

3962 Alpine Valley Circle Sandy, Utah 84092

Geothermal Resources Council &

Utah Natural Resources

Geothermal Heat Pump Workshop
April 29 & 30, 2009
GX Loop Heat Pumps and Design Considerations
Hybrid Designs

Special Thanks To:

Andrew Chiasson Geo-Heat Center Oregon Institute of Technology

Presentation Outline

- Overview of geothermal heat pump (GHP) systems
 - aka: GeoExchange (GX), ground-source, ground-coupled
- GX Design
 - Thermal Conductivity
 - Loop Design Considerations
- Hybrid Systems

Growing Interest in Sustainable, Green

Design

- Owners
- Architects
- Government
- Patrons
- Utilities
- Students

Environment

Annual Carbon Dioxide Emissions from Space Conditioning Equipment by Region

(In thousands of kilograms per year)

Federal and State Incentives:

Utah: Tax Credit

Residential: 25% of the cost of the GeoExchange system, up to \$2,000

Commercial: 10% of the cost of the GeoExchange System up to \$50,000

Federal Tax Credit:

Residential: 30% of the cost of the GeoExchange system – no limit. GX equipment must meet Energy Star requirements.

Commercial:

10% of the cost of the system.

5 year accelerated depreciation

May elect to take credit as a grant – paid within 60 days of completion.

50% Energy reduction up to \$1.80/ sq. ft.

Overview: What do GHP systems provide?

- Heating
- Cooling
- Hot water
- Humidity control
- Ice making

...but also...

- Energy efficiency
- Decreased maintenance
- Decreased space needs
- Low operating costs

- No outdoor equipment (no noise or outdoor maintenance)
- Comfort & air quality
- Reduced peak electrical loads for air conditioning

Geothermal & Solar Energy

The earth is like a solar battery absorbing nearly half of the sun's energy. The ground stays a relatively constant temperature through the seasons, providing a warm source in winter & a cool heat sink in summer.

Accredited GeoExchange Installer Training

Relatively Constant Earth Temp

Ground Source Heating and Cooling...

Uses a Heat Pump to move energy from a space into the ground or, energy from the ground into a space.

digitalblasphemy.com

Components of GHP Systems

- 1. Earth connection
 - Closed-loop
 - Open-loop
- 2. Water-source heat pump
- 3. Interior heating/ cooling distribution subsystem
 - Forced air
 - Radiant

Components: Water-Source Heat Pump

- Water-to-air or waterwater heat pump
- ¾ to 10 ton units are most common
- Up to 50 tons commercial

Ground Source Heat Pump

Heat Pumps

How do heat pumps work

Moves heat = A/C or refrigerator

 Why are they more efficient that conventional equipment

Heating – Moving not creating

Cooling – Thermal Conductivity of water vs.

Residential Water-to-Water

Ground Source Heat Pump Heating Operation

IGSHPA

Ground Source Heat Pump Cooling Operation

Accredited GeoExchange Installer Training

Geoexchange Potential

- Heating Efficiency
 - -80-96% AFUE vs. 4.0 COP (400%)
- Cooling Efficiency
 - -13-15 SEER vs. 38 SEER (Up to 30 EER)
 - (11 EER) up to (30 EER)
- Consumer satisfaction > 95%
- Owner savings
 - -30%-70% \$ in heating mode
 - -20%-50% \$ in cooling mode

GHPs and Aquaculture: Feasibility

Contours represent fraction of geothermal capacity to the peak hourly heating load

Full article available at http://geoheat.oit.edu/bulletin/bull26-1/art3.pdf

GHP system options

Open-Loop

Residential systems: Each home typically has its own ground heat exchanger

HORIZONTAL SYSTEM

Other Residential and Commercial Applications

- Black Water Heat Exchangers
- Fountain Heat Exchangers
- PV Hot Water Recirculation Systems
- Solar Hot Water Recharge

Black Water Heat Exchanger Major Downey Mansion

Sound Geothermal Corporation

OVERVIEW

DESIGN CONSIDERATIONS

- -Thermal conductivity testing
- -Loop design parameters
- -Physical loop design considerations

HYBRID SYSTEMS

-Overview

Economics

Renewable Utilities

What we need to know about the earth before design of the loop.

- -Soil properties Type of soil
- -Earth temperature
- -Formation Thermal Conductivity (k Btu/hr-ft-°F)
 - •A measure of a material's ability to conduct heat.
- -Formation Thermal Diffusivity ($\alpha = k/\rho c ft2/day$)
 - •Ratio of heat conduction rate to heat storage capacity.
- -Excavation or drilling characteristics

Shallow Loops-Soil Thermal Groups

Coarse-Grained

- Water content has large effect
- Higher values of thermal conductivity if dirty

Fine-Grained

- Silt or Clay
- Silts have higher thermal conductivity values

Loam

Mixture of sand, silt and clay

Moisture content is very important:

Constant Earth Temperatures Compared to Air

Vertical Boreholes

Most of the GX sites in Utah will fall into one of three hard-rock categories.

However, thermal conductivity is highly variable.

Petrologic Groups

Petrologic Group Number	Principal Rock Type
. 1	Pumice, obsidian, perlite
2	Basalts
3	Andesite, rhyolite
4	Mudstones
5	Granite, granodiorite, quartz, monzonite, diorite, diabase, gabbro, peridotite
6	Schist, amphibolite, gneiss, phyllite
7 8	Limestone, dolomite, marble Sandstone and tuff

Thermal Conductivities of Petrologic Groups

What we need to know about the earth before design of the loop.

- -Soil properties Type of soil
- -Earth temperature
- -Formation Thermal Conductivity (k Btu/hr-ft-°F)
 - •A measure of a material's ability to conduct heat.
- -Formation Thermal Diffusivity ($\alpha = k/\rho c ft2/day$)
 - •Ratio of heat conduction rate to heat storage capacity.
- -Excavation or drilling characteristics

Soil <u>Temperature</u>

- Soil temperature is variable to about 26 feet.
- At ~26 feet the temperature is +/- 2° F of the mean surface air temperature.
- Generally, below ~26' to approximately 1,000', the earth temperature will remain constant.
- Geologic anomalies (faults, thermal intrusions, etc.) may change this rule of thumb.

What we need to know about the earth before design of the loop.

- -Soil properties Type of soil
- -Earth temperature
- -Formation Thermal Conductivity (k Btu/hr-ft-°F)
 - •A measure of a material's ability to conduct heat.
- -Formation Thermal Diffusivity (α =k/ ρ c ft2/day)
 - Ratio of heat conduction rate to heat storage capacity.
- -Excavation or drilling characteristics

FTC Testing

Also known as:

- In-situ Testing
- Thermal Conductivity Testing

"A field test to determine the AVERAGE thermal conductivity of the formation throughout the entire length of the vertical bore column."

Formation Thermal Conductivity Testing

Other than building load distribution, soil (earth) conditions are the largest factor in determining the shortest necessary loop length, either conventional or hybrid.

Fundamentals

ASHRAE Recommended Procedures

ASHRAE's 2003 HVAC Applications handbook, page 32.14

- Required Test Duration 36 to 48 hours.
- Power
 - Standard deviation ≤ 1.5% of average.
 - Maximum power variation ≤ 10 % of average.
 - Heat flux rate between 15 W and 25 W per foot of bore.
- Undisturbed Soil Temperature Shall be determined by recording the minimum loop temp. at startup.
- Installation Procedures Bore dia. ≤ 6". Bore should be grouted bottom to top.
- Time Between Installation and Testing 5 days if grout TC is low (< 0.75 Btu/hr ft °F), otherwise 3 days.

Thermal Conductivity on the FTC Test

What we need to know about the earth before design of the loop.

- -Soil properties Type of soil
- -Earth temperature
- -Formation Thermal Conductivity (k Btu/hr-ft-°F)
 - •A measure of a material's ability to conduct heat.
- -Formation Thermal Diffusivity ($\alpha = k/\rho c ft2/day$)
 - •Ratio of heat conduction rate to heat storage capacity.
- -Excavation or drilling characteristics

GeoTec Supplied Drill Logs

JUAB SCHOOL DISTRICT Nephi, UT - New Red Cliffs Elementary School Geothermal Soil Analysis

DRILLING LOG - Test Borehole #1

3/20/2007

Driller: Bertram Drilling

State License #: 34 24 Joints on rig Rig: Mayhew 1000 15' Length of Kelly

Drilling Fluid: water based mud

Loop: Brand, size, length Centennial, 1.25", 810
Grout: Cetco Geothermal Grout TC - 0.40

SPUD/TD 3/20/2007

Spud with Medium Mill Tooth Average ROP - 55-70

NOTE: Time gaps represent connections or unrelated activity

Surface Water - None encountered

Time Start	End	Activity	Duration Minutes	Depth		Comments
3/20/2007		,				
9:25	9:27	D	2	0-15	Α	top soil, silt & clay
9:35	9:37	D	2	15-30	L	Change to 4-way blade bit brn. Cly, gravel
9:53	10:35	D	42	30-45	L	A/A - Changed to rock bit @ 40', COH,
					U	cobble fall in, had to re-drill 6-7 feet
					V	Coarse gravel and valley fill+/- 40-45'
					- 1	Oquirrh rubble- cleaned up ledges 10:35-10:40
10:41	10:49	D	8	45-60	Α	Oquirrh rubble
10:56	11:01	D	5	60-75	L	A/A - clean up ledges

3/21/2007

Added:

- Drilling times
- Bits used
- General comments
- •Additional pertinent data needed for absent drillers to bid.

	11:18	11:25	D	7	75-90		brn clay w/ bigger gravel/fill clean up ledges
	11:41	12:18	D	37	90-105	F A	POOH @ 95' - bit jet holes pulgged 12:10 - drill again - coarse gravel and fill w/ brn cly
	12:21	12:33	D	12	105-120	N	Coarse gravel & fill w/ brn cly
	12:39	12:54	D	15	120-135		A/A
	12:59	13:08	D	9	135-150	F	A/A
	13:10	13:16	D	6	150-165	0	A/A
	13:21	13:26	D	5	165-180	R	A/A - clean up ledges, and fix cable on rig
	13:39	13:48	D	9	180-195	M	Coarse gravel & fill w/ brn cly @14:02, had to redrill last 8'
	14:07	14:20	D	13	195-210	Α	Coarse sand & gravel
	14:26	14:31	D	5	210-225	Т	A/A (silty)
	14:35	14:41	D	6	225-240	- 1	A/A - w/ brn cly
	14:44	14:50	D	6	240-255	0	Coarse gravel/fill w/ brn cly
	14:54	14:59	D	5	255-270	N	A/A
	15:06	15:15	D	9	270-285		A/A - (worked on rig set-up 15:15-15:25)
							_
	15:25	15:48	D	23	285-300		Coarse cemented sand & gravel
							snappy, slower drilling 290-300' (approx. 15:30)
	15:54	16:20	D	26	300-315		A/A - snappy, slower drilling
	16:28	16:44	D	16	315-330		A/A - snappy, slower drilling
	16:52	17:06	D	14	330-345		A/A - snappy, slower drilling
	17:23	17:39	D	16	345 360		A/A - snappy, slower drilling
							320' tremie
			Cond Hole	15	=		. FOOH 15 bags of grout
	Total Drilling	Time:			Minutes		Drilling 0 - 369'
_					7 Hours		
				d clay. Bal	ance of hole	coars	e sand and gravel w/ clay.
Pre	ssure test loop to			51.11.1			

30 min to POOH. Bit in marginal cond. RIH with U-bend to 355' and tremie to 320'.

RU grout equip, mix grout.

COMMENTS:

Approximately 3500 gallons of water was used for the hole.

The majority of the lithology in test hole was comprised of Oquirrh rubble w/ valley fill and alluvial sand and clay 15 sacks of Cetco Geothermal Grout to 320'

May determine optimum depth.

OVERVIEW

DESIGN CONSIDERATIONS

- -Thermal conductivity testing
- -Loop design parameters
 - •Loads
 - •Earth Data
 - •Time

Some GHP Design Considerations: Loop Sizing

- Closed-loop lengths depend on:
 - Peak hourly load
 - Annual heating loads vs. annual cooling loads
 - Optimum loop lengths occur when annual loads are balanced (or the appropriate hybrid length is used).
- Open-loops:
 - Required groundwater flow rate depends on its temperature (usually about 2 gpm/ton)
 - Groundwater quality and regulations!!

Loop Design Load Format - Spitler

BULDING LOAD

- •24 hour load profile
- Peak Monthly H/C load
- Cumulative monthly energy use
- Duration of peakloads

Loop Design Load Format – Kavanaugh/Peterson

BULDING LOAD

- •24 hour load profile
- Peaks during design day periods
- •ASHRAE RP 1120
 "Development of
 Equivalent Full Load
 Heating and Cooling
 Hours for GSHPs"

TABLE 6 (Continued)
Equivalent Full-Load Hours for Typical Occupancy with Constant Temperature Setpoints

			FLH Decupancy	EFLH Office ² Occupancy		EFI Retail ³ Oc		EFLH Hospital ⁴ Occupancy		
City	St	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling	
Nashville	TN	320 - 250	570 - 740	680 - 590	830 - 1,280	590 - 470	1,030 - 1,710	450 - 240	1,490 - 2,620	
New Orleans	LA	110 - 67	920 - 990	320 - 230	1,500 - 1,720	260 - 160	1,820 - 2,240	160 - 46	2,500 - 3,280	
New York City	NY	440 - 350	360 - 550	870 - 790	540 - 1,040	760 - 630	720 - 1,480	590 - 330	1,160 - 2,440	
Omaha	NE	400 - 330	310 - 440	800 - 720	480 - 820	720 - 600	610 - 1,130	570 - 360	920 - 1,780	
Phoenix	ΑZ	110 - 65	950 - 1,020	290 - 210	1,340 - 1,610	250 - 170	1,630 - 2,090	140 - 34	2,220 - 3,040	
Pittsburgh	PA	500 - 470	300 - 530	950 - 910	440 - 920	840 - 750	600 - 1,310	650 - 420	960 - 2,160	
Portland	ME	480 - 400	190 - 300	980 - 880	310 - 630	870 - 710	410 - 900	690 - 420	700 - 1,520	
Richmond	VA	410 - 270	630 - 730	820 - 660	880 - 1,310	710 - 520	1,110 - 1,770	530 - 250	1,650 - 2,760	
Sacramento	CA	360 - 220	680 - 850	990 - 640	1,080 - 1,430	830 - 480	1,460 - 2,020	540 - 120	2,250 - 3,180	
Salt Lake City	UT	540 - 520	410 - 710	1,060 - 1,040	510 - 1,090	930 - 830	660 - 1,520	720 - 440	1,060 - 2,470	
Seattle	WA	650 - 460	260 - 460	1,370 - 1,270	440 - 1,200	1,170 - 960	710 - 1,860	850 - 360	1,340 - 3,270	
St. Louis	МО	400 - 280	460 - 550	800 - 710	680 - 1,100	700 - 570	850 - 1,500	550 - 320	1,260 - 2,330	
Tampa	FL	58 - 35	1,050 - 1,110	190 - 140	1,800 - 2,000	160 - 100	2,170 - 2,580	90 - 22	2,910 - 3,710	
Tulsa	OK	300 - 240	580 - 770	620 - 560	830 - 1,300	540 - 450	1,030 - 1,730	410 - 220	1,470 - 2,630	

General Table Notes:

⁽¹⁾ The ranges in values are from internal gains at 0.6 W/ft² (6.5 W/m²) and 2.5 W/ft² (27 W/m²).

⁽²⁾ Operating with large temperature setbacks during unoccupied periods (effectively turning off the system) reduces heating EFLHs by 20% and cooling EFLHs by 5%.

OVERVIEW

DESIGN CONSIDERATIONS

-Thermal conductivity testing

-Loop design parameters

•Loads

»Earth Data

Add Drilling Parameters

Sensitivity of loop length to changes in earth thermal conductivity/diffusivity and deep earth temperature.

Starting GX Length: 51,077 (ft.)

Parameter	Change	New GX Length	% Change
Thermal Conductivity/Diffusivity	20%	59,309	~16%
Deep Earth Temperature	20%	65,295	~ 27%
Change Both	20%	75,818	~48%

OVERVIEW

DESIGN CONSIDERATIONS

- -Thermal conductivity testing
- -Loop design parameters
- -Physical loop design considerations

Common loop conditioned by vertical ground

heat exchanger

Generally requires 250-625 ft² of land area per ton

Remember: The object is to reduce energy use, reduce life cycle cost, and increase comfort.

Design boreholes to optimum depth.

Shortening the boreholes to 270 feet could save about \$2 – \$3 a vertical foot.

~\$85,000.

14:54 15:06	14:59 15:15	D D	5 255- 9 270-	
15:25	15:48	D	23 285-	Coarse cemented sand & gravel snappy, slower drilling 290-300' (approx. 15:30)
15:54 16:28 16:52 17:23	16:20 16:44 17:06 17:39	D D D	26 300- 16 315- 14 330- 16 345-	A/A - snappy, slower drilling

May determine optimum depth.

Design around a vertical pipe size that keeps the loop fluid in turbulent flow at a minimum pressure drop. If possible less than 1 FOH/100'.

1" pipe - <~3.75 gallons/borehole. (water)

1.25" Pipe - <~7.00 gallons/borehole. (water)

Benchmarks for GX System Pumping								
@ 2.5 - 3 gpm/ton								
Pump Power-Cooling								
Capacity Watts	Pump Power-Cooling							
Input/Ton	Capacity HP/100 Ton	Grade						
50 or less	5 or less	A - Excellent						
50 to 75	5 to 7 1/2	B - Good						
75 to 100	7 1/2 to 10	C - Mediocre						
100 to 150	10 to 15	D - Poor						
Greater than 150	Greater than 15	F - Bad						

Kavanaugh and Rafferty " Design of Geothermal Systems for Commercial and Institutional Buildings"

OVERVIEW

DESIGN CONSIDERATIONS

- -Thermal conductivity testing
- –Loop design parameters
- -Physical loop design considerations

HYBRID SYSTEMS

-Overview

Hybrid Geothermal

- Geothermal heat pumps provide heating and cooling inside the building
- GHPs reject to ground heat exchangers
- Loop also includes one or more supplemental fluid coolers (dry cooler or cooling tower)
- Can also include supplemental boilers

WHY HYBRIDS ARE CONSIDERED

- Ground heat exchanger for GHP is costly
- More imbalanced loads require more ground heat exchanger length
- GHPs can be very expensive in heavily cooling- or heating-dominated climates/applications
- With a hybrid system, the size of the ground heat exchanger can be reduced
 - Fluid cooler provides additional heat rejection capacity in cooling-dominated applications and there is still a significant reduction in water use
 - Overall system cost is reduced
 - Energy use is about the same

Some GHP Design Considerations: Peak vs. Annual Loads

Bin Analysis – Weather Data Example 8,760 hours/year

Building Loads

Heating: 259,000 btu/h

Cooling: 235,000 btu/h

59% of cooling load 139,345 btu/h

57.1% of heating load 148,183 btu/h

Fluid Cooler will run: 249 h/yr

Economizer will run: 2,473 h/yr

GX System will run: 5,660 h/y

Boiler will run: 372 h/yr

	orano	NLTJON .						Heor Coo	wy 259	000 bru
Outdoor Air Temp	Annual Weather Hours	Space Load Btu/Hr	Hot Water Load Btu/Hr	Geo Source Temp	Air Capacity Btu/Hr	Hot Water Capacity Btu/Hr	Geo Run Time	Geo Operating Cost	Aux Heating Cost	Aux Hot Water Cost
112						DESuper-		1		
107	s I	22222		222	200200	Chilly		1		
102	1	249,716	2,278	80	249,716	2,278	100%	\$1.21	1	
97	51	212,926	2,278	75	237,665	2,542	90%	\$48.58	-1	
92	197	176,135	2,278	71	241,972	3,129	73%	\$147.00	74% LOA	0
87	315	139,345	2,278	66	246,199	4,024	57%	\$175.97		1 supp
82	405	102,555	2,278	62	250,351	5,560	41%	\$157.42	52% 712	to HEO
77	547	65,764	2,278	57	254,433	8,812	26%	\$128.75	12	
72	657	51,048	2,278	56	255,991	8,484	20%	\$117.39	1	\$8.46
67	721		2,278					1 62	4%	\$28.87
62	666		2,278					1 1	85.37	\$26.67
57	615	-8,721	2,278	57	233,796	21,882	4%	\$17.73	83.21	\$11.85
52	588	-28,644	2,278	55	232,134	18,459	12%	\$55.29		
47	604	-48,567	2,278	54	234,857	11,014	21%	\$93,92		
42	642	-68,490	2,278	52	233,406	7,762	29%	\$139/76		
37	686	-88,413	2,278	51	230,543	5,939	38%	\$192.51	1	
32	757	-108,336	2,278	49	227,040	4,773	48%	\$260.66		
27	583	-128,259	2,278	48	223,200	3,964	57%	\$238 34	52%	
22	353	-148,183	2,278	46	219,164	3,369	68%	\$167.36	. 01	
17	196	-168,106	2,278	45	215,008	2,913	78%		e 4.8%	
12	100	-188,029	2,278	43	210,777	2,553	89%	\$60.72		
7	47	-207,952	2,278	42	207,952	2,278	100%	\$31.78		
2	20	-227,875	2,278	40	227,875	2,278	100%	\$15.30		
-3	7	-247,798	2,278	39	247,798	2,278	100%	\$5.99		
-8	2	-267,721	2,278	38	267,028	2,278	100%	\$1.89	\$0.02	
-13										
-18										
-23										
-28										
-33	-									\$76

There are many possible ways to control a hybrid system

- Operate so as to balance heat rejection/ absorption in ground loop
- Use supplemental heat rejecter whenever water temperature is above a certain setpoint
- Use supplemental heat rejecter whenever it is favorable to do so.
- Optimize rejected energy when WB is lower.

System Operation – Loop sized for heating mode

System Operation – <u>Loop sized for heating mode</u>

System Operation

Sound Geothermal Corporation

System Operation

Sound Geothermal Corporation

GHPs Applied to a Dairy Farm

Concluding Summary

- Geothermal heat pumps are an energy-efficient technology
- Large Commercial installations are few, but potential is large
- More cost effective in some situations than others
 - Simultaneous heating and cooling loads
 - Low closed-loop cost
 - Low open-loop cost
 - High conventional fuel costs
 - Reduced greenhouse gas emissions

3962 Alpine Valley Circle, Sandy, UT 84092

QUESTIONS?

Cary Smith CGD CEM

dcsmith@soundgt.com

801-942-6100

www.soundgt.com

