Geological Evaluation of the Cane Creek Shale,
Pennsylvanian Paradox Formation,
Paradox Basin, Southeastern Utah

Stephanie M. Carney, Craig D. Morgan, Peter J. Nielsen, Michael D. Vanden Berg
Utah Geological Survey

Project Funded by:
U.S. Department of Energy – National Energy Technology Laboratory
and Utah Geological Survey
Purpose and Rational of Study

• Goals:
 – To gain insight into the geological, geochemical, and geomechanical rock properties of Cane Creek shale.
 – To further define the play and the reservoir characteristics

• Limited research has been conducted or published

• 103 million barrels oil (95% confidence) undiscovered in Cane Creek shale (USGS 2012 Assessment)
Study Resources

- Data compiled from over 160 wells
- Access to core from seven wells and cuttings from over 30 wells
 - Detailed core descriptions
 - Geomechanics and geochemistry
 - Rock mechanics (headed by Energy and Geoscience Institute, University of Utah)
- Data from industry
 - Fidelity E&P Company
 - CCI Paradox Upstream, LLC
Paradox Basin

- Pennsylvanian
- Coupled to Uncompahgre uplift
- Sediments record alternating marine flooding – evaporation events

From Blakey, 2012
Paradox Basin

- Pennsylvanian
- Coupled to Uncompahgre uplift
- Sediments record alternating marine flooding – evaporation events
Stratigraphy of Paradox Fm

- 500 to 5000 ft thick
- 29 or more salt/clastic cycles
- Clastic cycles - interbedded dolomite, dolomitic siltstone, anhydrite, and black, organic-rich shale
- Cane Creek shale base of cycle 21
Cane Creek Structure

- Deeper in north part of study area
- Shallow near western edge/shelf of basin
- Majority of production from Big Flat area
Cane Creek
Thickness

- Average = 90 feet
 - 120+ feet thick

- Thickest spots possibly due to faulting in fold/fault belt of basin

- NW-SE trending “fairway”
Type Log of Cane Creek

- **A Interval (seal)**—silty dolomite with thin organic-rich shale and abundant anhydrite

- **B Interval (reservoir)**—silty dolomite with thin organic-rich shale and minor mottled anhydrite

- **C Interval (seal)**—silty dolomite with abundant anhydrite and minor shale
A Interval

- Upper seal
- Generally thicker to north
- Thickness range = 10 to 84 feet
- Average thickness = 31 feet
B Interval

- Reservoir
- Thickness range = 4 to 72 feet
- Average thickness = 26 feet
- Thicker E-W band near middle of play area
- Low variance in thickness
- Natural fractures trend NE-SW
C Interval

- Lower seal
- Thickness range = 10 to 81 feet
- Average thickness = 36 feet
- Generally thicker in south
Cross Section
Cross Section
Cane Creek Production

- Currently 5 producing fields
- Producing since 1960s
- 1st horizontal in 1991
- Cane Creek shale cumulative oil production >5.4 million barrels
Cane Creek Production

- Currently 5 producing fields
- Producing since 1960s
- 1st horizontal in 1991
- Cane Creek shale cumulative oil production >5.4 million barrels
Cane Creek Production

Fidelity E&P Co.
Long Canyon 1
- 1st successful vertical well
- Producing since 1962
- 2013 production = 2,665 BBLS
Cane Creek Production

Fidelity E&P Co.
Long Canyon 1
• 1st successful vertical well
• Producing since 1962
• 2013 production = 2,665 BBLS

Cum Oil = 1.1 million BBLs
Cum Gas = 1.2 BCF
Cane Creek Production

Fidelity E&P Co.
Kane Springs Fed 10-1
- Hell Roaring Field
- Horizontal, ~700 ft
- Producing since Nov. 1992
- 2013 production = 6,319 BBLS
Cane Creek Production

Fidelity E&P Co. Kane Springs Fed 10-1
- Hell Roaring Field
- Horizontal, ~700 ft
- Producing since Nov. 1992
- 2013 production = 6,319 BBLS
Cane Creek Production

Fidelity E&P Co.
Cane Creek 12-1
 • Big Flat Field
 • Horizontal, ~2400 ft
 • Completed Nov. 2012
 • 2013 production = 437,488 BBLS
Cane Creek Production

Fidelity E&P Co.
Cane Creek 12-1

- Big Flat Field
- Horizontal, ~2400 ft
- Completed Nov. 2012
- 2013 production = 437,488 BBLS

Kane Springs Fed 10-1 = 644,309 over 21 yrs
VS
Cane Creek 12-1 = 615,683 over 1.5 yrs
Cane Creek Production

Fidelity E&P Co.
Threemile 12-7
• Hatch Point Field
• Horizontal, ~3,000 ft
• Producing since Jan 2011
• Produced 4,824 BBLS in 2013
Cane Creek Production

Fidelity E&P Co.
Threemile 12-7
• Hatch Point Field
• Horizontal, ~3,000 ft
• Producing since Jan 2011
• Produced 4,824 BBLS in 2013
Thermal Maturity

Avg Tmax (# samples)
* Denotes cuttings used

Peak/Late

Early

447 (1*)
453 (1)
436 (1*)
442 (4)
440 (9)
441 (2)

442 (4)
440 (9)
441 (2)

* Denotes cuttings used
Cane Creek Core

- Seven cores
- Currently studying
 - Cisco State 36-13
 - Vertical
 - Temp. Abandoned 2013
 - Overall thickness = 70 ft
 - B thickness = 26 ft
 - Remington 21-1H
 - Vertical with horizontal leg
 - Dry hole, P&A 2011
 - Overall thickness = 60 ft
 - B thickness = 29 ft
 - Cane Creek #26-3
 - Horizontal
 - Producing since 2012
 - Overall thickness = 90 ft
 - B thickness = ~30 ft
 - Confidential
Union Pacific Resources Remington 21-1H

- Total thickness = 60 ft

- B Interval
 - 29 feet thick
 - Silty dolomite, thin black shale, and minor mottled anhydrite

- Average TOC of shale in B interval 12%

- No open fractures
Union Pacific Resources
Remington 21-1H

- Total thickness = 60 ft
- B Interval – 29 feet thick – Silty dolomite, thin black shale, and minor mottled anhydrite
- Average TOC of shale in B interval 12%
- No open fractures
Remington 21-1H Geochemical Analysis

Psuedo Van Krevelen Plot

- TYPE I
- TYPE II
- TYPE III
- TYPE IV

HYDROGEN INDEX (H, mg H/Cg TOC)

OXYGEN INDEX (OI, mg CO₂/g TOC)
Remington 21-1H Geochemical Analysis

Psuedo Van Krevelen Plot

- TYPE I oil-prone, usually lacustrine
- TYPE II oil-prone, usually marine
- Mixed TYPE II-III oil-gas-prone
- TYPE III gas-prone
- TYPE IV inert
CCI Paradox Upstream
Cisco State 36-13

- Total thickness = 70 ft

- B Interval
 - 26 feet thick
 - Silty dolomite, thin black shale, and minor mottled anhydrite

- More shale than the Remington core

- No open fractures
CCI Paradox Upstream

Cisco State 36-13

- Total thickness = 70 ft

- **B Interval**
 - 26 feet thick
 - Silty dolomite, thin black shale, and minor mottled anhydrite

- More shale than the Remington core

- No open fractures
CCI Paradox Unit
Cisco State 36-13

- Top B Interval
 - 26 feet thick
 - Silty dolomite, thin black shale, and minor mottled anhydrite
- More shale than the Remington core
- No open fractures

Top B
Summary

Cane Creek Shale

- Bounded by salt
- Deeper in north
- 120+ feet thick

B Interval

- Reservoir bounded by anhydrite seals
- Dominantly silty dolomite, with some organic rich black shale and minor mottled anhydrite
- Natural open fractures not seen in core
Summary

Production

- Currently focused in central play area
- Production potential in north and south largely unknown
- B interval
 - Similar rock types but different lithologic percentages
 - Thickness doesn’t appear to affect production
- Preliminary thermal maturity analyses indicate peak/late maturity in north and central areas, and early maturity in south
Further work

Detailed fracture study
 • How fractures influence production

Fluid inclusion analysis
 • Understand timing of fractures

Epifluorescence of cuttings and core
 • Sweet spot identification

Geochemistry
 • Maturity analysis

Detailed geomechanical characterization and well completion analysis (Energy and Geoscience Institute, University of Utah)
 • Cisco State 36-13
 • Cane Creek 26-3
 • Cane Creek 7-1
Thank you

Website: geology.utah.gov

stephaniecarney@utah.gov