Linking Liquefaction Triggering to Damage Potential

Russell A. Green

The Charles E. Via, Jr. Department of Civil and Environmental Engineering

February 9, 2015

Utah Liquefaction Advisory Group - 2015 Meeting

Acknowledgements

Brett Maurer (Virginia Tech):

- Misko Cubrinovski, Brendon Bradley (University of Canterbury, Christchurch, NZ)
- Liam Wotherspoon (University of Auckland, Auckland, NZ)
- Sjoerd van Ballegooy (Tonkin and Taylor, Christchurch, NZ)
- Brady Cox (University Texas), Clinton Wood (University of Arkansas), Jonathan Bray (UC Berkeley), and Thomas O'Rourke (Cornell Univ.)
- Funding: NSF, GEER, New Zealand Earthquake Commission (EQC), US Army Engineer Research and Development Center

Outline

- 2010-2011 Canterbury Earthquake Sequence
- Soils of Christchurch
- Evaluation of CPT-Based Liquefaction Evaluation Procedures
- Liquefaction Damage Indices
 - Liquefaction Potential Index (LPI)
 - Ishihara's H₁-H₂ Chart
 - □ LPI_{ISH}
- Aging Effects
- Summary of Conclusions
- Work in Progress/Future Directions

2010-2011 Canterbury Earthquake Sequence

Tectonics

Tectonics

2010-2011 Canterbury Earthquake Sequence

Statistics

Liquefaction Effects:

 Residential Properties: 60,000 affected 20,000 severely affected 8,000 abandoned
Pipe networks: ~700 km WW pipes (loss/limited service) ~one break per km PW pipes (4000 km)
Many CBD buildings, bridges, ...

Soils of Christchurch

Ancient Coastlines

(Forsyth et al. 2008)

Regional Soil Stratigraphy

Regional Soil Stratigraphy

Regional Soil Stratigraphy

Ground Water Table: E-W, along Bealey Ave (north border of CBD)

(Cubrinovski et al. 2011)

Liquefaction: Grain-size Distributions

Liquefaction: Darfield Earthquake

Liquefaction: Darfield Earthquake

Liquefaction: Darfield and Christchurch Earthquakes

Severe Liquefaction in Eastern Suburbs

(Mark Quigley: Avonside)

Piles of Liquefaction Ejecta

Evaluation of CPT-Based Liquefaction Triggering Evaluation Procedures

Strong Motion Stations

CPT Soundings

Case History Sites

Estimated PGAs (Bradley, 2014)

M_w6.2 Christchurch Earthquake

Robertson and Wride (1998): RW98

Moss et al. (2006): MEA06

Ic – FC Correlation (latest version)

(Maurer et al. 2015a)

Idriss and Boulanger (2008): IB08

Conclusion 1

- Based on select case history data from the Canterbury Earthquake Sequence:
 - All of the CPT-base procedures do a reasonable job predicting field observations.
 - Idriss and Boulanger (2008) performed better than the other procedures.

Is FS Okay???

Some "rules of thumb" that have been used in the past:

- FS > 1.4: Okay, small strains
- FS > 1.25: Probably okay if consequences are not bad
- FS < 0.9: Problem, go directly to remediation

 $0.9 \leq FS \leq 1.25$: Marginal, more field testing

What about thickness and depth of the liquefied layer; are these important considerations???

Is FS Okay???

You really need to look at the potential consequences:

- Lateral Spreading
- Flow liquefaction
- Bearing capacity failure
- Post-liquefaction consolidation settlement
- Slope failure
- Buoyant uplift of buried tanks/pipelines

Liquefaction Damage Potential

Liquefaction Potential Index

w(z) = 10 - 0.5z; z in m

(Iwasaki et al. 1978)

Liquefaction Potential (Damage) Index

$$LPI = \int_{0}^{20} w(z) \cdot f(z) \, dz$$

Limits:
$$LPI_{min} = 0$$
 (FS > 1 for $0 \le z \le 20$ m)
 $LPI_{max} = 100$ (FS = 0 for $0 \le z \le 20$ m)

Damage: Sand boils:
$$LPI \ge 5$$
 ($3 \le LPI \le 10$)
Lateral spreading: $LPI \ge 12$ ($5 \le LPI \le 17$)

(Holzer et al. 2006)

Liquefaction Severity

Classification	Criteria
No Manifestation	No surficial liquefaction manifestation or lateral spread cracking
Marginal Manifestation	Small, isolated liquefaction features; streets had traces of ejecta or wet patches less than a vehicle width; < 5% of ground surface covered by ejecta
Moderate Manifestation	Groups of liquefaction features; streets had ejecta patches greater than a vehicle width but were still passable; 5-40% of ground surface covered by ejecta
Severe Manifestation	Large masses of adjoining liquefaction features, streets impassible due to liquefaction; >40% of ground surface covered by ejecta
Lateral Spreading	Lateral spread cracks were predominant manifestation and damage mechanism, but crack displacements < 200 mm
Severe Lateral Spreading	Extensive lateral spreading and/or large open cracks extending across the ground surface with > 200 mm crack displacement

(Maurer et al. 2014a)
Observed Liquefaction Severity

(Maurer et al. 2014a)

M_w6.2 Christchurch Earthquake

Predicted versus Observed Severity

M_w7.1 Darfield Earthquake

Observed

Predicted versus Observed Severity

M_w6.2 Christchurch Earthquake

Predicted

Observed

LPI: Darfield and Christchurch Earthquakes

Liquefaction Potential Index

Damage Classification	Expected LPI Range
No Liquefaction	LPI < 4
Marginal Liquefaction	$4 \leq LPI < 8$
Moderate Liquefaction	$8 \le LPI < 15$
Severe Liquefaction	$LPI \ge 15$
Lateral Spreading	$LPI \ge 4$
Severe Lateral Spreading	$LPI \ge 4$

LPI Prediction Error Classification

Error (E) Classification	E (LPI units)
Excessive Underprediction	E < -15
Severe to Excessive Underprediction	$-15 \le E < -10$
Moderate to Severe Underprediction	-10 ≤ E < -5
Slight to Moderate Underprediction	$-5 \le E < -1$
Accurate Prediction	$-1 \le E \le 1$
Slight to Moderate Overprediction	$1 < E \le 5$
Moderate to Severe Overprediction	$5 < E \le 10$
Severe to Excessive Overprediction	$10 < E \le 15$
Excessive Overprediction	E > 15

Error in LPI Severity Predictions

M_w7.1 Darfield Earthquake

Why is LPI accurate in some regions of Christchurch and not others???

Error in LPI Severity Predictions: Influence of Fines Content

nell 7050+/-120

5830+/-90

True Positive = Liquefaction Predicted and Observed False Positive = Liquefaction Predicted but Not Observed

True Positive = Liquefaction Predicted and Observed False Positive = Liquefaction Predicted but Not Observed

True Positive = Liquefaction Predicted and Observed False Positive = Liquefaction Predicted but Not Observed

True Positive = Liquefaction Predicted and Observed False Positive = Liquefaction Predicted but Not Observed

Influence of I_c Cutoff: Sites with $I_{c10} < 2.05$

Influence of I_c Cutoff: Sites with $I_{c10} > 2.05$

Error in LPI Severity Predictions: Influence of Fines Content

- Result of shortcomings in the FC corrections in the liquefaction evaluation procedures???
- Result of shortcomings in the LPI framework to evaluate severity manifestations for profiles with high FC strata???

No-Liq Layers: Low FC (lc < 2.05)

Dataset	LPI MODEL							
	R&W98		MEA06		I&B081		I&B08 ²	
Assessed	AUC	OOP	AUC	OOP	AUC	OOP	AUC	OOP
Liq: lc < 2.05	0.79	4.0	0.76	5.0	0.83	6.0	0.81	4.0
Liq: lc > 2.05	0.79	4.0	0.76	5.0	0.82	5.0	0.81	4.5

Liq Layers: Low FC (lc < 2.05)

Dataset	LPI MODEL							
	R&W98		MEA06		I&B081		I&B08 ²	
Assessed	AUC	OOP	AUC	OOP	AUC	OOP	AUC	OOP
No Liq: lc < 2.05	0.79	4.0	0.76	5.0	0.83	6.0	0.81	4.0
No Liq: lc > 2.05	0.67	11.5	0.69	13.5	0.69	14.0	0.66	10.5

Conclusion 2

- Based on thousands of case history data from the Canterbury Earthquake Sequence:
 - All of the CPT-base procedures do a reasonable job predicting field observations (approx. same AUCs)
 - Idriss and Boulanger (2008) performed better than the other procedures (larger AUC)
- The LPI framework has limitations in predicting severity of surficial liquefaction manifestations for profiles having a fine-grained crust and/or finegrained layers interbedded with liquefiable layers

Ishihara H₁-H₂ Charts

Ishihara (1996)

Ishihara (1985)

Ishihara H₁-H₂ Charts

Ishihara (1996)

LPI + Ishihara H_1 - H_2 Chart = LPI_{ISH}

$$LPI_{ISH} = \int_{H_1}^{20 m} F(FS) \frac{25.56}{z} dz$$

$$F(FS) = \begin{cases} 1 - FS & if FS \le 1 \ \cap \ H_1 \cdot m(FS) \le 3 \\ 0 & otherwise \end{cases}$$

$$m(FS) = exp\left(\frac{5}{25.56(1-FS)}\right) - 1$$

(van Ballegooy et al. 2015)

Loma Prieta earthquake: Site LEN-37 – no observed surficial manifestations

Ishihara LPI (LPI_{ISH})

Analysis of 60 cases from around the world

Conclusion 3

Based on sixty worldwide case histories:

- LPI_{ISH} results in predictions that are more inline with field observations than LPI.
- LPI_{ISH} accounts for the influence of the thickness of the non-liquefiable crust, but it does not fully account for fine-grained layers interbedded with liquefiable layers.

- Temporal gains in the shear strength and stiffness of sands (e.g., increase in CRR)
- Liquefaction triggering curves developed from liquefaction case-histories in Holocene deposits.
 - Adjustments needed for deposits with ages outside range of case-history database

Aftershocks: CRR may be reduced after recent liquefaction

 $K_{DR} < 1$

Distance to Most Distal Liquefaction Site (km)

Distribution of LPI prediction errors (with/without K_{DR})

Severity of Liquefaction Manifestation: Christchurch Earthquake

Distribution of LPI prediction errors (with/without K_{DR})

Severity of Liquefaction Manifestation: Christchurch Earthquake

 K_{DR} correction factors back-calculated such that predictions match the range consistent with marginal manifestation (i.e., 5 < LPI < 8)

Time Since Initial Deposition or Prior Liquefaction, t (years)

Conclusion 4

- Based on eight case histories from the Canterbury Earthquake Sequence:
 - Hazard generally under-predicted without K_{DR} correction
 - K_{DR} correction from Hayati and Andrus (2009) typically improved prediction accuracy

Summary of Conclusions

- All of the CPT-base procedures do a reasonable job predicting field observations.
- □ Idriss and Boulanger (2008) performed better than the other procedures.
- The LPI framework has limitations in predicting severity of surficial liquefaction manifestations for profiles having a fine-grained crust and/or fine-grained layers interbedded with liquefiable layers
- LPI_{ISH} results in predictions that are more inline with field observations than LPI, but does not fully account for fine-grained layers interbedded with liquefiable layers.
- K_{DR} aging correction from Hayati and Andrus (2009) typically improved prediction accuracy for sites of recurrent liquefaction during the Canterbury Earthquake Sequence

Work in Progress/Future Directions

Develop a new liquefaction severity index that:

- Accounts for both the fine-grained crust and fine-grained layers interbedded with liquefiable layers
- Has depth weighting factors for liquefaction damage potential to shallow and deep foundations and embankments
- Is completely compatible with liquefaction triggering curve
- Gives a full quantification of uncertainty

References

- Green, R.A., Cubrinovski, M., Cox, B., Wood, C., Wotherspoon, L., Bradley, B., and Maurer, B. (2014). "Select Liquefaction Case Histories from the 2010-2011 Canterbury Earthquake Sequence", *Earthquake Spectra*, 30(1), 131-153.
- Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B.A. (2014a). "Evaluation of the Liquefaction Potential Index for Assessing Liquefaction Hazard in Christchurch, New Zealand", *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, 140(7).
- Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B.A. (2014b). "Assessment of Aging Correction Factors for Liquefaction Resistance at Sites of Recurrent Liquefaction: A Study of the Canterbury (NZ) Earthquake Sequence", Proc. 10th National Conference on Earthquake Engineering (10NCEE), Anchorage, AK, 21-25 July.
- Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B.A. (2015a). "Assessment of CPT-Based Methods for Liquefaction Evaluation in a Liquefaction Potential Index (LPI) Framework", *Geotechnique*. (*in press*)
- Maurer, B.W., Green, R.A., Cubrinovski, M., and Bradley, B.A. (2015b). "Fines-Content Effects on Liquefaction Hazard Evaluation for Infrastructure in Christchurch, New Zealand", *Soil Dynamics and Earthquake Engineering*. (*in press*) doi:10.1016/j.soildyn.2014.10.028
- Maurer, B.W., Green, R.A., and Taylor, O.S. (2015c). "Moving Towards an Improved Index for Assessing Liquefaction Hazard: Lessons from Historical Data", *Soils and Foundations*, JGS. (*in review*)
- van Ballegooy, S., Green, R.A., Lees, J., Wentz, F., and Maurer, B.W. (2015). "Assessment of Various CPT Based Liquefaction Severity Index Frameworks Relative to the Ishihara (1985) H₁-H₂ Boundary Curves", *Soil Dynamics and Earthquake Engineering*. (*in review*)

Next Generation Liquefaction Field Reconnaissance: Unmanned Aerial Vehicles

Kevin Franke, Ph.D., P.E. Assistant Professor, CEEn Brigham Young University

Center for Unmanned Aircraft Systems (C-UAS)

Cooperative Control

Path Planning Trajectory Generation

- Cooperative timing problems
- Cooperative persistent imaging
- Cooperative fire monitoring
- Consensus seeking
- 3D Waypoint path planning
- Wind compensation
- Collision avoidance
 - Optic flow sensor
 - Laser ranger
 - EO cameras
- Image stabilization
- Geo-location
- Vision-aided tracking & engagement
- Autopilot design for small UAVs
- Attitude estimation
- Adaptive control
- Tailsitter guidance & control

Image Directed Control

What is C-UAS? (http://c-uas.byu.edu/)

- C-UAS: Center for Unmanned Aircraft Systems
- Sponsored by National Science Foundation under I/UCRC program *and* industry members
- Three universities involved:
 - Brigham Young University
 - Tim McLain, Randy Beard, Mike Goodrich, Eric Mercer, Karl Warnick, John Hedengren, Kevin Franke, Gus Williams
 - University of Colorado
 - Eric Frew, Brian Argrow
 - Virginia Tech is joining us this year!!

Current Industry Membership

- 2D3 Sensing
- AFRL Aerospace Systems Directorate
- AFRL Munitions Directorate
- AAI-Textron
- BP
- Boeing
- Insitu
- L-3 Communications
- NASA Dryden Flight Research Center
- National Oceanic and Atmospheric Administration
- Northrop Grumman
- United Technologies Research Center
- Utopia Compression
- Strong interest from:

USBR, Lockheed Martin, URS Corp. Raytheon, Fairweather, and others

Current Project Collaborators

Dr. Ryan Farrell Computer Science

Dr. John Hedengren Chemical Engineering

US-89 Arizona Landslide

On February 20, 2013, a massive dry landslide occurred approximately 20 miles south of Page, Arizona. This landslide critically damaged US-89.

Landslide Modeling and Monitoring In July 2014, we flew the US-89 landslide with a UAV carrying a digital SLR camera. This is an image of the the resulting 3D point cloud model.

Landslide Modeling and Monitoring Recent re-processing of those images produced a model with nearly 950M points (1cm resolution) and median accuracy of 3cm..

Landslide Modeling and Monitoring

We partnered with the UGS and North Salt Lake City to model the recent landslide in August 2014.

Landslide Modeling and Monitoring

The UGS and North Salt Lake City asked us to fly and model the recent landslide in August 2014.

Landslide Modeling and Monitoring

In April 2014, Dr. Kyle Rollins and I reconnoitered sites in Iquique, Chile following the M8.0 earthquake there. We returned in June with UAVs.

Here are some screenshots of CV models of liquefaction damage from April 1, 2014 Chile earthquake

Here are some screenshots of CV models of liquefaction damage from April 1, 2014 Chile earthquake

Compare the UAV models with this model, developed from handheld photographs (...more photos, actually!) The UAV offers much more coverage.

Here are some screenshots of CV models of liquefaction damage from April 1, 2014 Chile earthquake

Here are some screenshots of CV models of liquefaction damage from April 1, 2014 Chile earthquake

Here is a screenshot of a CV model of a lateral spread from April 1, 2014 Chile earthquake

Conclusion

- UAVs improve our ability to gather data from post-liquefaction damage sites.
- A large site can typically be reconnoitered and "scanned" in less than 2 hours.
- Utah might consider creating a database of preearthquake point clouds for select critical structures. Clouds could be developed using LiDAR or computer vision.

Next Generation Liquefaction Field Reconnaissance: Unmanned Aerial Vehicles

Kevin Franke, Ph.D., P.E. Assistant Professor, CEEn Brigham Young University

My Current UAV Platforms:

Rightwing 81" ZXL (a.k.a. "Big Bird")

Draganfly X-4 Quadcopter

- Can fly in 45+ mph winds
- Carries GoPro Hero 3
- Flies at 35-65 mph
- Flight time is 10-20 minutes

Phantom 2

(After Crash...)

- 4 rotor system
- Very mobile, but squirrely in wind
- Carries GoPro Hero 3 or Panasonic still
- Flies at 0-35 mph
- Flight time is 10-20 minutes
- 4 rotor system
- Very mobile, more stable than X-4
- Carries GoPro Hero 3
- Flies at 0-35 mph
- Flight time is 10-20 minutes

My Current UAV Platforms:

Skyjib 6 (custom built)

6 rotor system

- 360-degree gimbled camera
- GPS waypoint-programmable
- Very mobile, more stable than X-4
- Can carry full-size DSLR camera
- Flies at 0-35 mph
- Flight time is 10-20 minutes

DJI S1000 (octa-rotor)

- 8 rotor system
- 360-degree gimbled camera platform
- GPS waypoint-programmable
- Very mobile, more stable than X-4
- Can carry multiple sensors (e.g., camera & LiDAR)
- Flies at 0-35 mph
- Flight time is 10-20 minutes

My Current UAV Platforms:

Our new addition (....no, we haven't named her yet!)

Performance-based Assessment of Liquefaction Triggering and Lateral Spread: A **Simplified** Approach

Levi Ekstrom, Kristin Ulmer, and Dr. Kevin Franke

Utah Liquefaction Advisory Group Meeting

February 9th, 2015

Introduction

- Liquefaction hazards pose a potentially serious problem in Utah
- Benefits of performance-based methods over conventional methods

IHOA

http://imgkid.com/earthquake-liquefaction-animation.shtml

 Advantages of performancebased methods are within your reach

Outline

- Why Performance-based methods?
 - What are PB methods?
 - How do PB methods differ from conventional methods?
 - Advantages and disadvantages
- Introduction to the Simplified Method
 - Purpose
 - How does it work?
 - Maps
- Validation
- What this means for you

http://liquefactionmitigation.weebly.com/

• **Deterministic** approach: Deterministic Seismic Hazard Analysis (DSHA)

Estimate 50th or 84th percentile PGA, Mean M_w, and Distance

	Seismic Source	Dist (km)	М	PGA
1	Wasatch Fault, SLC Section	1.02	7	0.5911
2	West Valley Fault Zone	2.19	6.48	0.5694
3	Morgan Fault	25.04	6.52	0.0989
4	Great Salt Lake Fault zone, Antelope Section	25.08	6.93	0.1016
5	Oquirrh-Southern, Oquirrh Mountain Fault	30.36	7.17	0.0958

• Deterministic approach

Estimate 50th or 84th percentile PGA, Mean M_w, and Distance

	Seismic Source	Dist (km)	М	PGA
1	Wasatch Fault, SLC Section	1.02	7	0.5911
2	West Valley Fault Zone	2.19	6.48	0.5694
3	Morgan Fault	25.04	6.52	0.0989
4	Great Salt Lake Fault zone, Antelope Section	25.08	6.93	0.1016
5	Oquirrh-Southern, Oquirrh Mountain Fault	30.36	7.17	0.0958

Deterministic Equations

Performance-based Methods

• Consider multiple scenarios (R = ?, M_w = ?, a_{max} = ?) and their respective likelihoods

Probabilistic Seismic Hazard Analysis (PSHA): develop deaggregations with magnitude, distance, and % contribution

Develop hazard curves for the parameter of interest

0.00001

0.000001

• Pseudo-probabilistic approach

Advantages

- Considers multiple scenarios and their respective likelihoods
- More consistent estimate of hazard
- Return-period based approach for decision-makers

- Disadvantages
 - Requires special training and expertise
 - Complex analysis requires time
 - Difficult to incorporate into routine projects
 - May overpredict liquefaction hazard in some areas of high seismicity

Introduction to the Simplified Method

- Creating the Maps
- Correction Factors
- Parameter Maps vs Hazard Maps
- Comparison of Simplified Methods and Full Performance-Based Methods

The Simplified Method: Creating the Maps

Parameter Maps for:

- Blow counts needed to resist liquefaction (N_{req}^{ref})
- Cyclic Stress Ratio (CSR%^{ref})
- Lateral Spread Displacement (D_H^{ref})

The Simplified Method: Liquefaction Assessment

=

Hazard-targeted map +

Site-specific soil data

Site-specific liquefaction initiation results

The Simplified Method: Lateral Spread

Hazard-targeted map

+ Site-specific data

- Slope
- Free-Face Ratio
- Thickness of Liquefiable Layer
- Fines Content
- Mean Grain Size

-

Lateral Spread Displacement $D_h^{site} = 0.126 \text{ m}$

Parameter Maps vs Hazard Maps

Single, generic soil profile

• Associated with available soil data

Validation – How Accurate is This Method?

What This Means for You...

- You can have the advantages of performance-based methods without the necessary tools, training and expertise
 - With almost none of the disadvantages
- Benefits for Engineers
 - Quickly calculate liquefactions hazards
 - Accurate and simple
- Benefits for Decision-makers
 - Criticality of structure determines hazard level

Questions?

- We would like to acknowledge the DOTs from the following states for supporting our research:
 - Alaska
 - Connecticut
 - Idaho
 - Montana
 - South Carolina
 - Utah

Probabilistic Liquefaction and Lateral Spread Hazard Mapping for Utah County

> Jasmyn Harper Brigham Young University February 9, 2015

Aspects of research

- Subsurface database construction
- Analysis and map creation

Subsurface Database

- Data collection
 - UDOT, UGS, City Governments, private companies
- Standard Penetration Testing (SPT)
 795 data points
- Cone Penetrometer Testing (CPT)
 - 39 data points

Top Cont Database Tool Freds Table Image: Copy Promat Planting Copy	Subs	sui	fa	ce	Da	Ital	ba	S	2				
Image: Second problem	File Home Create Ext	ernal Data Da	tabase Tools Fi	lds Table									
Access Objects O Control Date Deptition Date Deptition Deptition <th>iew Paste Format Painter</th> <th>Filter</th> <th>ding V Selection nding Advanced ve Sort V Toggle F rt & Filter</th> <th>iter All • ×</th> <th>New ∑ Tot Save ॐ Spo Delete → ∰ Mo Records</th> <th>als elling re ≠ Find Find Find</th> <th>Replace Go To ¥ Select ¥</th> <th>alibri I <u>I</u></th> <th>• 11 ▲ • ॐ - ▲ • Text Forma</th> <th>IE IE ∯</th> <th>ε∉ >π - ⊞• ⊞•</th> <th></th> <th></th>	iew Paste Format Painter	Filter	ding V Selection nding Advanced ve Sort V Toggle F rt & Filter	iter All • ×	New ∑ Tot Save ॐ Spo Delete → ∰ Mo Records	als elling re ≠ Find Find Find	Replace Go To ¥ Select ¥	alibri I <u>I</u>	• 11 ▲ • ॐ - ▲ • Text Forma	IE IE ∯	ε∉ >π - ⊞• ⊞•		
Ances Dip ID STEEDNO BORELEV BORNG BoreDiame's DATE DEPTHGW DRILLER DRILER DRILLER DRILER	Il Arress Objects	SITE							rent y ornio				
BLOW 2 2 2 4545 2 3.9 1 9/24/199 6.7 UDOT RB CYDATA 4 10 10 4588 1 4 1 1/14/2009 18.3 UDOT RB STE 5 11 11 4589 2 4 1 1/24/2009 18.3 UDOT RB STECPT 6 12 12 4497 1 3 1 10/30/1993 6.2 UDOT RB 9 15 15 7193 4 4 1 1/3/2003 2.8 UDOT RB 9 15 15 7193 4 4 1 1/1/4/2003 2.8 UDOT RB 10 16 15 7193 4 4 1 1/1/1/2003 2.8 UDOT RB 11 17 7 4609 2 3 1 5/2/194 5.2 UDOT RB 12 18 18 4781 TH-2 6 3 9/23/2002 16.5 Earthcore Hollow Stc	arch	ID1	- ID 1	SITEIDNO 1	BOREELEV	6 + BORING	• BoreD)iam • E 3.9	loreDiamEs • 1	DATE	DEPTHGW • 7.1	DRILLER	DRILLMET RB
STE 3 10 4,368 1 4 1/12/2003 2.13,0001 RB STECPT 6 12 12 4497 1 3 1 1/12/2009 20 UDOT RB 9 13 13 4500 3 3 1 10/30/1993 6.2 UDOT RB 9 15 15 7/193 4 4 1 11/1/4/2003 2.8 UDOT RB 9 15 15 7/193 4 4 1 11/1/4/2003 2.8 UDOT RB 10 16 16 4817 1 3 1 5/7/1984 5.2 UDOT RB 11 17 7 700 2 3 1 5/7/1984 5.1 UDOT RB 14 20 20 4766 TH-4 6 3 9/23/2002 16.5 Earthcore Hollow Ste 14 20 22 4959 TH-1 6 3 12/6/2004 10.5 Earthcore Hollow Ste 16 22 22 <t< td=""><td>BLOW CPTDATA</td><td></td><td>2</td><td>2</td><td>2 3</td><td>4545 2 4580 3</td><td></td><td>3.9 3.9</td><td>1</td><td>9/24/1999 10/8/1999</td><td>6.7 6.1</td><td></td><td>RB RB</td></t<>	BLOW CPTDATA		2	2	2 3	4545 2 4580 3		3.9 3.9	1	9/24/1999 10/8/1999	6.7 6.1		RB RB
7 13 13 4500 3 3 1 10/30/1993 8.7 UDOT RB 8 14 14 7200 2 4 1 10/30/2003 2.8 UDOT RB 9 15 15 7193 4 4 1 11/14/2003 2.8 UDOT RB 9 10 16 16 4817 1 3 1 5/7/1984 5.2 UDOT RB 11 17 17 4809 2 3 1 5/7/1984 6.1 UDOT RB 12 18 18 4774 TH-3 6 3 9/23/2002 16.5 Earthcore Hollow Ste 14 20 20 4766 TH-4 6 3 9/23/2002 16.5 Earthcore Hollow Ste 15 21 21 4959 TH-1 6 3 12/6/2004 10.5 Earthcore Hollow Ste 16 22 23 4959 TH-2 6 3 12/6/2004 16.5 Earthcore Hollow Ste 17 23 23 4959 TH-3 6 3 12/6/2004 10.5 Earthtech	SITE SITECPT		5	10 11 12	10 11 12	4589 2 4497 1		4	1	1/29/2009 1/29/2009 10/19/1993	20		RB
9 15 15 7193 4 4 1 11/14/2003 2.8 UDOT RB 10 16 16 4809 2 3 1 5/7/1984 5.2 UDOT RB 11 17 17 4809 2 3 1 5/7/1984 5.2 UDOT RB 12 18 18 4781 TH-2 6 3 9/23/2002 16.5 Earthcore Hollow Ste 14 20 20 4765 TH-4 6 3 9/23/2002 16.5 Earthcore Hollow Ste 14 20 20 4765 TH-4 6 3 9/23/2002 16.5 Earthcore Hollow Ste 16 21 21 4585 TH-1 6 3 12/6/2004 16.5 Earthcore Hollow Ste 17 23 23 4939 TH-2 6 3 12/6/2004 6 Earthtech Hollow Ste 19 25 25 4979 TH-5 6 3 12/6/2004 12.5 Earthtech Hollow Ste 102 26 27 77 4981 TH-7 6 3 12/6/20			7 8	13 14	13 14	4500 3 7200 2		3	1	10/30/1993 10/30/2003	8.7 2.8	UDOT	RB RB
11 17 17 4809 2 3 1 5/7/1984 6.1 UDOT K8 12 18 18 4761 TH-2 6 3 9/23/2002 16.5 Earthcore Hollow Ste 13 19 19 4774 TH-3 6 3 9/23/2002 16.5 Earthcore Hollow Ste 14 20 20 4766 TH-4 6 3 9/23/2002 16.5 Earthcore Hollow Ste 15 21 21 4958 TH-1 6 3 12/6/2004 10.5 Earthtech Hollow Ste 16 22 22 4958 TH-3 6 3 12/6/2004 6 Earthtech Hollow Ste 18 24 24 4970 TH-4 6 3 12/6/2004 8.5 Earthtech Hollow Ste 19 25 25 4979 TH-5 6 3 12/6/2004 12.3 Earthtech Hollow Ste 20 26 26 4976 TH-6 6 3 12/6/2004 12.3 Earthtech Hollow Ste 21 27 27 4981 TH-7 6 3			9 10	15 16	15 16	7193 4 4817 1		4	1	11/14/2003 5/2/1984	2.8 5.2	UDOT	RB RB
12 12 17 11 1 1 1 10			11 12 13	17 18 19	17 18 19	4809 2 4781 TH-2 4774 TH-3		3	3	5/7/1984 9/23/2002 9/23/2002	6.1 16.5 21	UDOT Earthcore	RB Hollow Ste
16 22 22 4959 TH-2 6 3 12/6/2004 16.5 Earthtech Hollow Ste 17 23 23 4958 TH-3 6 3 12/6/2004 6 Earthtech Hollow Ste 18 24 24 4970 TH-4 6 3 12/6/2004 8.5 Earthtech Hollow Ste 19 25 4979 TH-5 6 3 12/6/2004 2.3 Earthtech Hollow Ste 20 26 26 4976 TH-6 6 3 12/6/2004 12.3 Earthtech Hollow Ste 21 27 27 4981 TH-7 6 3 12/6/2004 12.5 Earthtech Hollow Ste 22 28 28 4991 TH-8 6 3 12/6/2004 15.5 Earthtech Hollow Ste 23 29 29 4979 TH-9 6 3 12/6/2004 15.5 Earthtech Hollow Ste 24 30 30 4520 TH-1 6 3 21/2005 3.5 Racon Hollow Ste 25 31 31 4519 TH-2 6 3 21/12005			14 15	20 21	20 21	4766 TH-4 4958 TH-1		6 6	3	9/23/2002 12/6/2004	16.5 10.5	Earthcore Earthtech	Hollow Ste Hollow Ste
18 24 24 4970 TH-4 6 3 12/6/2004 8.5 Earthtech Hollow Ste 19 25 25 4979 TH-5 6 3 12/6/2004 20 Earthtech Hollow Ste 20 26 26 4976 TH-6 6 3 12/6/2004 12.3 Earthtech Hollow Ste 21 27 27 4981 TH-7 6 3 12/6/2004 12.5 Earthtech Hollow Ste 22 28 29 14991 TH-8 6 3 12/6/2004 12.5 Earthtech Hollow Ste 223 29 29 4979 TH-9 6 3 12/6/2004 12.5 Earthtech Hollow Ste 24 30 30 4520 TH-1 6 3 2/1/2005 3.5 Racon Hollow Ste 25 31 31 4519 TH-2 6 3 2/1/2005 5.6 Racon Hollow Ste 26 32 32 33 34516			16 17	22 23	22 23	4959 TH-2 4958 TH-3		6 6	3 3	12/6/2004 12/6/2004	16.5 6	Earthtech Earthtech	Hollow Ste Hollow Ste
20 20 20 20 4976 11-5 6 3 12/0/2004 12.3 Earthtech Hollow Ste 21 27 27 4981 TH-7 6 3 12/6/2004 12.5 Earthtech Hollow Ste 22 28 28 4991 TH-8 6 3 12/6/2004 16.5 Earthtech Hollow Ste 23 29 29 4979 TH-9 6 3 12/6/2004 21.5 Earthtech Hollow Ste 24 30 30 4520 TH-1 6 3 2/1/2005 3.5 Racon Hollow Ste 25 31 31 4519 TH-2 6 3 2/1/2005 5.6 Racon Hollow Ste 26 32 32 4518 TH-3 6 3 2/1/2005 5.6 Racon Hollow Ste 27 33 33 4516 TH-4 6 3 2/1/2005 4 Racon Hollow Ste 28 34 34 4516 TH-5 6 <t< td=""><td></td><td></td><td>18 19</td><td>24 25</td><td>24 25</td><td>4970 TH-4 4979 TH-5</td><td></td><td>6</td><td>3</td><td>12/6/2004 12/6/2004</td><td>8.5 20</td><td>Earthtech Earthtech</td><td>Hollow Ste</td></t<>			18 19	24 25	24 25	4970 TH-4 4979 TH-5		6	3	12/6/2004 12/6/2004	8.5 20	Earthtech Earthtech	Hollow Ste
23 29 29 4979 TH-9 6 3 12/6/2004 21.5 Earthtech Hollow Ste 24 30 30 4520 TH-1 6 3 2/1/2005 3.5 Racon Hollow Ste 25 31 31 4519 TH-2 6 3 2/1/2005 5.3 Racon Hollow Ste 26 32 32 4518 TH-3 6 3 2/1/2005 5.6 Racon Hollow Ste 27 33 33 4516 TH-4 6 3 2/1/2005 4 Racon Hollow Ste 28 34 34 4516 TH-5 6 3 2/1/2005 3.3 Racon Hollow Ste 29 35 35 4518 TH-6 6 3 2/1/2005 3.3 Racon Hollow Ste 30 36 36 4520 TH-8 6 3 2/1/2005 3.8 Racon Hollow Ste 31 37 37 4821 TH-1 6 3 <td></td> <td></td> <td>20 21 22</td> <td>20 27 28</td> <td>20 27 28</td> <td>4976 TH-6 4981 TH-7 4991 TH-8</td> <td></td> <td>6</td> <td>3</td> <td>12/6/2004</td> <td>12.3</td> <td>Earthtech Farthtech</td> <td>Hollow Ste</td>			20 21 22	20 27 28	20 27 28	4976 TH-6 4981 TH-7 4991 TH-8		6	3	12/6/2004	12.3	Earthtech Farthtech	Hollow Ste
25 31 31 4519 TH-2 6 3 2/1/2005 5.3 Racon Hollow Ste 26 32 32 4518 TH-3 6 3 2/1/2005 5.6 Racon Hollow Ste 27 33 33 4516 TH-4 6 3 2/1/2005 4 Racon Hollow Ste 28 34 34 4516 TH-5 6 3 2/1/2005 3.3 Racon Hollow Ste 29 35 35 4518 TH-6 6 3 2/1/2005 3.3 Racon Hollow Ste 30 36 36 4520 TH-8 6 3 2/1/2005 3.8 Racon Hollow Ste 31 37 37 4821 TH-1 6 3 1/7/2008 16.5 Racon Hollow Ste			23	29 30	29 30	4979 TH-9 4520 TH-1		6	3	12/6/2004 2/1/2005	21.5	Earthtech Racon	Hollow Ste
27 33 33 4516 TH-4 6 3 2/1/2005 4 Racon Hollow Ste 28 34 34 4516 TH-5 6 3 2/1/2005 3.3 Racon Hollow Ste 29 35 35 4518 TH-6 6 3 2/1/2005 4.5 Racon Hollow Ste 30 36 36 4520 TH-8 6 3 2/1/2005 3.8 Racon Hollow Ste 31 37 37 4821 TH-1 6 3 1/7/2008 16.5 Racon Hollow Ste			25 26	31 32	31 32	4519 TH-2 4518 TH-3		6 6	3 3	2/1/2005 2/1/2005	5.3 5.6	Racon Racon	Hollow Ste Hollow Ste
29 35 35 4518 TH-6 6 3 2/1/2005 4.5 Racon Hollow Ste 30 36 36 4520 TH-8 6 3 2/1/2005 3.8 Racon Hollow Ste 31 37 37 4821 TH-1 6 3 1/7/2008 16 5 Racon Hollow Ste			27 28	33 34	33 34	4516 TH-4 4516 TH-5		6 6	3	2/1/2005 2/1/2005	4 3.3	Racon Racon	Hollow Ste
31 37 HOLLIDE D 3 UTLANA IN SCOOL HOLLOW ST			29 30 21	35 36 27	35 36 27	4518 TH-6 4520 TH-8 4821 TH-1		6	3	2/1/2005 2/1/2005	4.5	Racon Racon Racon	Hollow Ste

Subsurface database

• 834 total points

Mapping

Types of maps

- Liquefaction Triggering Maps
- Lateral Spread Displacement Hazard Maps
 - Thresholds at 1 cm, 3 cm, and 10 cm

Mapping

- Boulanger and Idriss (2012) liquefaction triggering models
- Aerial lidar data for lateral spread mapping, better topographic models
- Performance-based approach

Timeline

- •Subsurface database completed December 2014
- •Liquefaction and Lateral Spread maps by July 2015

Liquefaction Hazards – From Mapping to Implementation

Steven F. Bartlett, Ph.D., P.E. Associate Professor University of Utah

ULAG 2015 Salt Lake City, Utah

Utah Liquefaction Advisory Group

Members

Steve Bartlett, UU CE, Facilitator

Mike Hylland, UGS liaison

Mark Petersen, USGS liaison

Les Youd, BYU CE

Travis Gerber, BYU CE

Kyle Rollins, BYU CE

Loren Anderson, USU CEE

Jim Bay, USU CEE

John Rice, USU CEE

Aurelian Trandafir, UU G&G

Michael Olsen, UCSD

David Simon, SBI

Grant Gummow, UDOT

Jim Higbee, UDOT

Bill Turner, Earthtec

Ryan Cole, Gerhart-Cole

- Liquefaction Damage
- Types of Liquefaction Maps
- Estimation of Frequency
- Estimation of Liquefaction Potential
- Estimation of Ground Displacement
- Estimation of Settlement
- Performance-Based Hazard Ordinances

Liquefaction

Before the earthquake

What is liquefaction?

Types of Liquefaction Damage

Sand Blow or Sand Volcano

Ground Oscillation

Marina District, San Francisco, 1989 Loma Prieta Earthquake

2011 Tohoku Earthquake

Ground Settlement

2010 Christchurch Earthquake

Bearing Capacity Failure

1964 Niigata, Japan Earthquake

Lateral Spread

1964 Niigata, Japan Earthquake

Flow Failure

Lower San Fernando Dam 1971 San Fernando Earthquake

Valdez, 1964 Alaska Earthquake

- Liquefaction Damage
- Types of Liquefaction Maps
- Estimation of Frequency
- Estimation of Liquefaction Potential
- Estimation of Ground Displacement
- Estimation of Settlement
- Performance-Based Hazard Ordinances

Liquefaction Susceptibility Maps

- Liquefaction Potential Maps
 - Scenario Maps
 - Probabilistic-Based Maps
- Ground Failure Maps
 - Lateral Spread
 - Ground Settlement

- Liquefaction Susceptibility Maps
 - Show liquefaction hazard based on susceptibility (soil capacity), but do not consider demand (size of amplitude of strong ground motion)

Utah Geological Burvey Rijestiki Burvey Blody 66, 65 p., main 1

Digitally complied by Kami Statement and Dearsta Natashi USA-Dearing and Revery

- Liquefaction Potential Maps
 - Combine liquefaction susceptibility (capacity) with seismic input (demand).
 - Demand can be expressed as a deterministic scenario event or a probabilistic-based estimate obtained from the national seismic hazard maps

Liquefaction potential for approximate 0.2g pga (Anderson and Keaton)

This map is for general reference only and was modified from Anderson, L.R., Keston, J.R., Spitzley, J.E., and Allen, A.G., 1994, Liquefaction potential map for Salt Lake County, Utak: Utah Geological Survey Contract Report 94-4, 48 p., scale 1:48,000. Copies of this report are available at the Utah Geological Survey.

Ground Failure Maps

- Consider liquefaction potential
- Consider consequences of liquefaction (i.e., displacement)

Median
 probabilities of
 lateral spread
 displacement for
 2,500-year return
 period seismic
 event

Types of Liquefaction Maps (ULAG Maps funded by NEHRP)

- Liquefaction Potential and Ground Displacement Maps
- Seismic Strong Motion (SM) Inputs for Liquefaction Potential Maps
 - M7.0 Earthquake
 - SM with 10% probability of exceedance in 50 years
 - SM with 2% probability of exceedance in 50 years
- Lateral Spread maps (using above scenarios)
- Ground settlement maps (using above scenarios)
- Fully aggregated liquefaction map with PSHA input
 - (see next two slides)

- Liquefaction Damage
- Types of Liquefaction Maps
- Estimation of Frequency
- Estimation of Liquefaction Potential
- Estimation of Ground Displacement
- Estimation of Settlement
- Performance-Based Hazard Ordinances

Estimation of Frequency

How often do bad things happen?

Average return period of event (yrs.)?

Estimation of Frequency

Relative Frequency	Frequent	Moderately Frequent	Infrequent	Rare
Frequency	0 to 500 yrs.	500 to 1000	1000 to 2500	> 2500 yrs.
of Event ⁴		yrs.	yrs.	

1 Frequency of event means that the average return period occurs within that time range. For example if a frequency range is between 0 to 500 years, this implies that the event has an average repeat time that falls between 0 and 500 years. The frequency of the event must be established by geological/geotechnical evaluations.

- Liquefaction Damage
- Types of Liquefaction Maps
- Estimation of Frequency
- Estimation of Liquefaction Potential
- Estimation of Ground Displacement
- Estimation of Settlement
- Performance-Based Hazard Ordinances

Estimation of FrequencyLiquefaction PotentialP(L) = ΣP[L|A,M] P[A,M]

where:

P(L) = annual probability of liquefaction

P [L A,M] = conditional probability of liquefaction given the peak ground acceleration and the earthquake magnitude,

P [A, M] = joint probability density function of peak ground acceleration and earthquake magnitude.

Recommended "Probabilistic" SPT-Based Liquefaction Triggering Correlation (For MW=7.5 and $\sigma v'=1.0$ atm) (Seed et al. 2003)

Subsurface data collection

- Standard Penetration Testing (SPT)
- Cone Penetrometer Testing (CPT)

Standard
 Penetration
 Testing (SPT)

- Subsurface
 data
 collection
 - Cone
 Penetrometer
 Testing
 (CPT)

- Subsurface data collection
 - Cone
 Penetrometer
 Testing (CPT)

Geology Map

Borehole Map

Estimation of Frequency (Liquefaction Return Period)

Liquefaction Potential Maps (Weber County)

Median probabilities of *P_L*, 500-year seismic event

Median probabilities of P_L, 2,500-year seismic event

- Liquefaction Damage
- Types of Liquefaction Maps
- Estimation of Frequency
- Estimation of Liquefaction Potential
- Estimation of Ground Displacement
- Estimation of Settlement
- Performance-Based Hazard Ordinances

Estimation of Ground Displacement

• $P(DH > x) = \Sigma P[(DH > x) | L] P[L|A, M, R] P[A, M, R]$

Where:

- P(DH>x) = The probability of lateral spread exceeding a threshold value (e.g., x= 0.1 m and 0.3 m)
- P[L| A,M,R] = the probability of liquefaction given an acceleration, magnitude, and source distance.
- P[A,M,R] = joint probability density function of peak ground acceleration, magnitude and source distance.

Estimation of Ground Displacement (Salt Lake Valley)

Youd, Hansen, Bartlett (2002) Empirical Model

 $Log D_{H} = \frac{b_{o} + b_{off} \alpha + b_{1}M + b_{2}Log R^{*} + b_{3}R + b_{4}Log W + b_{5}Log S + b_{6}Log T_{15} + b_{7}Log(100 - F_{15}) + b_{8}Log(D50_{15} + 0.1 \text{ mm})$

- Seismic Factors
 - *M*, *R*
- Topographic Factors
 - *W*, *S*
- Geotechnical Factors
 - $T_{15}, F_{15}, D50_{15}$

Free-face ratio: W (%) = H / L * 100

Ground Displacement (Salt Lake Valley) Lateral Spread or 500 and 2500-year scenarios

Ground Displacement (Salt Lake Valley) Lateral Spread or 500 and 2500-year scenarios

M 7.0 Lateral spread displacement map

(85 percent chance of non-exceedance)

Estimation of Ground Displacement (Weber Co.)

Gillins and Bartlett (2013) Empirical Model

$$Log D_{H} = \frac{b_{o} + b_{off} \alpha + b_{1}M + b_{2}Log R^{*} + b_{3}R + b_{4}Log W + b_{5}Log S + b_{6}Log T_{15} + a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + a_{4}x_{4} + a_{5}x_{5}}$$

 x_i = the portion (decimal fraction) of T_{15} in a borehole that has a soil index corresponding to the table below

Soil Index (SI)	Typical Soil Description in Case History Database	General USCS Symbol
1	Silty gravel, fine gravel	GM
2	Coarse sand, sand and gravel	GM-SP
3	Medium to fine sand, sand with some silt	SP-SM
4	Fine to very fine sand, silty sand	SM
5	Low plasticity silt, sandy silt	ML
6	Clay (not liquefiable)	CL-CH

Ground Displacement (Weber Co.) Lateral Spread or 500-year scenario

 Median probabilities of exceeding 0.3 m, 500-year event

 84th percentile probabilities, of exceeding 0.3 m, 500-year event

Ground Displacement (Weber Co.) Lateral Spread or 2500-year scenario

Median probabilities of exceeding 0.3 m, 2500-year event

84th percentile probabilities, of exceeding 0.3 m, 2500-year event

- Liquefaction Damage
- Types of Liquefaction Maps
- Estimation of Frequency
- Estimation of Liquefaction Potential
- Estimation of Ground Displacement
- Estimation of Settlement
- Performance-Based Hazard Ordinances

Estimation of Settlement 0.6 Volumetric Strain - % 0.5 10 5 4 3 0.5 (Tokimatsu 1,0.2 And Seed, 1987) 0.4 $\frac{\tau_{ov}}{\sigma_{o}'}$ 01 03 Araham 2 achinohe, Pi 0.2 Hochinohe, Niigata, A. Niigota, (0.1 0 20 30 40 50 10 0 (N1)60

Estimation of Settlement

Settlement (Salt Lake Valley) for 500 and 2500-year scenarios

500-yr event

2500-yr event

- Liquefaction Damage
- Types of Liquefaction Maps
- Estimation of Frequency
- Estimation of Liquefaction Potential
- Estimation of Ground Displacement
- Estimation of Settlement
- Performance-Based Hazard Ordinances

Performance-Based Hazard Ordinances

- What constitutes "acceptable risk?"
- Need a graded, risk-based approach based on performance goals.
- Level of seismic hazard <u>quantified</u> by frequency or return period of event.
- Facilities/structures/systems <u>classified</u> according to importance.
- Performance goals <u>defined</u> for each class
 - Input owners/stakeholders/public
- Performance goal(s) <u>evaluated</u> in design process.

Classification of Systems

Functional Classification	Examples
Critical (Seismic Use Group III)	Hospitals, fire and police stations, emergency response command and control centers, vital utilities and services.
Essential (Seismic Use Group II)	Essential government and commercial facilities. Multi- unit housing. Important cultural and religious facilities. Facilities containing hazardous or toxic substances. Important bridges and major transportation corridors.
Important (Seismic Use Group I)	Single unit residential housing. Non-essential commercial facilities and utilities. Secondary streets and transportation arteries.
Routine	Non-habitable structures (e.g., garages, sheds, storage facilities, etc.) and private roads.

Safety/Environmental Performance Goals

	Performance Goal
Level 1	No loss of life or injury to occupants. No release of hazardous or toxic substances.
Level 2	No significant loss of life or major injury to occupants or significant release of hazardous or toxic substances.
Level 3	Safety goals are not applicable because these facilities or structures are not used for occupancy.

Systems Performance Goals

	Goal
Level 1 (Operational)	Facility or structure is <i>functional and operational immediately</i> <i>following the event</i> without interruption or repair.
Level 2 (Immediate Occupancy)	Facility, structure or system is functional and safe for occupancy soon after the geohazard event without significant loss of function or interruption. Structures should be <i>safe for occupancy and use within days to a few weeks of the event</i> with only minor interruption or repair.
Level 3 (Damaged/Repa irable)	Facility, structure or system is damaged but repairable following the geohazard event with some interruption. <u>Structures should be safe</u> for occupancy or use within several months after the event with major interruption and repair.
Level 4 (Damaged/Irrep arable)	Facility, structure or system is severely damaged and is not repairable. <u>Structures are not safe for occupancy and not repairable; but have not collapsed</u> .

Performance Goals vs. Event Frequency

Functional Classification	Frequency of Geohazard	Safety Performance Goal	System Performance Goal
Critical	Frequent	Level 1	Level 1
	Moderately Frequent	Level 1	Level 1
	Infrequent	Level 1	Level 1
	Rare	Level 1	Level 1
Essential	Frequent	Level 1	Level 1
	Moderately Frequent	Level 1	Level 1
	Infrequent	Level 2	Level 2
	Rare	Level 2	Level 3
Important	Frequent	Level 1	Level 1
	Moderately Frequent	Level 1	Level 1
	Infrequent	Level 2	Level 3
	Rare	Level 2	Level 4
Routine	Frequent	NA	NA
	Moderately Frequent	NA	NA
	Infrequent	NA	NA
	Rare	NA	NA

2015 UTAH LIQUEFACTION ADVISORY GROUP (ULAG) MEETING

David B. Simon Simon Associates LLC

Alan Taylor Taylor Geotechnical

1. Current issues and problems in addressing liquefaction related to geologic hazard ordinances.

2. Development of geologic hazards ordinances.

3. Data collaboration.

PURPOSE – continued

Having been involved in the drafting of two municipal geologic hazardous ordinances, the primary issue appears to be municipalities reluctance/refusal to establish a geologic hazard ordinance ... not necessarily issues and problems in addressing liquefaction in a geologic hazard ordinance.

In regards to issues and problems in addressing liquefaction in a geologic hazard ordinance ... DATA.

PURPOSE – continued

History of geologic ordinances at Draper City and Morgan County would be appropriate and effective examples

LIQUEFACTION REFERENCES

Initial Anderson Studies

- Anderson, L.R., Keaton, J.R., and Bay, J.A., 1994, Liquefaction potential map for the northern Wasatch front, Utah, complete technical report: Utah Geological Survey Contract Report 94-6, 148 p., 6 plates, scale 1:48,000. (west Cache County, east Box Elder County, and west and central Weber County).
- Anderson, L.R., 1994, Liquefaction potential map for Utah County, Utah: Non-Technical Summary, Utah Geological Survey Contract Report 94-3, 6 p. and 3 Plates, scale 1:48,000.
- Anderson, L.R., Keaton, J.R., Spitzley, J.E., and Allen, Andrew C., 1994, Liquefaction potential map for the Salt Lake County, Utah, complete technical report: Utah Geological Survey Contract Report 94-9, 68 p., 6 plates, scale 1:48,000.
- Anderson, L.R., Keaton, J.R., Aubrey, K., and Ellis, S., 1994, Liquefaction potential map for **Davis County, Utah**, complete technical report: Utah Geological Survey Contract Report 94-7, 50 p., 3 plates, scale 1:48,000.

LIQUEFACTION REFERENCES - continued

Subsequent Studies

- Black, B.D, Solomon, B.J. and Harty, K.M., 1999, Geology and geologic hazards of Tooele Valley and the West Desert Hazardous Industry area, Tooele County, Utah: Utah Geological Survey Special Survey Study 96, 65 p., scale 1:100,000.
- Harty, K.M., and Lowe, M., 2003, Geologic evaluation and hazard potential of liquefaction-induced landslides along the Wasatch Front, Utah: Utah Geological Survey Special Study 104, 40 p., 16 plates, scale 1:24,000.
- J.P. McCalpin, J.P., and Solomon, B.J., 2010, Seismic hazards mapping of the central Cache Valley, Utah—a Digital Pilot Project, step-by-step procedures for GIS mapping of earthquake hazards, and hazard maps at a scale of 1:24,000, UGS, in-progress.
- Olsen, M.J., Bartlett, S.F., and Solomon, B.J., 2007, Lateral spread hazard mapping of the Northern Salt Lake Valley, Utah, for a M7.0 scenario earthquake: Earthquake Spectra, v. 23, i. 1, p. 95-113.

LIQUEFACTION REFERENCES - continued

Southern Utah

- Lund, W.R., Knudsen, T.R., and Sharrow, D.L., 2010, Liquefaction susceptibility, Zion National Park geologic-hazard study area, Plate 5, Utah Geological Survey Special Study 133, Zion National Park Geologic-Hazard Study Area, Washington and Kane Counties.
- Lund, W.R., Knudsen, T.R., Vice, G.S. and Shaw, L.M., 2008, Geologic hazards and adverse construction conditions, St. George – Hurricane metropolitan area, Washington County, Utah: Utah Survey Special Study 148, 13 p. Geological Survey Special Study 127, 105 p, 14 plates, DVD.
- Knudsen, T.R. and Lund, W.R., 2013, Geologic hazards of the State Route 9 corridor, La Verkin City to town of Springdale, Washington County, Utah: Utah Geological

LIQUEFACTION REFERENCES - continued

Recent Folio Maps

- Castleton, J.J., Elliott, A.H., and McDonald, G.N., 2011, Geologic hazards of the Magna quadrangle, Salt Lake County, Utah: Utah Geological Survey Special Study 137, 73 p., 10 plates, scale 1:24,000, CD.
- Castleton, J.J., Elliott, A.H., and McDonald, G.N., 2014, Geologic hazards of the Copperton quadrangle, Salt Lake County, Utah: Utah Geological Survey Special Study 152, 24 p., 10 plates, scale 1:24,000, CD.

Compilation

 Christenson, G.E., and Shaw, L.M., 2008, Geographic Information System database geologic-hazard special study areas, Wasatch Front, Utah: Utah Geological Survey Circular 106, 7 p., GIS data, scale 1:24,000, compact disk.

Municipalities with Comprehensive Prescriptive Geologic Hazard Ordinances

- 1. Salt Lake County
- 2. Draper City
- 3. Morgan County
- 4. Iron County

DRAPER CITY'S INITIAL IMPRESSION OF GEOLOGISTS

Geologists are "scientists" with an unnatural obsession with rocks and alcohol. Often too intelligent to do monotonous sciences like biology, chemistry, or physics, geologists devote their time to mud-worrying, volcano spotting, fault poking, skiing, bouldering, dust-collecting, and highrisk coloring.

Anti-Regulatory Development Attitude When Draper City and Morgan County Entered into the Process

1. Utah is a "property rights" state.

2. Many state legislators are developers, builders, real estate agents.

3. Developers question a municipality's role/rights in reviewing a private developer's consultant's work.

Draper City Review Process

Prior to 2003 Draper City "blindly" accepted reports from "professionals" without clear and concise prescriptive minimum standards and/or a formalized review process.

In 2003, Draper City initiated a geologic review process via adoption of the Salt Lake County geologic hazards ordinance, which included inconsistent review by City consultants.

Draper City Review Process – continued

Revised Geologic Hazard Ordinance in 2006 – resulted in the most comprehensive geologic hazard ordinance in Utah and was used as the model ordinance by the Governor's Geologic Hazards Working Group.

In 2007, Draper City initiated thorough geologic reviews.

Morgan County Process

In 2004, existing Ordnance in place – two issues, County not requiring geologic review as stipulated and ordinance allowed approval of subdivisions with restricted "R" lots.

October 17, 2006 created a building moratorium in specific subdivisions in the Mountain Green area County Ordinance No Co-06-22.

New ordinance adopted June 1, 2010, which effectively removed geologic review in lieu of "Professional Certification."

MORGAN COUNTY CERTIFICATION

- A written, stamped certification from a professional geologist and engineer, licensed in the state of Utah, that:
- The geologic hazard reports have been prepared pursuant to the requirements of this article;
- Every proposed development lot or building pad does not present an unreasonable or unacceptable risk to the health, safety, and welfare of persons or property ... because of the presence of geologic hazards or because of modifications to the site due to the proposed land use;
- Every proposed development lot or building site demonstrates that, consistent with the state of the practice, the identified geologic hazards can be mitigated to a level where the risk to human life and damage to property are reduced to an acceptable and reasonable level in a manner which will not violate applicable federal, state, or local statutes, ordinances or regulations.

MORGAN COUNTY CERTIFICATION - continued

- A mitigation plan that demonstrates that the identified hazards or limitations will be addressed without impacting or adversely affecting off site areas. Mitigation measures must be reasonable and practical to implement and shall not require ongoing maintenance by property owners; and
- Verification from the issuer of professional errors and omissions liability insurance, in the amount of one million dollars (\$1,000,000.00), which covers the preparer of the statements from the licensed geologist and engineer, and which are in effect on the date of preparation of all required reports and certifications.
- Morgan County may set other requirements as are necessary to mitigate any geologic hazards and to ensure that the purposes of this article are met. These requirements may include, but are not limited to ...

MORGAN COUNTY CERTIFICATION continued

- 1. Additional or more detailed studies and professional certifications to understand or quantify the hazard or determine whether mitigation measures recommended in the report are adequate;
- 2. Specific mitigation requirements; establishing buildable and nonbuildable areas; limitations on slope grading and controls on grading, or revegetation;
- 3. Prior to receiving a grading, excavation, or building permit, final grading plans, when required, shall be prepared, signed and sealed by the licensed professional engineer and the engineering geologist and geotechnical engineer that prepared the geologic hazards and geotechnical report(s) to verify that their recommendations have been appropriately incorporated in the final grading plan and that building locations are approved;

MORGAN COUNTY CERTIFICATION - continued

- As built grading plans, when required, shall be prepared, signed and sealed by the 4. licensed professional engineer and the engineering geologist and geotechnical engineer that prepared the geologic hazards and geotechnical report(s) to verify that their recommendations have been appropriately incorporated and that building locations are approved, prior to the issuance of a building permit;
- 5. Grading plans, when required, shall include, at a minimum, the following:
 - a. Maps of existing and proposed contours;
 - b. Present and proposed slopes for each graded area;
 - c. Existing and proposed drainage patterns;
 - d. Location and depth of all proposed cuts and fills;
 - e. Description of methods to be employed to achieve stabilization and compaction;
 - f. Location and capacities of proposed drainage, structures, and erosion control measures based on maximum runoff for a 100-year storm;
 - g. Location of existing buildings or structures on or within one hundred feet (100') of the site, or which may be affected by proposed grading and construction; and Plan for monitoring and documentation of testing, field inspections during grading, and reporting to Morgan County;

MORGAN COUNTY CERTIFICATION - continued

- 6. Installation of monitoring equipment and seasonal monitoring of surface and subsurface geologic conditions, including groundwater levels; and
- 7. Other requirements such as time schedules for completion of the mitigation and phasing of development.
- C. Morgan County may also set requirements necessary to protect the health, safety, and welfare of the citizens of Morgan County, protect Morgan County's infrastructure and financial health, and minimize potential adverse effects of geologic hazards to public health, safety, and property as a condition of approval of any development which requires a geologic hazards report.
- D. Morgan County may require the engineering geologist and geotechnical engineer that prepared the geologic hazards and geotechnical report(s) be on site, at the cost of the applicant, during certain phases of construction, particularly during grading phases and the construction of retaining walls.

ISSUES TO OVERCOME

City leadership and willingness to leap into "regulation."

- Recognition that previous procedures were woefully inadequate.
 - "Education" of City officials the general geologic review processes -using examples from surrounding communities where geologic issues were ignored is important.
- Commitment by City leadership to support staff and the regulatory review process.

SUMMARY

The Draper City ordinance *works and works well* because Draper City has established a clear and concise set of prescriptive minimum standards. Developers and their consultants now know the "rules."

The Morgan County ordinance works and works well when properly implemented and supported by County Council.

SUMMARY - CONTINUED

The success of a geologic hazard program has, and continues to be, directly proportional to City/County officials, administrators, and planners ability to understand geologic processes. Other factors include:

- review-consultants who understand City processes and can circumvent potential issues that could adversely impact the City;
- making the hard decisions in regards to development, even if it involves halting approved developments;
- advocating with the State legislature to assure a municipality's right to geologic and geotechnical review and the protection of public health, safety and welfare.

SUMMARY - CONTINUED

Challenges faced by the municipalities during successful implementation of a geologic hazard ordinance include the continued outrage by the development community (including likely litigation), resistance by Consultants, and continued attempts by the development community to take control of the development process.

Less resistance from the consulting community and implementation of a continuing education requirement would greatly contribute to achieving a municipality's mandate of protecting public health, safety, and welfare.

SUMMARY - CONTINUED

Work to be done includes educating cities without an ordinance of the need and benefits of a prescriptive geologic hazard ordinance.

Thank You

Questions?

Collaboration of Data

Alan Taylor Taylor Geotechnical

