, and collapse, and (3) regional uplift (Doelling, 2000). The relatively undeformed Blanding sub-basin and Aneth platform developed on a shallow-marine shelf. Each area contains oil and gas fields with structural, stratigraphic, or combination traps formed on discrete, often seismically defined, closures. Most Paradox Formation oil production comes from stratigraphic traps in the Blanding sub-basin and Aneth platform that locally contain algal-mound and other carbonate lithofacies buildups.
The three main producing zones of the Paradox Formation are informally named the Cane Creek shale, Desert Creek zone, and Ismay zone (Hite, 1960; Hite and Cater, 1972; and Reid and Berghorn, 1981) (figure 5). In the fold and fault belt, the Cane Creek shale of the Paradox Formation is composed of marine carbonate, evaporite, and organic-rich shale beds. In the Blanding sub-basin, Ismay-zone reservoirs are dominantly limestones composed of small, phylloid-algal buildups; locally variable, inner-shelf, skeletal calcarenites; and rare, open-marine, bryozoan mounds. Desert Creek-zone reservoirs are dominantly dolomite comprising regional, nearshore, shoreline trends with highly aligned, linear facies tracts. On the Aneth platform, Desert Creek reservoirs include shallow-shelf buildups (phylloid algal, coralline algal, and bryozoan buildups [mounds]) and calcarenites (beach, dune, and oolite banks). Here, the Desert Creek and Ismay zones are predominately limestone, with local dolomitic units.

Traps in the Blanding sub-basin and Aneth platform regions include stratigraphic, stratigraphic with some structural influence, combination stratigraphic/structural, and diagenetic. Many carbonate buildups or fractured reservoirs developed on subtle anticlinal noses or structural closures. The Cane Creek is a fractured, self-sourced oil reservoir that is highly overpressured – an ideal target for horizontal drilling. Fracture data in the Cane Creek show a regional, northeast to southwest, near-vertical, open, extensional fracture system.

Vertical reservoir seals for the Paradox producing zones are shale, halite, and anhydrite within the formation; lateral seals are permeability barriers created by unfractured, off-mound (non-buildup) mudstone, wackestone, and anhydrite. Hydrocarbons in Paradox Formation reservoirs were generated from source rocks within the formation itself during maximum burial in the Late Cretaceous and early Tertiary (Hite and others, 1984; Nuccio and Condon, 1996). Organic-rich units, such as the Cane Creek, Chimney Rock, and Gothic shales, are composed of black, sapropelic shale and shaley dolomite.

The Paradox Formation has heterogeneous reservoir properties because of depositional lithofacies with varying porosity and permeability, carbonate buildup (mound) relief and flooding surfaces (parasequence boundaries), fracturing, and diagenetic effects. The extent of these factors, and how they are combined, affect the degree to which fluid flow barriers are created. Identification and correlation of depositional lithofacies, parasequences, and fracture trends in individual Paradox reservoirs is critical to understanding their effect on water/carbon dioxide injection programs, production rates, and paths of petroleum movement.
Fractured shale beds in the Cane Creek shale are oil productive in the Paradox Basin fold and fault belt. The Ismay mainly produces oil from fields along a trend that crosses the southern Blanding sub-basin. The Desert Creek produces oil in fields along a trend that crosses the central Blanding sub-basin and Aneth platform. Both the Ismay and Desert Creek buildups generally trend northwest-southeast.

The Paradox Formation oil play area includes nearly the entire Paradox Basin (figure 4); the formation produces only gas in the southeastern part of the basin in Colorado. The Paradox Formation Play is divided into four subplays (Chidsey and others, 2004a; Chidsey, 2006) (figure 6): (1) fractured shale, (2) Blanding sub-basin Desert Creek zone, (3) Blanding sub-basin Ismay zone, and (4) Aneth platform Desert Creek zone. Three significant practices were or could be employed in the later development of fields in the Paradox Formation play to enhance the ultimate recovery of oil: (1) waterfloods, (2) carbon dioxide (CO₂), and (3) horizontal drilling, floods.

Data Collection

During the quarter, data were collected from the files of the Utah Division of Oil, Gas and Mining, where there is a wealth of publicly available information, and from various publications for fields in the Utah portion of the Paradox Basin. This information includes structure maps and cross sections, production and pressure data, completion and injection reports, drilling and development plans, and testimony given at spacing hearings and other hearings before the Utah Division of Oil, Gas and Mining. The purpose of this data collection is to help determine the best drilling, completion, and secondary/tertiary recovery techniques for these and similar fields in the Paradox Basin. Analysis summarizing the best practices as determined from this information will be summarized in the next Quarterly Technical Progress Report.

TECHNOLOGY TRANSFER

The UGS is the Principal Investigator and prime contractor for this project under the U.S. Department of Energy (DOE) Preferred Upstream Management Program (PUMPII). All play maps, reports, databases, and other deliverables produced for the PUMPII project will be published in interactive, menu-driven digital (Web-based and compact disc) and hard-copy formats by the UGS for presentation to the petroleum industry. Syntheses and highlights will be submitted to refereed journals, as appropriate, such as the American Association of Petroleum Geologists (AAPG) Bulletin and Journal of Petroleum Technology, and to trade publications such as the Oil and Gas Journal.

The technology-transfer plan included the formation of a Technical Advisory Board and a Stake Holders Board. These boards meet annually with the project technical team members. The Technical Advisory Board advises the technical team on the direction of study, reviews technical progress, recommends changes and additions to the study, and provides data. The Technical Advisory Board is composed of field operators from the oil-producing provinces of Utah that also extend into Wyoming or Colorado. This board ensures direct communication of the study methods and results to the operators. The Stake Holders Board is composed of groups that have a financial interest in the study area including representatives from the State of Utah.
Figure 6. Location of the Paradox Formation Blanding sub-basin Desert Creek zone, Blanding sub-basin Ismay zone, and Aneth platform Desert Creek zone subplays, southeastern Utah, southwestern Colorado, and northeastern Arizona. Fields in italics have produced over 500,000 BO as of January 1, 2007. Modified from Chidsey and others (2004b); Wray and others (2002).
(School and Institutional Trust Lands Administration and Utah Division of Oil, Gas and Mining) and the federal government (Bureau of Land Management and Bureau of Indian Affairs). The members of the Technical Advisory and Stake Holders Boards receive all quarterly technical reports and copies of all publications, and other material resulting from the study. Board members also provide field and reservoir data, especially data pertaining to best practices. During the quarter, project team members joined Utah Stake Holders Board members in attending the Uinta Basin Oil and Gas Collaborative Group meeting in Vernal, Utah, on April 12, 2007. Project activities, results, and recommendations were presented at this meeting.

Project materials, plans, and objectives were displayed at the UGS booth during the AAPG Annual Convention, April 1-4, 2007, in Long Beach, California. Four UGS scientists staffed the display booth at this event. Project displays will be included as part of the UGS booth at professional and other public meetings throughout the duration of the project.

Abstracts describing Covenant field in the central Utah thrust belt play, enhanced oil recovery in the Uinta Basin, and Aneth field in the Paradox Basin, all based on project work, were accepted by the AAPG for presentations at the 2007 Rocky Mountain Section meeting in Snowbird, Utah.

Utah Geological Survey Survey Notes and Web Site

The UGS publication *Survey Notes* provides non-technical information on contemporary geologic topics, issues, events, and ongoing UGS projects to Utah's geologic community, educators, state and local officials and other decision-makers, and the public. *Survey Notes* is published three times yearly. Single copies are distributed free of charge and reproduction (with recognition of source) is encouraged.

The UGS maintains a Web site on the Internet, http://geology.utah.gov. The UGS site includes a page under the heading *Utah Geology/Oil, Coal, and Energy*, which describes the UGS/DOE cooperative studies (PUMPII, Paradox Basin [two projects], Ferron Sandstone, Bluebell field, Green River Formation), and has a link to the DOE Web site. Each UGS/DOE cooperative study also has its own separate page on the UGS Web site. The PUMPII project page, http://geology.utah.gov/emp/pump/index.htm, contains (1) a project location map, (2) a description of the project, (3) a reference list of all publications that are a direct result of the project, (4) poster presentations, and (5) quarterly technical progress reports.

Presentations

The following presentations were made during the reporting period as part of the technology transfer activities:

“Covenant Oil Field, Central Utah Thrust Belt – Possible Harbinger of Future Discoveries” by Thomas C. Chidsey, Jr., Michael D. Laine, John P. Vrona, and Douglas K. Strickland, at the AAPG Annual Convention, Long Beach, California, April 2, 2007. Displays of Navajo Sandstone reservoir cores, the petroleum geology, reservoir facies, petrophysical properties, and oil source of the Covenant field discovery, and potential of the central Utah thrust belt Navajo Sandstone oil play were part of the presentation.
“Exploration and Petroleum Geology of the Central Utah Hingeline” by Thomas C. Chidsey, Jr., Douglas A. Sprinkel, and Michael D. Laine, at the Geological Society of America Rocky Mountain Section meeting, St. George, Utah, May 8, 2007. The exploration history, petroleum geology, oil source and migration, the Covenant field discovery, and potential of the central Utah thrust belt Navajo Sandstone oil play were part of the presentation.

“Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays” by Thomas C. Chidsey, Jr., presented at the annual meeting of the International Oil Scouts Association in Park City, Utah, June 19, 2007. An overview of major Utah oil plays, and the geology and potential of the new central Utah thrust belt play were included in the presentation.

Project Publications

We also finalized a manuscript on the petroleum geology of Covenant field in the central Utah thrust belt play for inclusion in the Utah Geological Association’s 2007 guidebook titled “Central Utah – Diverse Geology of a Dynamic Landscape.”

CONCLUSIONS AND RECOMMENDATIONS

1. A combination of depositional and structural events created the right conditions for oil generation and trapping in the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado, Wyoming, and Arizona. Oil plays are specific geographic areas having petroleum potential due to favorable source rock, migration paths, reservoir characteristics, and other factors.
2. The Paradox Basin is located mainly in southeastern Utah and southwestern Colorado with small portions in northeastern Arizona and the northwestern corner of New Mexico. The most prolific oil and gas play in the Paradox Basin is the Pennsylvanian Paradox Formation play. The Paradox Formation has produced over 500 million bbls (80 million m³) of sweet, paraffinic oil and 650 BCFG (18 billion m³) from more than 70 fields. The main producing zones are referred to as the Cane Creek, Desert Creek, and Ismay. The Paradox Formation oil play area includes nearly the entire Paradox Basin. The Paradox Formation Play is divided into four subplays: (1) fractured Cane Creek shale, (2) Blanding sub-basin Desert Creek zone, (3) Blanding sub-basin Ismay zone, and (4) Aneth platform Desert Creek zone.

3. Three significant late-term development practices were or could be employed in the later development of fields in the Paradox Formation play to enhance the ultimate recovery of oil: (1) waterfloods, (2) carbon dioxide (CO₂) floods, and (3) horizontal drilling.

4. Identification and correlation of depositional lithofacies, parasequences, and fracture trends in individual Paradox reservoirs is critical to understanding their effect on water/carbon dioxide injection programs, production rates, and paths of petroleum movement.

ACKNOWLEDGMENTS

Funding for this ongoing research was provided as part of the Preferred Upstream Management Program of the U.S. Department of Energy, National Petroleum Technology Laboratory, Tulsa, Oklahoma, contract number DE-FC26-02NT15133. The Contracting Officer's Representative is Virginia Weyland. Support was also provided by the UGS. James Parker, Sharon Wakefield, and Cheryl Gustin of the UGS prepared the figures. Cheryl Gustin formatted the manuscript. This report was reviewed by David Tabet and Michael Hylland of the UGS.

REFERENCES

Wray, L.L., Apeland, A.D., Hemborg, T., and Brchan, C., 2002, Oil and gas fields map of Colorado; Colorado Geological Survey Map Series 33, scale 1:500,000.
National Energy Technology Laboratory

626 Cochrans Mill Road
P.O. Box 10940
Pittsburgh, PA 15236-0940

3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880

One West Third Street, Suite 1400
Tulsa, OK 74103-3519

1450 Queen Avenue SW
Albany, OR 97321-2198

2175 University Ave. South
Suite 201
Fairbanks, AK 99709

Visit the NETL website at:
www.netl.doe.gov

Customer Service:
1-800-553-7681