Analysis of ANSS Data for Stress Drop, Q(f), and Kappa

Utah Ground Motion Working Group

Ivan Wong

Seismic Hazards Group URS Corporation Oakland, CA

Jim Pechmann

Dept. of Geology and Geophysics University of Utah Salt Lake City, UT

Salt Lake City, UT 14 February 2011

Walt Silva and Bob Darragh

Pacific Engineering & Analysis El Cerrito, CA

Tian Yu

Institute of Engineering Mechanics

China Earthquake Administration Harbin, China

Introduction

- Objective: To evaluate the critical factors that control ground shaking hazard along the Wasatch Front: stress drop, kappa, and crustal attenuation.
- Some previous studies have suggested that ground motions in an extensional regime such as the Basin and Range Province may be lower than in California for the same magnitude and distance.
- The inference was that this difference may be due to the lower stress drops of extensional earthquakes compared to compressional earthquakes as first suggested by McGarr (1984).

Background

- No systematic evaluation of earthquake stress drops has been performed for earthquakes along the Wasatch Front.
- No studies have been performed to evaluate the variability in kappa in the central Wasatch Front. Kappa can have a very significant effect on highfrequency ground motions with lower values of kappa resulting in larger high-frequency ground motions.
- Only a few studies to estimate Q(f) for the Wasatch Front (Brockman and Bollinger, 1992; Jeon and Herrmann, 2004) have been performed.

Scope of Work

- To analyze the available strong motion and broadband data from ANSS stations in the central Wasatch Front region for stress drop, kappa, and Q(f).
- The approach uses an inversion scheme developed by Walt Silva. In the inversion scheme, earthquake source, path and site parameters are obtained by using a nonlinear least-squares inversion of Fourier amplitude spectra.

Earthquakes to be Analyzed

- Total of 17 events
- > Period: May 2001 to November 2007
- ► Magnitude Range: M 3.0 to 4.2
- Number of stations recording events: 18 to 68

Scope of Work

> Steps involved in analyses are:

- Inversions with rock amp factors using rock recordings.
- 2) Results from Step 1 used to invert soil recordings to obtain an average set of amp factors for soil sites.
- Rock and soil amp factors are used to invert both rock and soil recordings.
- 4) Inversions were performed fixing Q₀ and R0 fixed to values in Step 3 and rock and soil amp factors to obtain station κ and stress drop.

Hard Rock V_s and V_P Profiles

-

Frequency-Dependent Amplification Factors

9

Muhuhuhum

10

Model Bias for Soil Sites

-nhhhhhhhh

Model Bias for Rock Sites

millitelini

14

Model Bias for All Sites (Rock and Soil)

Final Preliminary Results

-nullhardmillard

Event	Date	Event ID	Magnitude (M)	Latitude (degrees)	Longitude (degrees)	Depth (km)	<mark>Δσ</mark> (bars)
1	20010524	10224024041	3.30	40.3777	-111.9307	5.9	10.62
2	20020728	20728193840	3.59	41.7445	-111.3802	9.3	5.84
3	20030103	30103050212	3.62	41.2745	-111.8020	11.70	22.52
4	20030201	30201203731	3.15	41.8288	-112.2120	0.22	12.38
5	20030417	30417010419	4.24	39.5095	-111.8962	0.08	2.83
6	20030712	30712015440	3.50	41.2855	-111.6148	8.97	38.98
7	20031227	31227003924	3.64	39.6480	-111.9430	0.88	15.43
8	20040225	40225004104	3.38	41.9977	-111.8182	1.68	44.00
9	20040313	40313130447	3.17	39.6572	-111.9377	1.77	13.19
10	20050518	50518192147	3.29	41.4245	-111.0898	1.56	11.43
11	20050723	50723053748	3.30	41.8835	-111.6325	11.07	147.27
12	20050905	50905093155	3.00	41.0222	-111.3568	7.41	27.26
13	20051120	51120102429	2.62	41.3672	-111.6910	2.77	132.13
14	20060611	60611100150	3.41	40.2468	-111.0733	10.37	15.11
15	20061220	61220181536	3.35	41.1270	-111.5745	7.94	89.78
16	20070901	70901183202	3.92	41.6423	-112.3185	5.61	6.07
17	20071105	71105214801	3.91	39.3458	-111.6475	5.50	16.81

Final Inversion Results

Q_0	137.05	
η	0.56	
$\overline{\Delta}\sigma$ (bars)	20.1	
$\overline{\kappa}$ (sec)	0.034	
$\overline{\kappa}$ for rock sites (sec)	0.030	
$\overline{\kappa}$ for soil sites (sec)	0.036	
R0 (km)	59.88	

Comparison of Stress Drops

Source	Region	Magnitude	Stress Drop
Becker and Abrahamson (1997)	Worldwide	5.1 – 6.9	16 – 93 bars 29 bars (median)
WCFS et al. (1996)	Basin and Range	2.8 – 6.0	8 – 114 bars 40 bars (mean)
This study	Wasatch Front	3.0 – 4.2	3 – 147 bars 20 bars (mean)
Silva et al. (1997)	California	5.7 – 7.3	59 bars (mean)

Three-Dimensional Nonlinear Earthquake Ground Motion Simulation in the Salt Lake basin using the Wasatch Front Community Velocity Model

THE OUAKE Group

Ricardo Taborda and Jacobo Bielak Computational Seismology Laboratory

Department of Civil and Environmental Engineering Carnegie Mellon University A research project

Region and Simulation Domain

Source Models

Point and Line

Mw	6.0 (point) 6.3 (line)
Strike	153°
Dip	50°
Rake	0 °
Depth	13 km

Plane Source

Provided by: Qiming Liu Ralph Archuleta

SRF File: wasatch_dyna_vs.srf

Μνν	6.8
Strike	153°
Dip	50°
Rake	0 °

Max = 2.57 m Avg = 1.67 m

Simulation Parameters

Linear:

Vs _{min}	100 m/s
f _{max}	1.0 Hz

Source:	Plane
Sim. Time:	100 s
Delta t:	0.0025 s
Elements:	152,587,905
Processors:	4,800
Walltime:	4 hr 30 min

Linear & Nonlinear:

Vs _{min}	500 m/s	Source:	Point & Line
f _{max}	0.5 Hz	Sim. Time:	40 s
тах		Delta t:	0.001 – 0.01 s
		Elements:	10,859,318
		Processors:	480
		Walltime:	15 min (dt = 0.01 s)
			1 hr 15 min (dt = 0.001 s)

Wave Propagation in Inelastic Media

Linear momentum equation

$$\sigma_{ij,j} + f_i = \rho \ddot{u}_i$$

Applying finite Elements but keep stress terms

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \sum_{e} \int_{\Omega_{e}} \mathbf{B}^{\mathrm{T}} \sigma_{ij} d\Omega_{e} = \mathbf{f}$$

Applying central differences in time and decoupling with respect to the mass matrix

$$\begin{aligned} u_{n+1}^{i} &= \frac{\Delta t^{2}}{m^{i}} f_{n}^{i} + \left(2u_{n}^{i} - u_{n-1}^{i} \right) - \alpha \Delta t \left(u_{n}^{i} - u_{n-1}^{i} \right) \\ &- \frac{\Delta t}{m^{i}} \beta \left(\sum_{\mathbf{e}} \mathbf{K}^{\mathbf{e}} \left(\mathbf{u}_{n}^{\mathbf{e}} - \mathbf{u}_{n-1}^{\mathbf{e}} \right) \right)_{i} - \frac{\Delta t^{2}}{m^{i}} \left(\sum_{e} \int_{\Omega_{e}} \left(\mathbf{B}^{\mathrm{T}} \sigma_{ij} \right)_{n} d\Omega_{e} \right)_{i} \end{aligned}$$

Explicit

Forward solution of displacements

Rate-Dependent Plasticity

Hooke's law and Strain Tensor decomposition

$$\epsilon_{ij}^{e} = \epsilon_{ij} - \epsilon_{ij}^{p}$$
$$\sigma_{ij} = C_{ijmn} \left(\epsilon_{mn} - \epsilon_{mn}^{p} \right)$$

Plane Source — Linear

Nonlinear Properties Criteria

Yield Function Histories

Nonlinear Properties Criteria

Point Source:	Fs _{avg} (Pa)	Fs _{max} (Pa)	
Linear	4.31E+03	2.28E+05	
Nonlinear	4.33E+03	6.82E+04	(30% of Peak)

Line Source:

Linear	1.73E+03	5.24E+04	
Nonlinear A	1.68E+03	1.73E+04	(33% of Peak)
Nonlinear B	1.22E+03	6.05E+03	(11% of Peak)
Nonlinear C	9.39E+02	3.69E+03	(7% of Peak)

Point Source — Linear vs Nonlinear

Displacement

Linear

Nonlinear

0 0.09 0.18 (m)

Point Source — Linear vs Nonlinear

Velocity

Linear

Nonlinear

0.2 (m/s)

Deamplification

1.0 1.4 1.8 (Linear / Nonlinear)

Point Source — Linear vs Nonlinear

Acceleration

Linear

Nonlinear

0 0.7 1.4 (m/s²)

1.0 1.7 2.4 (Linear / Nonlinear)

'Line' Source — Linear vs Nonlinear A

Displacement

Linear

Nonlinear

'Line' Source — Linear vs Nonlinear A

Velocity

Linear

Nonlinear

'Line' Source — Linear vs Nonlinear A

Acceleration

Linear

Nonlinear

0 0.75 0.15 (m/s²)

'Line' Source — Linear vs Nonlinear B

Displacement

Linear

Nonlinear

(m)

Deamplification

0.2 1.0 1.8 (Linear / Nonlinear)

'Line' Source — Linear vs Nonlinear B

Velocity

Linear

Nonlinear

0 0.04 0.08 (m/s)

'Line' Source — Linear vs Nonlinear B

Acceleration

Linear

Nonlinear

0 0.75 0.15 (m/s²)

'Line' Source — Linear vs Nonlinear C

Displacement

Linear

Nonlinear

(m)

2 0 1 (Linear / Nonlinear)

'Line' Source — Linear vs Nonlinear C

Velocity

Linear

Nonlinear

D

'Line' Source — Linear vs Nonlinear C

Acceleration

Linear

Nonlinear

0 0.75 0.15 (m/s²)

1.0 3.0 5.0 (Linear / Nonlinear)

'Line' Source — Linear vs Nonlinear A,B,C

Displacement

'Line' Source — Linear vs Nonlinear A,B,C

Velocity

Nonlinear B

Nonlinear C

'Line' Source — Linear vs Nonlinear A,B,C

Acceleration

Recording Stations

University of Utah Regional/Urban Seismic Network (http://www.quake.utah.edu)

119 stations

Nonlinear C

- ----- Nonlinear B
 - Nonlinear C

- Nonlinear B
 - Nonlinear C

Nonlinear C

[—] Nonlinear B

Nonlinear C

Synthetics Fourier Amplitude

- Nonlinear B
 - Nonlinear C

Status Recap and Plan Ahead

- Started in late September 2010
- Large scale model 120 km x 240 km x 60 km
- Linear simulation at 1Hz and 100 m/s
- Multiple nonlinear simulations at 0.5 Hz and 500 m/s
- Thus far, results suggest that the largest nonlinear behavior is well localized near the fault, but peak velocities and accelerations are substantially reduced throughout the entire basin.
- Need to define a smaller model 80 km x 80 km x 40 km for nonlinear simulations at higher frequencies (2 Hz) and have all material with Vs = 100–500 m/s be nonlinear
- Need alternative source models
- Will need several runs to adjust soil parameters
- 6 months to finish and produce final report.

Three-Dimensional Nonlinear Earthquake Ground Motion Simulation in the Salt Lake basin using the Wasatch Front Community Velocity Model

THE OUAKE Group

Ricardo Taborda and Jacobo Bielak Computational Seismology Laboratory

Department of Civil and Environmental Engineering Carnegie Mellon University A research project

Characterization of Shallow S-Wave Velocity Structures in Southwestern Utah

Simin Huang, Kris Pankow, Michael Thorne, and Bill Stephenson

Special thanks to Bill Lund, Tyler Knudsen, and Gary Christenson

Table 1. Station Locations

Site		Location		Geologic Description
		Lat	Lon	Geologie Deser iption
ССН	Cedar City Church	37.66°	-113.09°	Tertiary conglomerate
				with interbedded basalt
				flows ¹
ССР	Cedar City High School	37.66°	-113.07°	Quaternary piedmont-
				slope alluvium—silt, sand, and gravel ¹
CVMS	Canyon View Middle School	37.71°	-113.06°	Quaternary piedmont-
				slope alluvium—silt, sand,
	Fossil Track Intermediate			Shallow Jurassic siltstone
FRS	School	37.10°	-113.54°	and sandstone ^{2}
				Quaternary mixed alluvial
N7223	Dixie State College	37.10°	-113.57°	and eolian deposits—clay 1^2
				to sand
RES	Riverside Elementary School	37.10°	-113.52°	Quaternary alluvial-stream
				deposits—clay to small gravel ²
$\frac{1}{2}$ Rowley <i>et al.</i> (2006)				

²Higgins and Willis (1995)

• Four – station equilateral triangle array

1. Coherency

Jo Bessel Function

2. Phase Velocity Dispersion curve

Frequency (HZ)

3. HVSR (Horizontal over Vertical Spectral Ratio)

Modeling

• MMSPAC (Multi-mode SPAC , Asten, 2004)

Frequency (HZ)

Modeling

Geopsy Université Joseph Fourier (Grenoble, France) Universität Potsdam (Potsdam, Germany)

Ellipticity

Phase Velocity

HVSR and Ellipticity

Gray thin lines: HVSR of data

Gray dash lines: Ellipticity of models determined from MMSPAC

Gray lines: Ellipticity of modified models

Phase velocity dispersion curves

Black thick lines: Phase velocity of data

Black thin lines: Phase velocity of models determined from MMSPAC

Gray dash lines: Phase velocity of modified models

Results

MMSPAC Model					Ellipticity Model			
Site	V _S 30 (m/s)	Bedrock Depth (m)	Velocity Jump (m/s)	NEHRP Code	V _S 30 (m/s)	Bedrock Depth (m)	Velocity Jump (m/s)	NEHRP Code
ССН	485	105	1000- 1900	С	485	80	1000- 1900	С
ССР	374	60	800- 1000	С	485	120	1000- 2200	С
CVMS	367	30	500- 1200	С	367	30	500- 1200	C
FRS	545	*	1800- 2200	С	522	*	1300- 2200	С
N7223	736	24	1000- 2000	С	529	30	850- 1300	С
RES	462	98	600- 1300	С	413	141	900- 2000	С

Table 2. Results

* Bedrock exposed at surface

Conclusions

- We consider the models refined using HVSR to provide the best fit to the data for all the sites except for FRS.
- All models except that for CVMS seem reasonable given what is known of the geology. At CVMS the models are well constrained by the data.

Conclusions

 The average shear-wave velocity in the upper 30 meters (V_s30) is between 360 and 760 m/s for all six sites, corresponding to NEHRP site class unit C. Little strong-ground motion amplification is expected for average shear velocities in this range.

Ground Motion in the Salt Lake Valley from Multi-Segment Faults

Qiming Liu (UC Santa Barbara) Ralph Archuleta (UC Santa Barbara) Robert Smith (University of Utah)

Modeling Area

Meshing

UGS, Salt Lake City, Feb 14, 2011

Case Study (cont.)

Case Study (cont.)

UGS, Salt Lake City, Feb 14, 2011

Comparing with NGA Prediction

Behavior of Shear Stress at a Point on the Fault

S= Strength Excess/Stress Drop= $(\sigma^{y} - \sigma^{o})/(\sigma^{o} - \sigma^{f})$

Schematic of Friction, Seismicity, Slip

From Chris Marone, Laboratory-Derived Friction Laws and Their Application to Seismic Faulting, Annual Reviews Earth Planetary Science, vol. 26, 1998, 643–96.

Behavior of Shear Stress at a Point on the Fault: Negative Stress Drop

Comparison of slip snapshots: With and without velocity strengthening

timestamps: (1.875s, 5.625s, 7.5s, 10.0s), slip in meters

C. B. DuRoss (2008). Holocene Vertical Displacement on the Central Segments of the Wasatch Fault Zone, Utah, Bull. Seismol. Soc. Am., 98, 2918-2933.

PGV Surface Maps: X, Y, Z components

With velocity strengthening

UGS, Salt Lake City, Feb 14, 2011

Prediction of Peak Velocity on East-West Profiles

station locations Black: No Velocity Strengthening Red: Velocity Strengthening

Particle Velocity Time Histories

Black: No Velocity Strengthening Red: Velocity Strengthening

Station S21

Time (s)

UGS, Salt Lake City, Feb 14, 2011

Particle Velocity Time Histories

Black: No Velocity Strengthening Red: Velocity Strengthening

UGS, Salt Lake City, Feb 14, 2011

Vy (m/s)

Multiple Segments

- Faults are not single planar features but complex in shape, connectivity, etc.
- Fault jumping and dynamic triggering can significantly change the seismic moment.
- Limited quantitative results on dynamic triggering
 - 1. Parallel strike-slip faults (Harris et al. 1991)
 - 2. Parallel thrust faults (Magistrale & Day 1999)

Multiple Segments

Computing model

Keyword	Value				
Lx, Ly, Lz	40km,40km,17km				
dx,dy,dz	100m,100m,100m				
Strike, dip	180°, 50°				
Friction Law	Slip-weakening				
Initial normal stress	Uniform (36MPa)Depth dependent				
$\mu_{0,}\mu_{d},\mu_{s,}S$	0.536, 0.448, 0.66, 1.16				
D _c	0.25m				
dt, Tmax	0.01, 20.0				
V_p, V_s, ρ	5712m/s,3298m/s,2700k g/m ³				

3D Fault geometry model (top) Map view of the fault segments and key terminology

Comparison of Slip Snapshots between a Single Fault and a Two-Segment Fault snapshots of the fault: (1.875s 5.625s 13.0s 20.0s), slip in meters

UGS, Salt Lake City, Feb 14, 2011

PGV Surface Maps: X, Y, Z components

Single Fault Plane

Two-Segment Fault Plane

Prediction of Peak Velocity on East-West Profile

Black: Single Fault Plane Red: Two-Segment Fault

Particle Velocity Time Histories

Black: Single Fault Plane

Particle Velocity Time Histories

Station S13

15

Time (s)

20

25

30

0.5

-0.5

5

10

Station S21

UGS, Salt Lake City, Feb 14, 2011

Development of Coulomb stress on planes sub-parallel to the main fault

Thank You

UGS, Salt Lake City, Feb 14, 2011

Ground Motion Predictions from 0-10 HZ for M7 Earthquakes on the Salt Lake City Segment of the Wasatch Fault, Utah

Introduction

Introduction

3D model of the WFSLC segment

Final model of the SLC segment of the WF used for M7 scenario simulations Fault geometry mostly consistent with eastern boundaries of the Salt Lake Valley basin

- Simulation of dynamic rupture process on a planar vertical fault
- Staggered-grid split node finite difference method (Dalguer & Day, 2007)
- Depth-dependent normal stress (Dalguer & Mai, 2008)
- Simulated velocity strengthening near the free surface (reduce τ_0 , increase d_0 , $\mu_d > \mu_s$)
- Four rupture models with different hypocenter locations

- Simulation of dynamic rupture process on a planar vertical fault
- Staggered-grid split node finite difference method (Dalguer & Day, 2007)
- Depth-dependent normal stress (Dalguer & Mai, 2008)
- Simulated velocity strengthening near the free surface (reduce τ_0 , increase d₀, $\mu_d > \mu_s$)
- Four rupture models with different hypocenter locations

Scenario B

Scenario D

Rupture time (s)

Strike (km)

Six scenario EQs

Representative distribution of hypocenter locations:

Normal faulting EQs tend to originate near brittle-ductile transition zone (~15 km depth):

5 deep hypocenters (20 km down-dip) I shallower hypocenter (10 km down-dip)

Rupture tends to start near nonconservative barriers:

- near northern end (A, B)
- near southern end (A', B')
- near bifurcation near Holladay stepover (C, D)

(Bruhn et al., 1992)

FD Simulation of Wave Propagation

Planar rupture models are projected onto irregular 3-D model of the WF and the moment rate time histories are inserted into grid nodes

Two of the four rupture models are mirrored laterally, yielding six source models

Wave propagation of these source models is simulated with velocity-stress staggered-grid finite difference method (Olsen, 1994)

FD3D parameters		
Model dimensions	1500 x 1125 x 500	
Simulation length	60s (24,000 iter.)	
Discretization	40m / 0.0025 s	
Minimum Vs	200 ms ⁻¹	
Highest frequency	l Hz	
# of CPU cores	1875	
Wall-clock runtime	2.5 hrs (NICS Kraken)	

В

В

B

В

Salt Lake City

West Valley City

Taylorsville

West Jordan

Riverton

9.81ms

-112'00

Bountiful

Murray

Midvale

South Jordan

B'

40'54 Bountiful Highrise locations ocation 40'48 Salt Lake City South Salt Lake South Salt West Valley City 40'42 Taylorsville •Hollada Murray Cottonwood Heights Cottonwood Height West Jordan Midvale 40'36' South Jordan Riverton Drape 40'30'

Strong along-strike directivity effect

-112'06' -112'12'

0.5

1.0

0.0

40'54

40'48'

40'42'

40'36'

40'30'

40'24

48

-111 54

Draper

122

·112.00

- T I Z UU

-111'54' -111 48

А

А

40'54

40'48'

40'42'

40'36'

40'30'

40'24'

-112"12"

40'24

-112 12

-112'00'

-111'54'

-111'48'

-112'06'

-112'06' -112'00'

00' –111'54'

-111'48'

С

Average 2s-SAs

Broadband Synthetics

Combining low-frequency FD synthetics with high-frequency scattering operators

Scatterograms are computed using **multiple scattering theory** with scattering parameters based on site-specific velocity structure (*Mai et al., 2010*)

Scatterograms are convolved with dynamically consistent source time function

Extended fault approximation (*Mena et al., 2010*) by subdividing WFSLC into 925 subfaults of 1 km² area each

LF and HF synthetics are combined into broadband seismograms in the frequency domain using a simultaneous amplitude and phase matching algorithm (Mai & Beroza, 2003)

Broadband Synthetics

Broadband 5Hz-SAs (Scenario B')

Comparison to NGA

Comparison to NGA

ground motion at higher frequencies?

Simulation of Nonlinear Soil Response

Nonlinear I-D propagator NOAH (Bonilla et al., 2005) to model SH propagation in top 240m
Not modeling pore water pressure or soil dilatancy (parameters are not available)
Shear modulus reduction is controlled by reference strain γ_r:

$$\frac{G}{G_{\max}} = \frac{1}{1 + \frac{\gamma}{\gamma_r}}$$

Reference strain γ_r is derived from an empirical relationship (Darendelli, 2001), modified to take results of recent laboratory test of Bonneville clays into account (Bay & Sasanakul, 2005):

$\gamma_r(\mathrm{PI}, \mathrm{OCR}, \sigma_v)$

Hysteresis dissipation is controlled by maximum damping ratio at large strains ξ_{max} , which we also estimate from Darandelli (2001):

$$\xi_{\max}(\mathrm{PI},\mathrm{OCR},\sigma_v,N,f)$$

	Parameter	Value
PI	Plasticity Index	0 - 40
OCR	Overconsolidation ratio	1
σ_v	Confining pressure	f(z)
N	Number of cycles	10
f	Frequency	l Hz

Nonlinear soil parameters

Plasticity index (PI) depends on local site response unit (McDonald and Ashland,2008)

Nonlinear soil parameters

Plasticity index (PI) depends on local site response unit (McDonald and Ashland,2008)

Nonlinear soil parameters

Simulation of Nonlinear Soil Response

Broadband synthetics at free surface are deconvolved to

remove response of upper 240m

- Resulting signal represents incoming wavefield at depth and serves as input for nonlinear simulation
- Nonlinear I-D simulation yields ground motion on the surface of the nonlinear layer

Simulation of Nonlinear Soil Response

Linear (Broadband) vs. Nonlinear

Broadband 5Hz-SAs (Scenario B)

Linear (Broadband) vs. Nonlinear

Broadband 3Hz-SAs (Scenario B')

Definition of amplitude-and site-dependent correction factors
 Coefficients of 3rd order polynomial are determined for each SRU and frequency
 L2 norm using ~2,500 NL I-D simulations

Definition of amplitude-and site-dependent correction factors Coefficients of 3rd order polynomial are determined for each SRU and frequency L2 norm using ~2,500 NL I-D simulations

Nonlinear acceleration (ms⁻²)

10

Linear acceleration (ms⁻²)

Definition of amplitude-and site-dependent correction factors
 Coefficients of 3rd order polynomial are determined for each SRU and frequency
 L2 norm using ~2,500 NL I-D simulations

Linear acceleration (ms⁻²)

Linear acceleration (ms⁻²)

BB 5Hz-SAs (Scenario B')

BB-NL 5Hz-SAs (Scenario B')

BB 5Hz-SAs (Scenario A)

BB-NL 5Hz-SAs (Scenario B)

Comparison to NGA

 10^{1}

 10^{1}

Distance to fault (km)

Average BB+NL 5Hz-SAs 0.5s-SAs (g) 40'54 Bountiful (21), W 10^{0} 40'48' BB w/o nonlinearity Salt Lake City 📥 BB w/ nonlinear correction 10^{-1} C&B (2008), $r_{jb} = 0$, $\overline{V_s(30)} = 250 \text{ ms}^{-1}$ West Valley City 40'42' 10^{0} Distance to fault (km) Taylorsville Muirray 0.2s-SAs (g) 40'36' South Jordan 10^{0} Rivertori 40'30' BB w/o nonlinearity 9.81ms BB w/ nonlinear correction 10^{-1} C&B (2008), $r_{jb} = 0$, $\overline{V_s(30)}$ = 250 ms⁻¹ SA (0.2s) 40'24' 10^{0}

-111'48'

-111'42'

-112'12'

-112'06'

-112°00'

-111'54'

Average 1s-SAs

Wong et al. (2002)

Roten et al. 3-D simulations

Average 0.2s-SAs

Wong et al. (2002)

Roten et al. 3-D simulations

PGAs

Wong et al. (2002)

Roten et al. 3-D simulations

Roten et al. 3D simulations

Conclusions

0-I Hz 3-D FD simulations of scenario earthquakes

- Ground motion tends to be larger on the low-velocity sediments on the hanging wall side of the fault than on outcropping rock on the footwall side, confirming results of previous studies on normal faulting EQs (O'Connell et al., 2007)
- The simulated ground motions reveal strong along-strike and along-dip directivity effects
- Our simulations suggest that the highest average 2s-SAs occur at ~2-3 km distance from the surface trace of the fault
- 2s-SAs and 1s-SAs are in agreement with values predicted by NGA models

Mount Olympu

Canyon Ridlereck Holladay Dittle Coll

Drape

Conclusions II

Broadband (0-10Hz) synthetics:

- 0.2s-SAs derived from broadband synthetic seismograms are exceeding those predicted by NGA models by more than one standard deviation at near-fault locations on the hanging wall side, but agree well at some distance from the fault
- Compared to Solomon et al. (2004), our 3-D FD simulations predict lower Is-SAs on the footwall wall side of the fault

Nonlinear soil response:

- Synthetic ground motions obtained from a fully nonlinear I-D propagator exhibit PGAs and SAs that are consistent with values predicted by NGA models, even when taking into account the uncertainty in the nonlinear soil parameters
- Higher-frequency (> 2Hz) ground motion is controlled by nonlinear site response, with larger SAs on the shallow sediments on the footwall side than on the deep sediments on the hanging wall side

Mount Olympu

Canyon Rimilcreex Holladay

Drape

Average 1s-SAs

Solomon et al. (2004)

3-D FD simulations

-111'42'

Comparison to BLWN-RVT

Is-SAs by Solomon et al. (2004)

(finite EQ source modeling, band limited white noise GM model, random vibration theory, equivalent linear soil)

Is-SAs from 3-D FD+BB simulations

Long period (T > 1-s) earthquake simulations for the evaluation of the WCVM

Morgan Moschetti and Leo Ramirez-Guzman USGS, Golden, CO Utah Ground Shaking Meeting 2/14/2011

Motivation

- In preparation for earthquake ground motion modeling with kinematic source models, compare synthetic and observed seismograms using the WCVM to identify any characteristic misfits and bias
- Test effect of simple perturbations to the material model to assess impact on various goodness-of-fit parameters (PGV, spectral acceleration, surface wave speeds)

Outline

- Misfit to synthetic seismograms
- R1-kriging
- Simple perturbations to WCVM for synthetic seismograms
 - Regional model
 - R3
 - GTL

Simulated earthquakes

 Set of simulated earthquake selected from catalog based on magnitude, proximity to Salt Lake Basin and number of broadband stations

- Ephraim EQ occurred during TA deployment in Wasatch Front

EQ	Date	Lat	Lon	Strike	Dip	Rake	Depth	Mw
Randolph	4/15/10	41.7	-111.1	210	35	-45	5	4.51
Ephraim	11/5/07	39.36	-111.64	230	25	-65	15	3.76
Tremonton	9/1/07	41.64	-112.33	245	85	5	9	3.66

Earthquake ground motion modeling

- CMU-Hercules FE toolchain (Tu et al., 2006)
- Simulations run to 0.5-Hz (Regional model, geotechnical layer) and 1.0-Hz (R1 and R3 perturbations – all future simulations to 1-Hz

PGV Comparisons

PGV Comparisons

Rayleigh wave group speeds, Randolph EQ

Group speed differences (3-s), Randolph EQ

Krigging borehole data in R1

Test effect of kriging
borehole data
Supplement borehole
data with profiles
through the CVM

Response spectra ratios, Randolph EQ

 Response spectra plotted are mean values of all station spectra calculated.

Response spectra ratios, Randolph EQ

- 15% decrease in mean response spectra ratio
- 6% increase in mean PGV ratio

Testing effects of regional Vs models

5 km

10 km

ANT Vs model

Moschetti et al. (2010) JGR

Randolph EQ simulation

Ephraim EQ simulation

PGV comparisons – Regional Model

Effect on mean PGV of regional model:

- Ephraim: WCVM 40% better
- Randolph: ANT 11% decreased
- Tremonton: WCVM 8% better

Response spectra, changes in mean values with regional model testing

-Several percent decrease in mean response spectral value with ANT regional model

Testing effect of geotechnical layer (GTL)

Method for generating GTL velocity profile is based on Ely et al. (2010)

Allen and Wald-derived Vs30

Vs model comparison, 50 m depth

Response spectra ratios, GTL, Randolph EQ

- Several percent improvement in mean response spectra ratio

PGV comparisons - GTL

Effect on mean PGV of adding GTL:

- Ephraim: 3% increase
- Randolph: 5% decrease
- Tremonton: negligible

Changes to PGV with ANT Vs model

Perturbations to R3 volume

-1-Hz simulation, currently only for Randolph EQ

- +/- 10% perturbation to R3 volume

PGV ratios identify those stations
 strongly affected by R3 – both
 negative and positive values.

Perturbations to R3 volume

-1-Hz simulation, currently only for Randolph EQ

- +/- 10% perturbation to R3 volume

PGV ratios identify those stations
 strongly affected by R3 – both
 negative and positive values.

Future directions

- Continued sensitivity testing for simulations at 1-Hz – duration, PGV, PGA (from 1-Hz) simulations, spectral accelerations (1-Hz)
- Additional parameter tests
- Ground motion modeling Salt Lake Segment of Wasatch Fault (kinematic models from UCSB and/or developed on SCEC platform)

Material model and source uncertainties

WCVM basin surfaces

